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Abstract—While reducing execution time is still the major
objective for high performance computing, future systems and
applications will have additional power and resilience require-
ments that represent a multidimensional tuning challenge. In
this paper we present an empirical study to evaluate the
runtime and power requirements of multilevel checkpointing
MPI applications using the FTI (Fault Tolerance Interface)
library. We develop the FTI version of Intel MPI benchmarks
to evaluate how FTI affects MPI communication. We then
conduct experiments with two applications — an MPI heat
distribution application code (HDC), which is compute inten-
sive, and the benchmark STREAM, which is memory intensive
— on four parallel systems: Cray XC40, IBM BG/Q, Intel
Haswell, and AMD Kaveri. We evaluate how checkpointing
and bit-flip failure injection affect the application runtime
and power requirements. The experimental results indicate
that the runtime and power consumption for both applications
vary across the different architectures. Both Cray XC40 and
AMD Kaveri with dynamic power management exhibited the
smallest impact, whereas Intel Haswell without dynamic power
management manifested the largest impact. Bit-flip failure
injections with and without different bit positions for FTI had
little impact on runtime and power. This provides us a good
start to understand the tradeoffs among runtime, power and
resilience on these architectures.

1. Introduction

The insatiable demand for computational power con-
tinues to drive the deployment of ever-growing parallel
systems. Production systems with hundreds of thousands
of components are being designed and deployed. Future
parallel systems are expected to have millions of proces-
sors and hundreds of millions of cores. These systems are
increasingly complex, with hierarchically configured many-
core processors and accelerators, together with a deep and
complex memory hierarchy. As a result of the complexity,
applications face an enormous challenge in exploiting the
necessary parameters for efficient execution [19]. While
reducing execution time is still the major objective for high
performance computing, future systems and applications
will have additional power and resilience requirements that

represent a multidimensional tuning challenge. To embrace
these key challenges, we must understand the complicated
tradeoffs among runtime, power, and resilience. In this paper
we present an empirical study to evaluate runtime and power
requirements for multilevel checkpointing on four different
parallel architectures.

Real-world scientific applications take a long time to
execute on supercomputers, thereby relying on resilience
techniques to successfully finish the long executions. A
number of resilience methods have been developed for
preventing or mitigating failure impact. Existing resilience
strategies can be broadly classified into four approaches:
checkpoint based, redundancy based, algorithm based, and
proactive methods. Checkpoint/restart is a long-standing
fault tolerance technique to alleviate the impact of system
failures, in which the applications save their state period-
ically, then restart from the last saved checkpoint in the
event of a failure. Multilevel checkpointing is the state-of-
the-art design of checkpointing, and focuses on reducing
checkpoint overhead to improve checkpoint efficiency. Such
checkpointing libraries include FTI (Fault Tolerance Inter-
face) [3] [17], SCR (Scalable Checkpoint/Restart) [34] [28],
and diskless checkpointing [31]. Redundancy approaches
improve resilience by replicating data or computation [14]
[15] [16]. Algorithm-based fault tolerance methods main-
tain a coded, global consistent state of the computation in
memory by modifying applications to operate on encoded
data [20] [7] [5]. Proactive methods take preventive actions
before failures, such as software rejuvenation and process
or object migration [29].

While fault tolerance methods and power capping tech-
niques continue to evolve, tradeoffs among execution time,
power efficiency, and resilience strategies are still not well
understood. Fault tolerance studies focus mainly on the
tradeoffs between execution time, fault tolerance overhead,
and resiliency, whereas most power management studies
focus on the tradeoffs between execution time and power.
Understanding the tradeoffs among all of these factors is
crucial because future machines will be built under both re-
liability and power constraints. Recent research has focused
on a theoretical analysis of energy and runtime for fault
tolerance protocols [2] [1] [26] [12] [13]. Because of the
potential impacts of various architectures, experiments are
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essential in order to fully understand how fault tolerant MPI
applications impact both power and runtime on the different
architectures.

Currently, the FTI library [17] [3] provides the means
to perform fast and efficient application-level checkpointing.
FTI leverages local storage, along with data replication
and erasure codes, to provide several levels of reliability
and performance. Di et al. [10] presented an analytical
multilevel periodic checkpoint model based on various types
of location-unpredictable failures and proposed an itera-
tive method to find optimal checkpoint intervals using FTI
on BG/Q. Balaprakash et al. [2] developed the analytical
models of energy and runtime for multilevel checkpointing
and analyzed the performance-energy tradeoffs for FTI on
BG/Q. Their empirical results (with one fixed checkpointing
frequency) indicated that the relative energy overhead due
to the adoption of FTI was small on the studied applications
and the tradeoffs between the runtime and energy were not
significant because the difference between power consump-
tion during computation and multilevel checkpointing was
minor. This work motivated us to explore energy and power
impacts of other FTI applications with various checkpoint-
ing configurations on different architectures.

In this work we present an empirical study to evaluate
runtime and power requirements for multilevel checkpoint-
ing FTI on four different architectures: Cray XC40, IBM
BG/Q, Intel Haswell, and AMD Kaveri. First, we develop
the FTI version of the Intel MPI benchmarks (IMB) [21],
and use these benchmarks to evaluate how FTI affects MPI
communication. We then conduct experiments to evaluate
how using FTI with various checkpointing frequencies and
bit-flip failure injections at different bit positions affects the
runtime and power requirements for an MPI heat distribution
application code (HDC) [17] and the memory benchmark
STREAM (MPI version) [35]. The experimental results
show that the runtime and power consumption for both
applications vary across the different architectures. Both
Cray XC40 and AMD Kaveri with dynamic power manage-
ment exhibited the smallest impact, whereas Intel Haswell
without dynamic power management manifested the largest
impact. Bit flip failure injection with and without different
bit positions for FTI had little impact on runtime and power.

The remainder of this paper is organized as follows.
Section 2 discusses the four different architectures and their
power profiling environments. Section 3 describes multilevel
checkpointing and FTI, and evaluates how FTI affects the
MPI communication. Section 4 presents detailed experimen-
tal results to evaluate how FTI affects power and energy con-
sumptions on the four architectures. Section 5 summarizes
this work and discusses future work.

2. Four Architectures and Environments

We conduct our experiments on four parallel systems
with different architectures: Cray XC40 [36] and IBM BG/Q
[27] at Argonne National Laboratory and the Intel Haswell
[33] and AMD Kaveri [11] at Sandia National Laboratories.
Details about each system are given in Table 1. Each Cray

TABLE 1. SPECIFICATIONS OF FOUR DIFFERENT ARCHITECTURES

XC40 node has 64 compute cores (one Intel Phi Knight
Landing (KNL) 7230 with the thermal design power (TDP)
of 215 W), shared L2 cache of 32 MB (1MB L2 cache
shared by two cores), 16 GB high-bandwidth in-package
memory (MCDRAM), 192 GB DDR4 RAM, and a 128
GB SSD. We conduct our experiments with the cache-quad
mode to utilize the MCDRAM as a cache on Cray XC40.
Each BG/Q node has 16 compute cores (one BG/Q PowerPC
A2 1.6 GHz chip with the TDP of 55 W [4]), shared L2
cache of 32 MB and 16 GB memory. Each Haswell node
has 32 CPU cores (two Xeon E5-2698 V3 2.3 GHz chips
with the TDP of 135 W per chip), shared L3 cache of 40
MB and 128 GB memory. Each Kaveri node has 4 CPU
cores and 8 GPU cores (one A10-7850K 3.7 GHz chip with
the TDP of 65 W), shared L2 cache of 2 MB and 16 GB
memory.

The Cray XC40 system uses Cray Aries Dragonfly net-
work with user access to a Lustre parallel file system with
10 PB of capacity and 210 GB/s bandwidth [36]. The BG/Q
system uses a 5D torus network with user access to a GPFS
file system [27]. Both the Haswell and Kaveri clusters use a
Mellanox fourteen data rate InfiniBand network with regular
NFS file systems [33]. Although the AMD Kaveri has GPUs,
we use only CPU cores in order to provide consistency
among the four systems while exploring differences.

Several general power measurement tools exist, such
as PowerPack [18], PowerMon2 [23], and PowerInsight
[22], as well as vendor-specific power management tools
such as Cray’s CapMC and out-of-band and in-band power
monitoring capabilities [25], IBM EMON API on BG/Q [4],
Intel RAPL [32], and NVIDIA’s power management library
[30]. In this work, we use PoLiMEr [24] to measure power
consumption for the node, CPU and memory at node level
on the Cray XC40 system, use PowerInsight to measure
the power consumption for the node, CPU, memory, and
hard disk at the node level on the Haswell and Kaveri sys-
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tems, and we use MonEQ [37], an application-level power
profiling tool based on IBM EMON API, to collect power
profiling data on the BG/Q system.

Cray XC40 [25] [9] provides power management to op-
erate more efficiently by monitoring, profiling, and limiting
power usage in order to increase system stability by reducing
heat dissipation, reduce utility costs by minimizing power
usage when rates are the highest and calculate the actual
power cost for individual users and/or jobs. PoLiMEr uses
Cray’s CapMC to obtain power and energy measurements
of the node, CPU and memory. The power sampling rate
used is approximately 2 samples per second (default).

PowerInsight provides the measurement for 10 power
rails for CPU, memory, disk, and motherboard on the
Haswell system and for 7 power rails for CPU, memory,
disk, and motherboard on the Kaveri system. The power
sampling rate used is 1 sample per second (default). The
AMD Turbo CORE [6] on the Kaveri system provides
a performance boost technology that maximizes processor
core performance in the system’s TDP while balancing the
power budget between processor and graphics cores that
share the same cooling solution.

On BG/Q, EMON API [4] provides 7 power domains to
measure the power consumption for the node, CPU, mem-
ory, and network at the node-card level. The power sampling
rate used is approximately 2 samples per second (default).
Each node-card consists of 32 nodes. To obtain the power
consumption at the node level, we calculate the average
power by dividing by 32. We conduct our experiments on
32 nodes (a node-card) to obtain the power profiling data.

3. Impact of FTI on MPI Communication

Multilevel checkpointing allows applications to take
both frequent inexpensive checkpoints and less frequent,
more resilient checkpoints in a strategic way, resulting in
better efficiency and reduced load on the parallel file system
(PFS) [17] [34]. This is achieved by using local storage
coupled with data replication in the compute nodes. In this
work, we use the multilevel checkpointing library FTI [17]
[3] to conduct our experiments.

FTI is a fault tolerance interface that adds a highly
reliable layer between the operating system and the ap-
plication. It provides five application-level subroutines:
FTI Init(), FTI Protect(), FTI Snapshot(), FTI BitFlip(),
and FTI Finalize. The FTI Init() reads a FTI configura-
tion file before the application starts the real execution,
delegates one process per node as FT-manager, and creates
two MPI communicators: one for the FT-managers and
another for the application processes. The MPI communi-
cator created by FTI for the application processes is called
FTI COMM WORLD, which replaces the global commu-
nicator MPI COMM WORLD. FTI Protect() records the
information about variables later checkpointed and/or re-
stored upon a failure. FTI Snapshot() checks whether a
checkpoint needs to be taken. Each time this function is
called, a counter is incremented; and when that counter
reaches the value set in the FTI configuration file, the

TABLE 2. PERCENTAGES ON CRAY XC40

checkpoint is taken. FTI BitFlip() entails injecting bit-flip
failures. FTI Finalize() checks that all the FT-managers have
finished their jobs and frees all the resources. Applications
can benefit from these FTI subroutines by simply linking to
the FTI library.

FTI provides the following features for the initial con-
figuration: four-level checkpointing (local write (L1), Part-
ner copy (L2), Reed-Solomon coding (L3), and PFS write
(L4)); checkpointing frequency; synchronous (default) or
asynchronous at L2, L3, and L4; number of bit-flip failure
injections; injection bit position; and injection frequency.
The default four-level checkpointing configuration is (3, 5,
7, 11), corresponding to 3 minutes for L1, 5 minutes for L2,
7 minutes for L3, and 11 minutes for L4. The four check-
pointing levels correspond to coping with the four types
of failures: no hardware failure (software failure), single-
node failure, multiple-node failure, and all other failures the
lower levels cannot take care of, respectively [10]. FTI ap-
plications can perform checkpoints with various frequencies
and bit-flip failure injections at different bit positions and
frequencies.

To evaluate how FTI affects MPI communication, we
developed an FTI version of IMB [21] and used it with the
default checkpointing configuration (3,5,7,11) to quantify
the overhead of FTI on the three architectures. Because the
Kaveri system has only 4 cores per node and a total of
144 cores, we focus mainly on the Cray XC40, BG/Q and
Haswell systems for scalability on up to 1024 cores.

The IMB performs a set of MPI performance measure-
ments for point-to-point and global communication opera-
tions for a range of message sizes (default from 1 byte to 4
MB). We conducted our experiments for four important MPI
subroutines common to the two applications: MPI Sendrecv
(bandwidth), MPI Reduce (time), MPI Allreduce (time),
and MPI Gather (time). To quantify the overhead of FTI
given in Tables 2, 3 and 4, we use Equation 1. For a given
number of cores and a given MPI subroutine, assume that
the n message sizes M1,M2, ...,Mn are used to measure
the performance of the MPI subroutine. For each message
size Mi(i = 1, 2, ..., n), we denote its original performance
by VO(Mi) and its performance under FTI by VF (Mi).
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TABLE 3. PERCENTAGES ON BG/Q

TABLE 4. PERCENTAGES ON HASWELL

∑n
i=1 |

VF (Mi)−VO(Mi)
VO(Mi)

|
n

∗ 100 (1)

The percentage in Equation 1 is defined as the mean
of all absolute ratios of the performance difference between
FTI IMB and the original IMB to the original IMB for each
message size.

The data in Table 2 shows the impact of FTI on
up to 1024 cores on Cray XC40. The percentages for
MPI Sendrecv are between 7.39% and 21.15%. For the two
cases when the overhead is beyond 20% (corresponding
to 256 and 512 cores), the cause was due to the shared
network resources on Cray XC40 [8]. For MPI Reduce,
MPI Allreduce and MPI Gather, the percentages are less
than 6.91% in most cases except 13.19% for MPI Allreduce
on 1024 cores.

The data in Table 3 indicates that the maximum per-
centage of the four MPI subroutines is 6.11%. Hence, FTI
has little impact on MPI communication on BG/Q. Table 4
shows the impact of FTI on Intel Haswell. Some percentages
for MPI Sendrecv and MPI Gather are in the range of
10%. In particular, for MPI Sendrecv, the percentages are
5.07% or less on up to 256 cores. The overhead, however, is
beyond 10% for the experiments with 512 and 1024 cores.
For MPI Reduce and MPI Allreduce, the percentages are
6.27% or less on up to 1024 cores.

4. Experimental Results: Runtime and Power
Requirements

In this section, we use two applications to conduct the
empirical study. The first application is an FTI version of
MPI heat distribution benchmark code (HDC) [17], which
computes the heat distribution over time based on a set of
initial heat sources. The checkpointing file size is 32 MB
per MPI process. HDC is a compute-intensive, weak scaling
application. The second application is STREAM (MPI ver-
sion) [35], a memory-intensive, strong scaling benchmark.
An FTI application can perform checkpoints with various
frequencies and bit-flip failure injections at different bit
positions. We explore the following types of configurations:

1) Original: the original application without check-
pointing or failure injection.

2) ckp(3,5,7,11): the application with four-level
checkpointing configuration (3, 5, 7, 11) (default)
and synchronous at each level (default), where the
checkpointing frequency is 3 minutes for L1, 5
minutes for L2, 7 minutes for L3, and 11 minutes
for L4.

3) ckp(3,5,7,11)/e1: the application with four-level
checkpointing configuration ckp(3, 5, 7, 11) and
synchronous at each level, and one bit-flip failure
injection, injection bit position 1 (the first bit) and
injection frequency (10 seconds), where e1 stands
for the bit position 1.

Overall, we explore 10 checkpointing configurations for
four-level checkpointing and 7 checkpointing configurations
with one bit-flip failure injection and 5 different bit posi-
tions.

We use Multiple Metrics Modeling Infrastructure
(MuMMI) [38] [39] with the support of PoLiMEr, PowerIn-
sight and MonEQ to collect performance data, power data,
and performance counters on a single node of Cray XC40,
the Haswell and Kaveri systems, and on 32 nodes of the
BG/Q system. For a given application run, we execute the
application 13 times on Cray XC40 and BG/Q and 14 times
on the Haswell and Kaveri systems to ensure the consistency
of the results, while collecting different sets of performance
counters for a total of 40 performance counters for each
architecture. These performance counters, however, are not
used in this paper, but are valuable for other work. We
found that the variation of the application runtime is very
small (less than 1%), so we use the performance metrics
corresponding to the smallest runtime for the empirical
study.

The percentage is defined in Equation 2 as the ratio of
the difference between one value and the baseline value to
the baseline value:

V alue−Baseline

Baseline
∗ 100. (2)

We use Equation 2 to calculate the percentages in the
remainder of this paper.
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TABLE 5. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER (W)
AND ENERGY (J) FOR HDC ON CRAY XC40

TABLE 6. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR HDC ON CRAY XC40

4.1. Case I: MPI Heat Distribution Code

4.1.1. Cray XC40. Table 5 provides the percentage for
runtime, average node power, and energy per node for
10 checkpointing configurations using the original as the
baseline. Compared with the original application, the mul-
tilevel checkpointing FTI causes an increase in runtime by
up to 1.67%, a decrease in node power consumption by
up to 1.17%, and an increase in energy by up to 1.08%.
Because of the synchronization at the checkpointing levels,
simultaneously writing the checkpointing file of 32 MB per
MPI process (a total of 64 processes) on a node (64 cores)
during the checkpoints has little impact in the runtime, node
power, and energy consumption because of the use of high
speed I/O and 16 GB MCDRAM. Among the checkpointing
configurations, the percentage range is very little, from -
1.17% to 1.67% in runtime, node power, and energy. Notice
that node power decreases for all checkpoints because of
the dynamic power management of KNL. The checkpoint-
ing ckp(4,5,6,7) results in the lowest energy consumption
because of the relative small runtime and the smallest node
power.

As shown in Table 5, the ckp(4,5,6,7) results in the
minimum energy consumption and the ckp(1,2,3,4) results
in the maximum energy consumption. Table 6 summarizes
the runtime, average power for different components (node,
CPU, memory), and energy with and without resilience.

TABLE 7. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER (W)
AND ENERGY (J) FOR VARIOUS CHECKPOINTING CONFIGURATIONS

WITH 1 ERROR INJECTION FOR HDC ON CRAY XC40

Figure 1. Power consumption over time for HDC on Cray XC40

As expected, the runtime increases with the complexity of
the resilience strategy. However, the average power con-
sumption for node and CPU decreases with respect to the
various resilience strategies because of the dynamic power
management of KNL during the checkpoints. The memory
power increases by 1.96% for the ckp(1,2,3,4), the node
power decreases by just 0.59%, however, the memory power
decreases by 2.36% for the ckp(4,5,6,7), this results in the
node power decrease by 1.17%. Therefore, the ckp(4,5,6,7)
results in the minimum energy consumption.

In Table 7, we use seven checkpointing configurations
from Table 5 corresponding to high frequency and low fre-
quency configurations. The bit-flip injection occurs with bit
position 1 (the first bit) and failure injection frequency of 10
seconds. The baseline corresponds to the default checkpoint
configuration – ckp(3,5,7,11)/e1. The ckp(8,9,10,11)/e1 re-
sulted in the smallest runtime and the lowest energy because
of the fewest number of checkpoints. Overall, the bit-flip
failure injection for FTI has little impact on the runtime
and power on Cray XC40. Notice that among these check-
pointing configurations, the percentage range is very small,
from -0.60% to 0.74% in runtime, node power, and energy.

In Figure 1, we compare the power consumptions (for
the node, CPU, memory) over time for the application with
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TABLE 8. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR BIT FLIP FAULT INJECTION WITH DIFFERENT BIT

POSITIONS FOR HDC ON CRAY XC40

and without the default ckp(3, 5, 7, 11) and a bit-flip failure
injection. ”CPU” stands for the CPU power per node for the
original application without checkpoint and bit-flip failure
injection, and ”CPU with ckp(3,5,7,11)/e1” stands for the
CPU power per node for the application with the ckp(3,
5, 7, 11) and one bit-flip failure injection. The decrease in
node power comes mainly from CPU because CPU power
decreases significantly for activities related to checkpointing
as shown in Figure 1 due to the dynamic power management
support from KNL on Cray XC40. This explains the power
decreases shown in Tables 5 and 6.

Bit-flip error injection uses different bit positions for
possible error injections. For 32-bit data, there are 32 dif-
ferent bit positions. The different bit positions result in very
small differences in runtime. Table 8 shows the percentage
of the runtime, average power, and energy at five different
bit positions for the ckp(3,5,7,11) with one bit-flip error
injection on Cray XC40, where ckp(3,5,7,11)/e8 stands for
the ckp(3,5,7,11) with one bit-flip failure injection at the
8th bit position. The frequency for the failure injection is
10 seconds for the five experiments. We observe that the
percentage range is very small, from -0.82% to -0.09% in
runtime, node power, and energy. Overall, the different bit
positions for a bit-flip error injection have a little impact on
power and energy on Cray XC40.

4.1.2. IBM BG/Q. Table 9 provides the percentage for
runtime, average node power, and energy per node for 10
checkpointing configurations using the original as the base-
line. Compared with the original application, the multilevel
checkpointing FTI causes an increase in runtime by up to
9.29%, in node power by up to 7.52%, and in energy by up
to 17.51%. Because of the synchronization at the check-
pointing levels, simultaneously writing the checkpointing
file of 32 MB per MPI process (a total of 16 processes) on a
node (16 cores) during the checkpointing ckp(1,2,3,4) results
in the most FTI overhead. Among the checkpointing config-
urations, the percentage range is moderate, from 3.32% to
9.29% in runtime, from 2.21% to 7.52% in node power, and
from 6.82% to 17.51% in energy. The moderate increase in
energy is due to the relatively small checkpointing file size
of 32 MB per MPI process. As expected, the checkpointing
ckp(8,9,10,11) results in the lowest energy consumption
because of the fewest number of checkpoints.

TABLE 9. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER (W)
AND ENERGY (J) FOR HDC ON BG/Q

TABLE 10. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) ON BG/Q

As shown in Table 9, the ckp(8,9,10,11) results in the
minimum energy and the ckp(1,2,3,4) results in the maxi-
mum energy. Further, Table 10 summarizes the runtime, av-
erage power for different components (node, CPU, memory,
and network), and energy with and without resilience. The
average power consumption for different system components
(node, CPU, memory, and network) increases. Because FTI
launches an FTI-dedicated process per node to guarantee
that the library does not cause any damage to the application
communication channels, it results in more network power
increase by 8.14%. The CPU power for ckp(1,2,3,4) is larger
than that for ckp(8,9,10,11), however, the memory power
for ckp(1,2,3,4) is smaller than that for ckp(8,9,10,11). This
results in larger node power for ckp(1,2,3,4). Hence, the
increase in runtime and power leads to the large increase in
energy by 17.51%.

In Table 11, the ckp(8,9,10,11)/e1 resulted in the small-
est runtime, but the ckp(6,7,8,9)/e1 resulted in the lowest
energy because of its relatively small runtime and node
power. Overall, the bit-flip failure injection for FTI has little
impact on the runtime and power on BG/Q. Notice that
among these checkpointing configurations, the percentage
range is small, from -1.94% to 3.33% in runtime, from -
0.79% to 2.90% in node power, and from -0.74% to 4.75%
in energy.

In Figure 2, we compare the power consumptions (for
the node, CPU, memory, and network) over time for the
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TABLE 11. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W) AND ENERGY (J) FOR VARIOUS CHECKPOINTING FREQUENCIES

WITH 1 ERROR INJECTION FOR HDC ON BG/Q

Figure 2. Power consumption over time for HDC on BG/Q

application with and without the default ckp(3, 5, 7, 11) and
a bit-flip failure injection. The increase in node power comes
mainly from CPU because CPU has to deal with additional
activities related to checkpointing. This also explains the
power increase shown in Tables 9 and 10.

Bit-flip error injection uses different bit positions for
possible error injections. For 32-bit data, there are 32 dif-
ferent bit positions. The different bit positions result in very
small differences in runtime. Table 12 shows the percentage

TABLE 12. COMPARISON OF RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR BIT FLIP FAULT INJECTION WITH DIFFERENT

BIT POSITIONS FOR HDC ON BG/Q

TABLE 13. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR HDC ON HASWELL

of the runtime, average power, and energy at five different bit
positions for the checkpointing ckp(3,5,7,11) with one bit-
flip error injection on BG/Q. The frequency for the failure
injection is 10 seconds for the five experiments. We observe
that the percentage range is very small, from -0.17% to
0.04% in runtime, from -2.85% to 0.11% in node power,
and from -2.88% to 0.15% in energy. Overall, the different
bit positions for a bit-flip error injection have a small impact
on power and energy on BG/Q.

4.1.3. Intel Haswell. Table 13 shows the percentage for
runtime, average power and energy per node for 10 check-
pointing configurations. Compared with the original appli-
cation, the FTI causes an increase in time by up to 26.12%,
in the node power by up to 8.40%, and in energy by up
to 28.31%. Because of the regular NFS file system used on
the Haswell and synchronization at the checkpointing levels,
we find that simultaneously writing the checkpointing file of
32 MB per MPI process (a total of 32 processes) on a node
(32 cores) during the checkpoints results in the most FTI
overhead. Among these checkpointing configurations, the
percentage ranges from 9.43% to 26.12% in runtime, from
1.66% to 8.40% in node power, and from 17.83% to 28.31%
in energy. From the table, we observe that the checkpointing
ckp(6,7,8,9) results in the lowest energy consumption among
the checkpointing configurations, although ckp(8,9,10,11)
results in the smallest runtime.

As shown in Table 13, the ckp(6,7,8,9) results in the
minimum energy consumption and the ckp(1,2,3,4) results in
the maximum energy consumption. Further, Table 14 sum-
marizes the runtime, average power, and energy with and
without resilience. For both checkpointing configurations,
the power consumptions in node and CPU increase, and
the disk power increases by more than 43%. We note that
the most frequent checkpointing ckp(1,2,3,4) also results in
11.67% less memory power because of large, shared unified
L3 cache (40 MB), large memory (128 GB), and frequent
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TABLE 14. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR HDC ON HASWELL

TABLE 15. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR VARIOUS CHECKPOINTING FREQUENCIES

WITH 1 ERROR INJECTION FOR HDC ON HASWELL

checkpointing interrupts. This may results in the large run-
time increase by 26.12%. Therefore, the large increase in
runtime for the ckp(1,2,3,4) leads to the large increase in
energy by 28.31%.

In Table 15, the checkpointing ckp(8,9,10,11)/e1 results
in the lowest energy consumption because of the fewest
numbers of checkpoints. Among these checkpointing con-
figurations, the percentage ranges from -5.83% to 8.45%
in runtime, from -3.51% to 2.59% in node power, and
from -3.38% to 4.64% in energy. Overall, the bit-flip failure
injection for FTI has a small impact on the runtime and
power on Haswell.

Figure 3. Power over time for HDC on Haswell

TABLE 16. COMPARISON OF RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR BIT-FLIP FAULT INJECTION WITH DIFFERENT

BIT POSITIONS FOR HDC ON HASWELL

TABLE 17. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR HDC ON KAVERI

In Figure 3, we compare the power consumption (for
node, CPU, memory, and disk) over time for the applica-
tion with and without ckp(3, 5, 7, 11) and bit-flip failure
injection, The largest power increase results from the CPU,
and checkpointing causes less memory power over time as
well.

Let us look at how different bit positions affect the power
and energy on Haswell. Table 16 shows the percentage for
the runtime, average power, and energy at five different bit
positions for the checkpointing ckp(3,5,7,11) with one bit-
flip error injection. The percentage range is very small, from
0.18% to 1.14% in runtime, from -0.49% to -0.26% in node
power, and from -0.09% to 0.65% in energy. Overall, the
different bit positions for a bit-flip error injection have little
impact on power and energy on Haswell.

4.1.4. AMD Kaveri. Table 17 shows the percentage for
runtime, average node power, and energy per node for 10
checkpointing configurations. Compared with the original,
FTI causes an increase in time by up to 7.15%, but the
power remains almost flat. The increase in runtime mainly
results in an energy increase by up to 6.75%. From the
table, we see that the checkpointing ckp(8,9,10,11) results
in the lowest energy consumption among the checkpointing
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TABLE 18. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR HDC ON KAVERI

TABLE 19. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR VARIOUS CHECKPOINTING FREQUENCIES

WITH 1 ERROR INJECTION FOR HDC ON KAVERI

configurations because of the fewest number of checkpoints.
Among these checkpointing configurations, the percentage
range is small, from 3.15% to 7.15% in runtime, from -
0.37% to 0.45% in node power and from 3.62% to 6.75% in
energy. So FTI has little impact on the power consumption
because of the small overhead for simultaneously writing
the checkpointing file of 32 MB per MPI process (only a
total of 4 processes) on a node (4 cores) on Kaveri.

As shown in Table 17, the ckp(8,9,10,11) results in the
minimum energy consumption and the ckp(1,2,3,4) results in
the maximum energy consumption. Further, Table 18 shows
the runtime, average power, and energy with and without
resilience. As expected, the runtime increases with the
complexity of the resilience strategy, however, the average
power consumptions for different system components: node,
CPU, memory, and disk remain almost flat with respect to
the various resilience strategies. Therefore, the increase in
runtime results mainly in an increase in energy.

In Table 19, the ckp(2,4,6,8)/e1 results in the smallest
runtime but not smallest node power; this configuration also
results in the lowest energy consumption. Among these
checkpointing configurations, the percentage range is also
very small, from -1.66% to 2.08% in runtime, from -0.20%
to 0.32% in node power, and from -1.34% to 2.19% in
energy. Overall, the bit-flip failure injection for FTI has little
impact on the runtime and power on Kaveri.

Further, when we compare the power consumption over
time for the application with and without ckp(3, 5, 7, 11)
and a bit-flip failure injection in Figure 4, we observe that
all power consumptions remain almost flat over time.

Figure 4. Power over time for HDC on Kaveri

TABLE 20. COMPARISON OF RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR BIT FLIP FAULT INJECTION WITH DIFFERENT

BIT POSITIONS FOR HDC ON KAVERI

Let us look at how different bit positions affect the power
and energy on Kaveri. Table 20 shows the percentage for
the runtime, average power and energy at five different bit
positions for the checkpointing ckp(3,5,7,11) with one bit-
flip error injection. We observe that the percentage range
is very small, from -1.28% to -0.18% in runtime, from -
0.25% to 0.52% in node power, and from -1.48% to 0.06%
in energy. Overall, the different bit positions for a bit-flip
error injection have little impact on power and energy.

4.2. Case II: MPI Memory Benchmark STREAM

In this section, we use the memory benchmark STREAM
(MPI version) [21] to develop the FTI version of STREAM
to further address the power and energy effects of FTI with
larger checkpointing file sizes. For the benchmark, we set
the number of runs for each kernel at 5000, and we adjust
the STREAM ARRAY SIZE to four times the size of the
last level cache (256M for Cray XC40, 128M for BG/Q,
160M for Haswell, and 8M for Kaveri).

4.2.1. Cray XC40. Table 21 shows the percentage for run-
time, average node power, and energy per node for 8 check-
pointing configurations using the original as the baseline on
Cray XC40. Although we set the STREAM ARRAY SIZE
to 256M on Cray XC40, we observe that, compared with
the original application, FTI causes an increase in runtime
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TABLE 21. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR STREAM ON CRAY XC40

TABLE 22. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR STREAM ON CRAY XC40

by up to 5.11%, a decrease in the node power by up to
2.13%, and an increase in energy by up to 3.53%. Because
of user access to a Lustre PFS with 210 GB/s bandwidth
on the Cray XC40, we find that, during the checkpoints,
writing the 64 checkpointing files with a total size of 6 GB
(3x8x256M) simultaneously on a node (64 cores) results in
the small FTI overhead.

From the table, we observe that the checkpointing
ckp(4,5,6,7) results in the lowest energy consumption among
the checkpointing configurations because of the fewest num-
ber of checkpoints, the smallest runtime and relatively small
node power. Among these checkpointing configurations, the
percentage range is small, from 0.31% to 5.11% in runtime,
from -2.13% to 0.04% in node power, and from -0.44% to
3.53% in energy. Compared with Table 5, the percentage
ranges in runtime and energy slightly increase among the
checkpointing configurations although the checkpointing file
size is increased from 32 MB for HDC to 96 MB for
STREAM.

As shown in Table 21, the ckp(4,5,6,7) results in the
minimum energy consumption and the ckp(1,2,3,4) results
in the maximum energy consumption. Further, Table 22
shows the runtime, average power, and energy with and
without resilience. For both configurations, the node power
decreases. For the ckp(1,2,3,4), the CPU power decreases by
2.33% and the memory power increases by 4.43%. However,
for the ckp(4,5,6,7), the CPU power increases by 0.26%, and
the memory power decreases by 4.13%. This results in the

Figure 5. Power over time for STREAM on Cray XC40

TABLE 23. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR STREAM ON BG/Q

energy decrease by 0.44% for the ckp(4,5,6,7). Overall, the
energy difference for both configurations is 3.97%, and it is
still very small.

Figure 5 shows that FTI causes the power decrease for
node and CPU on Cray XC40. The runtime is 323 s for the
original application. For the application with checkpointing
ckp(3,5,7,11), the first checkpoint happened at 3 minutes.
During the checkpointing, the node power drop is caused
mainly by the CPU power drop because of few CPU activ-
ities during writing 64 checkpointing files simultaneously.
Both Figure 5 and Figure 1 have the similar power consump-
tion trend: the checkpointing results in a power decrease in
node and CPU on Cray XC40.

4.2.2. IBM BG/Q. Table 23 shows the percentage for
runtime, average node power, and energy per node
for eight checkpointing configurations using the origi-
nal as the baseline on BG/Q. Although we set the
STREAM ARRAY SIZE to 128M on BG/Q, we observe
that, compared with the original application, FTI causes an
increase in runtime by up to 24.07%, in the node power by
up to 7.04%, and in energy by up to 24.78%. Because of user
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TABLE 24. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR STREAM ON BG/Q

Figure 6. Power over time for STREAM on BG/Q

access to a GPFS file system with 240 GB/s bandwidth on
the BG/Q, we find that, during the checkpoints, writing the
16 checkpointing files with a total size of 3 GB (3x8x128M)
simultaneously on a node (16 cores) still results in the most
FTI overhead, which is the main cause of the large runtime
increase. This indicates that the high bandwidth GPFS file
system was not fully utilized: the FTI overhead was still
high. We believe that MPI-IO can be applied to FTI to fully
utilize the GPSF system to reduce the overhead.

From the table, we observe that the checkpointing
ckp(2,4,6,8) results in the lowest energy consumption among
the checkpointing configurations although it does not have
the smallest runtime and node power. Among these check-
pointing configurations, the percentage range is large, from
0.46% to 24.07% in runtime, from -0.39% to 7.04% in node
power, and from 5.98% to 24.78% in energy. Compared with
Table 9, the percentage ranges in runtime and energy sig-
nificantly increase among the checkpointing configurations
because of the increased checkpointing file size, from 32
MB for HDC to 192 MB for STREAM.

As shown in Table 23, the ckp(2,4,6,8) results in the
minimum energy consumption and the ckp(2,3,4,5) results in
the maximum energy consumption. Further, Table 24 shows
the runtime, average power, and energy with and without
resilience. The memory and network power consumptions
for the ckp(2,4,6,8) is larger than that for the ckp(2,3,4,5),
however, its node and CPU power consumptions is smaller
than that for the ckp(2,3,4,5). The large runtime increase
mainly leads to the large energy increase.

Figure 6 shows that FTI causes the power increase for

TABLE 25. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR STREAM ON HASWELL

CPU, memory, and disk. The runtime is 229 s for the
original application. For the checkpointing ckp(3,5,7,11),
the first checkpoint happened at 3 minutes. During the
checkpointing, the node power drop is caused mainly by
the memory power drop because of few memory activities
during writing 16 large checkpointing files simultaneously.
Both Figure 6 and Figure 2 have the similar power consump-
tion trend: the checkpointing results in a power increase in
node, CPU, memory, and network on BG/Q, although the
heat distribution application is compute intensive and the
STREAM is memory intensive.

4.2.3. Intel Haswell. Table 25 shows the percentage for
runtime, average node power, and energy per node for
eight checkpointing configurations using the original as the
baseline on Haswell. Compared with the original, FTI causes
not only an increase in runtime by up to 131% but also
a node power decrease by up to 29.56% and an energy
increase by up to 70.91%.The reason is that setting the
STREAM ARRAY SIZE to four times the size of the last
level cache (160M for Haswell) resulted in fully utilizing
the whole node so that the power consumptions in node,
CPU, and memory for the original are the largest (as we
also observed in Figure 7). The checkpointing results in
less power consumption in node, CPU, and memory be-
cause of the frequent checkpointing interrupts and large FTI
overhead. The more frequent the checkpointing is, the less
the average power consumption is. Because of the general
NFS file system used on Haswell, during the checkpoints we
find that writing 32 checkpointing files with a total size of
3.75 GB (3x8x160M) simultaneously on a node (32 cores)
results in the most FTI overhead. The large FTI overhead
significantly impacts the average node power because of
the few CPU and memory activities during the I/O writing
for checkpointing files. This indicates that FTI needs high
bandwidth parallel I/O writing to significantly reduce the
overhead. MPI-IO can be applied to FTI to accomplish this
reduction.

From the table, we observe that the checkpointing
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TABLE 26. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR STREAM ON HASWELL

Figure 7. Power over time for STREAM on Haswell

ckp(2,4,6,8) results in the lowest energy consumption among
the checkpointing configurations. Notice that among these
checkpointing configurations, the percentage range is very
large, from 63.88% to 131% in runtime, from -29.56% to
-16.77% in node power, and from 37.56% to 70.91% in
energy. Compared with Table 13, the percentage ranges in
runtime and energy significantly increase among the check-
pointing configurations because of the increased checkpoint-
ing file size, from 32 MB for HDC to 120 MB for STREAM
on Haswell.

As shown in Table 25, the ckp(2,4,6,8) results in the
minimum energy consumption and the ckp(1,3,5,7) results in
the maximum energy consumption. Further, Table 26 shows
the runtime, average power, and energy with and without
resilience. The ckp(2,4,6,8) has smaller power decrease in
node, CPU and memory than the ckp(1,3,5,7). This may
result in the smallest runtime increase for the ckp(2,4,6,8).

Compared Figure 7 with Figure 3, we see that, for
STREAM, because of setting the array size large enough
to fully utilize the whole node, the checkpointing causes a
decrease in node power, CPU power, and memory power,
which are lower than for the original one. For HDC, the
checkpointing causes an increase in node power and CPU
power, which are higher than for the original, while the
memory power is lower than for the original.

4.2.4. AMD Kaveri. Table 27 shows the percentage for
runtime, average power, and energy per node for eight
checkpointing configurations using the original as the base-
line on Kaveri. Compared with the original, FTI causes

TABLE 27. PERCENTAGE FOR RUNTIME (S), AVERAGE NODE POWER
(W), AND ENERGY (J) FOR STREAM ON KAVERI

TABLE 28. COMPARISON OF RUNTIME (S), AVERAGE POWER (W), AND
ENERGY (J) FOR STREAM ON KAVERI

an increase in time by up to 10.08%, but the node power
consumption remains almost flat, and the energy increases
by up to 9.6%. Because of the general NFS file system used
on Kaveri, we find that, during the checkpoints, writing
out our checkpointing files with a total size of 192 MB
(3x8x8M) simultaneously on a node (4 cores) results in the
most FTI overhead.

From the table, we observe that the checkpointing
ckp(2,4,6,8) results in the lowest energy consumption among
the checkpointing configurations because of the smallest
runtime and relatively small node power. Among these
checkpointing configurations, the percentage range is from
3.29% to 10.08% in runtime, from -2.12% to -0.43% in
node power and from 2.71% to 9.60% in energy. Compared
with Table 17, the percentage ranges in runtime and energy
increase among the checkpointing configurations because of
the increased checkpointing file size, from 32 MB for HDC
to 48 MB for STREAM on Kaveri.

As shown in Table 27, the ckp(2,4,6,8) results in the
minimum energy consumption and the ckp(1,2,3,4) results in
the maximum energy consumption. Further, Table 28 shows
the runtime, average power, and energy with and without
resilience. The ckp(2,4,6,8) has smaller power decrease in
memory and disk than the ckp(1,2,3,4), but has slightly
larger power decrease in node and CPU. The energy dif-
ference between both configurations is 6.89%.

Figure 8 shows that FTI has little impact on power;
and the power consumption remains flat for the node, CPU,
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Figure 8. Power over time for STREAM on Kaveri

TABLE 29. SUMMARY OF THE MAXIMUM ENERGY PERCENTAGES

memory, and disk. Both Figure 8 and Figure 4 have a similar
power consumption trend, namely, the power consumption
remains flat on Kaveri although the heat distribution appli-
cation is compute intensive and the STREAM is memory
intensive.

TABLE 30. SUMMARY OF THE MINIMUM ENERGY PERCENTAGES

5. Summary

In this paper we presented an empirical study to evaluate
runtime and power effects of multilevel checkpointing MPI
applications using FTI. Tables 29 and 30 summarize the
maximum and minimum energy percentages for various
checkpointing configurations from our experiments for two
FTI applications HDC and STREAM. Overall, the difference
between maximum and minimum energy percentages is less
than 4% on Cray XC40, less than 19% on IBM BG/Q, less
than 34% on Intel Haswell, and less than 7% on AMD
Kaveri. In most cases, the most frequent checkpointing
ckp(1,2,3,4) results in the maximum energy increase, and
for the cases other than ckp(1,2,3,4) the energy difference
is small.

Our experimental results for the applications HDC and
STREAM on Cray XC40, IBM BG/Q, Intel Haswell and
AMD Kaveri indicate the following findings. First, the run-
time and power consumption for both applications varied
across the different architectures. In general, Both Cray
XC40 and AMD Kaveri with dynamic power management
exhibited the smallest impact, whereas Intel Haswell without
dynamic power management manifested the largest impact.
In most cases, we observe a proportional increase in appli-
cation runtime and energy across these systems. Further, bit-
flip fault injection had little impact on application runtime
and power consumption, resulting in little impact on energy
consumption across the systems. Multilevel checkpointing
could benefit from high speed I/O writing to reduce the
overhead caused by writing temporary checkpoint files.
Shared file systems may affect the performance of multi-
ple multilevel checkpointing applications executed simul-
taneously. The experimental work involved four different
parallel systems for which the underlying architectures have
different power requirements. Therefore, we do not compare
the actual values of energy consumptions for the different
systems but instead focus on the trends in term of percentage
difference with respect to the baseline without fault toler-
ance.

Overall, this study provides us a good start to understand
the tradeoffs among runtime, power, and resilience on differ-
ent architectures. However, we will need to study the four
architectures in depth to further analyze our observations.
Because the four checkpointing levels for FTI correspond
to coping with the four types of failures: software failure,
single node failure, multiple node failure, and all other
failures the lower levels cannot take care of, respectively,
when setting the checkpointing frequency for each level to
estimate the application runtime, it is important to consider
how often the failure at the level occurs, how long it takes
to execute the original application, the checkpointing file
sizes and the file system I/O bandwidth. We plan to use
performance counters to model tradeoffs among runtime,
power, energy and resilience for various application-system
configurations.
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