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The Point

• Motivation

• I/O is a routine bottleneck, there is obvious benefit 

to optimizing 

• Modeling Parallel I/O

• This work

• Explore machine learning methods for modeling 

HPC I/O

• Create practical utility for I/O optimization



This Talk

• Modeling Parallel I/O

• HPC I/O considerations

• Configuration space

• ML approaches

• Generating training/test data

• An optimization utility

• Evaluation



HPC I/O CONSIDERATIONS

Motivation I



Large Scale I/O in Practice
• Serial I/O is limited by both the I/O bandwidth of a single 

process as well as that of a single OST

• Two ways to increase bandwidth:
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The Typical Discussion

• Both patterns increase bandwidth through the addition of I/O 
processes
• There is a limited number of OSTs to stripe a file across 

• The likelihood of OST contention grows with the ratio of I/O 
processes to OSTs

• Eventually, the benefit of another I/O process is offset by added 
OST traffic

• Both routinely use all processes to perform I/O
• A small subset of a node’s cores can consume a node’s I/O 

bandwidth

• This is an inefficient use of resources

• The answer?  It depends… but,
• Think aggregation



The Typical Followup

• From “Application Scalability and Parallel I/O” 

presentation by William Gropp

• No easy recipe

• Performance can be lost anywhere

• Rules of thumb can be misleading

• Specifics depend on the application



I/O CONFIGURATION SPACE

Motivation II



What Feels Right

• It is possible to statistically model I/O for an HPC 

system, it’s just impossible

• There are just too many possible configurations

• Would require prohibitive benchmarking

• Would be similarly expensive to update

• Machine Learning may provide decent model 

training on significantly reduced configuration 

space



HPC Machine Learning

• Machine Learning seems to have many 
applications to HPC diagnostic data, but…

• Ground truth data required on which to train

• Possible but not practical to hand classify this data

• Often, data understood well enough to hand classify 
does not represent interesting applications of ML

• Data including certain metrics have built in 
“classification” – downtime, utilization, etc.

• I/O as a function of configuration -> throughput 
fits perfectly



So, How Big is This Configuration Space?

• Many parameters

• Job size and I/O size

• Aggregation level/type

• Number of files

• File system settings (stripe size, count, etc.)

• I/O library (and its freakin’ metadata)

• Interdependencies of the above make it difficult to 

clearly iterate through the space (I wrote some 

broke-ass code to try)



Back to the Back of the Envelope

Different sizes of I/O operations:

• “Practical” upper bound

• Every XE node writes 50GB

• (22,636 * 50) = 1,131,800GB

• Technically, we could write in byte increments

• 1 byte, to 1.13PB

• 1,215,260,996,403,200 different sizes

• Less obnoxious (minimum Lustre file size)

• 512 byte increments

• 2,373,556,633,600 sizes



Back of the Envelope (II)

Forget size, number of configurations:

• Job sizes: [1, 22636] nodes, [1, 32] PPN

• Job I/O assumptions

• Each writing core writes the same amount

• An operation can go to [1, nodes*PPN] number of 

files

• Stripe count possibilities on Blue Waters [1, 360]

• Stripe sizes {64K, 128K, … , 512M, 1G}, 15 total



The Grand Total

• 11,687,892,956,467,200

• The apparent overlap

• Example: 128K I/O is both

• 64K from 2 cores on a single node

• 64K from single cores on two nodes

• We want this distinction, number of nodes has 

significant impact

• Affects throughput to I/O nodes, and likewise

• Network contention



The Grand Total (II)

• 11,687,892,956,467,200 does however include 
several bone-headed Lustre striping settings

• Let’s assume the “right” choice is always made

• New grand total: 2,164,424,621,568

• A conservative number restraints

• Power of 2 node counts, PPN counts

• Only write to same-size files

• Correct striping

• New new grand total: 38,132,160



The Grand Total (III)

• 38,132,160 is still prohibitive for adequate 
benchmarking for statistical modeling

• 38,132,160 perspective

• There are still other settings, e.g. stripe offset

• This nor any of the other totals include multiple I/O 
libraries!!

• ML modeling hope

• Adequate training on very reduced configuration set

• “Adequate” as in at least providing a heuristic for 
optimization



THE APPROACH



ML Modeling

• Trying two approaches
• SVR

• Support Vector Regressor

• Regression predicting continuous ordered variables

• Natural fit to our data

• Python sklearn.svm.SVR

• DNN
• Deep neural network

• Selected because “DEEP LEARNING!!!!”

• 3 dense layers

• Rectified linear unit activation

• Mean squared error loss function

• Python Keras (on TensorFlow)

• Incremental testing to analyze how things are actually working

• Optimization utility leveraging trained models



I/O BENCHMARK DATA

Training and Testing



Benchmarks

• Custom aggregation benchmark
• Combinations of f files per node shared across m 

nodes

• Not possible with common benchmarks

• Measures only write time

• IOR
• Benchmark performance of various libraries for shared 

file I/O and file-per-process I/O 

• Processors write data “blocks” in series of “transfers”

• These things are tuned along with different Lustre
stripe settings to display performance results



The Custom Aggregation Benchmark

• Input arguments: I/O size (to match with an 

application’s write phase), maximum nodes and 

processors per node to use

• Called with single aprun with maximum 

nodes/ppn

• Iterates through non-crazy I/O patterns keeping 

aggregate write size consistent



The Classification: 

Processors vs. Processors per File



Common Patterns

Serial

File per 

Node

File per

process

Single 

shared

file



The Aggregate Benchmark Runs

• Run 1

• 32 nodes, 16PPN, I/O size: 1MB/node (32MB)

• 315 separate tests

• Run 2 – same as run 1, but 1GB/node (32GB)

• Run 3

• 512 nodes, 16PPN, I/O size: 1MB/node (512MB)

• 826 tests

• Run 4 – same as run 3, but 1GB/node (512GB)

• 675 tests (too large to aggregate to single node, etc.)

• Slow.  Only collected 296 of the tests.



IOR Benchmark Runs

• File per process extravaganza
• Stripes: 

{512K,1M,2M,4M,8M,16M,32M,64M,128M,256M,512M,1G}

• Procs: 
{2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384}

• PPN: 16

• Also
• For stripe size of 32MB

• PPN: {1,2,4,8}

• Procs: {2,4,8,16,32,64,128,256,512,1024,2048,4096}

• run on 16384/16 = 1024 nodes

• 200 tests, 3 iterations each (600 tests)



IOR Benchmark Runs (II)

• Single Shared File
• Stripes: {512K,1M,2M,4M,8M,16M,32M,64M,128M,256M,512M,1G}

• Procs: {2,4,8,16,32,64,128,256,512,1024,2048}

• PPN: 16

• Also
• For stripe size of 32MB

• PPN: {1,2,4,8}

• Procs: {2,4,8,16,32,64,128,256,512,1024,2048,4096}

• Stripe count set to number min(procs, 360)
• 360 is number of available OSTs

• If Procs>360, 256 stripe count also tested

• run on 2048/16 =  128 nodes

• 151 tests, 3 iterations each (453 tests)



Training/Test Data Format

• Span configuration space with series of 
parameters with minimal interdependencies

• Used the following parameters

• Nodes

• PPN

• Nodes per file

• Files per node

• Unit size

• To model Throughput



TRAINING/TESTING



Test 1

• Training data: custom benchmark runs 2 and 3

• Testing data: run 1

• Purpose of test

• Possible to run early (while collecting bigger runs)

• Runs 2 and 3 don’t cover some of the smaller tests 

in run 1



Expected: Run 1 Throughput Measurements



SVR Model



SVR Model 



SVR Model, Error



SVR Model, Zero Adjusted



SVR Model, Independent Scale



DNN Model



DNN Model 



DNN Model, Error



DNN Model, Zero Adjusted



DNN Model, Independent Scale



SVR, DNN Comparison



Test 1 Takeaways

• Scales of models are off, but distributions look good 

• DNN better modeled features that were underrepresented 
in training data

• DNN model had better error distribution, while accuracy 
needs work it doesn’t seem something is missing from 
model

• Change of goals
• Scales might be from our ignorance in using ML, we’ll skip 

this problem

• Look to improve distribution, not scale with subsequent 
tests 

• Develop method to optimize based solely on distribution



Test 2

• Training data: All custom benchmark runs

• Testing data: All IOR runs

• Purpose of test

• Custom benchmark is far less “practical” than IOR

• Proof of concept for general HPC modeling



Expected: IOR Throughput Measurements



SVR Model



SVR Model 



SVR Model, Error



SVR Model, Independent Scale



DNN Model



DNN Model 



DNN Model, Error



DNN Model, Independent Scale



SVR, DNN Comparison



OPTIMIZATION UTILITY



About the Optimization Utility 

• Meant to provide insight of actual simulation relative to its current I/O 
model
• Avoids scale

• Our stranger parameters may be derived from basic application 
specification

• Input: nodes, PPN, number of files, I/O size, cnodes, cppn
• Nodes, PPN refer to how simulation is running, while

• Cnodes, cppn refer to subset of above actually participating in I/O

• I/O size of a single operation, think writing at end of simulation loop step

• Iterates through all configurations, predicting throughput from loaded 
model Shows relative expected performance of current configuration 
and other I/O patters (FPP, shared file, and file per node)

• Outputs configuration predicted as optimal

• Calculates efficiency (in terms of node hours) and provides above in 
that context



Utility Evaluation – The Problem

• Input from personal experience working with BW 

science team

• Originally, code was FPP which was leading to 

difficulties for postprocessing

• After transition to a shared file, performance 

tanked

• I/O parameters

• 512 nodes, 8192 cores, single file, 5GB write per 

iteration



The Problem (cont.)

• Performance issue was due to fact that the 5G 
weren’t written at once

• There were 20 variables in the simulation, each written 
separately

• Each core was only writing 32K

• Purpose of this test

• Rare case of such small I/O that typical patterns result 
in poor performance and efficiency

• Expect suggestion for how to aggregate



Test 2 DNN Model (Aggregation Training)

Throughput Predictions:

• Suggest it is unlikely 

to improve by much

• Predicted optimal 

configuration:

• 4 files per node 

• 64K stripes



Test 2 DNN Model (Aggregation Training)

Efficiency Predictions:

• Predicted optimal 

configuration:

• 1 node writes to 

• Single shared file

• From 16 cores



Test 2 Optimization

• Seems incorrect

• For such small I/O, very parallel solutions are 

predicted to have too high of a throughput and 

efficiency

• Expect diminishing returns on adding files/nodes, 

but even for this size an improvement can be 

made over single file on a single node

• Does however suggest some aggregation based 

on throughput prediction



Bringing it all Together

• Final training: all benchmark data (custom + IOR)

• IOR benchmark represents common, practical I/O 

configurations

• Updated training with IOR may help model 

common sense I/O considerations



Final DNN Model (Aggregation/IOR Training)

Throughput Predictions:

• Now show FPP as 

poorer performance

• File per node better 

throughput as 

expected



Predicted Optimal Configuration

• 256 nodes, 16 PPN

• 512 separate files

• Complex aggregation
• Each node writes to eight files

• Each file is written to by 4 separate nodes

• Would be a difficult implementation, but not dissimilar from 
other highly tuned applications

• Better representation of diminishing returns for over 
parallelizing small I/O

• Points out “trick” 
• Each node hits multiple OSTs and multiple nodes hit each OST

• This is likely to improve injection bandwidth as well as better 
utilize I/O server bandwidth



Final DNN Model (Aggregation/IOR Training)

Efficiency Predictions:

• Aligned with 
expectations
• Highly parallel is bad

• For small I/O, most are 
not efficient

• Predicted optimal 
configuration:
• 1 node writes to 

• Eight files

• From 16 cores



The End

• Scales need work, but

• ML seems viable for I/O modeling

• Distributions are valuable for optimization 

purposes

• ML leads to practical frameworks

• Training done locally, based on data generated on 

HPC machines

• Improved models can be dropped in without 

changing utility



Questions?

• Now?  Ask Away.

• Later? sisneros@Illinois.edu

mailto:Sisneros@Illinois.edu

