
Eigensolver Performance Comparison on Cray XC Systems

Brandon Cook, Thorsten Kurth, Jack Deslippe
NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

Email: (bgcook,tkruth,jrdeslippe)@lbl.gov

Pierre Carrier, Nick Hill, Nathan Wichmann
Cray Inc.

Bloomington, MN 55425, USA
Email: (nhill,pcarrier,wichmann)@cray.com

Abstract—Hermitian (symmetric) eigenvalue solvers are the
core constituents of electronic structure, quantum-chemistry
and other HPC applications, such as Quantum ESPRESSO,
VASP, CP2K, NWChem, to name a few. Our understanding of
the performance of symmetric eigenvalue algorithms on various
hardware is clearly important to the quantum chemistry or
condensed matter physics community, but in fact goes beyond
that community. For instance, big data analytics is increas-
ingly utilizing eigenvalues solvers, in the study of randomized
singular value decomposition (SVD), or principal component
analysis (PCA). Noise, vibration, and harshness (NVH) is
another field where fast and efficient eigenvalue solvers are
required. Most eigenvalue solver packages feature numerous
different parameters which can be tuned for performance, e.g.
the number of nodes, number of total ranks, the decomposition
of the matrix, etc.. In this paper, we investigate the performance
of different packages as well as the influence of these knobs
on the solver performance.

Keywords-eigensolver; cray; ELPA; ScaLAPACK; perfor-
mance;

I. INTRODUCTION

Dense hermitian (symmetric) eigensolvers are critical for
performance in a number of common HPC workloads. In
quantum chemistry and condensed matter physics, electronic
structure applications such as Quantum ESPRESSO, VASP,
CP2K, and NWChem repeatedly compute eigenvalues and
eigenvectors in order to determine a self-consistent electron
densities. In material-science applications focused on excited
states (e.g. ABINIT[1], Yambo[2], BerkeleyGW[3]) dense
eigenvalue problems can reach large matrix dimensions on
the order of many 100’s of thousands because both the
occupied and unoccupied electron orbitals and energies must
be computed. In addition, big data analytics is increasingly
utilizing eigenvalue solvers in the study of randomized
singular value decomposition (SVD), or principal component
analysis (PCA). Noise, vibration, and harshness (NVH) is
another field where fast and efficient eigenvalue solvers are
required.

While iterative approaches are often employed when a
small faction of the eigenvalues or eigenvectors are required,
direct solvers (as implemented in standard libraries) typically
out perform iterative approaches when the entire space of
eigenvectors/eigenvalues is required - as is the case in the ap-

plications listed above. However, there is significant diversity
of implementations even within the direct eigensolver space.
Eigenvalue solver packages feature numerous different pa-
rameters, especially with respect to matrix decomposition,
which can have significant performance impacts.

In addition, the emergence of energy-efficient computer
architectures in Cray systems like the Cori (Xeon-Phi pow-
ered) supercomputer at NERSC motivates questions on how
different distributed eigensolvers perform on these novel
architectures, if the optimal library parameters need to be
adjusted and how these libraries perform when running
in a Hybrid MPI-OpenMP mode. On Cori for example,
applications are often motivated to use a significant number
of OpenMP threads per MPI rank because of memory
constraints of performance considerations - it is important to
know if the distributed eigensolvers used in some of these
applications perform adequately in this scenario.

In this paper we investigate, empirically, the performance
of both the main incumbent library in this space, ScaLA-
PACK [4], as well as the newer ELPA (Eigenvalue SoLvers
for Petaflop Applications) library [5]-[6] on a range of
Cray systems with different node-architectures. We show
performance scales with matrix size, node-count as well as
MPI-OpenMP tradeoff. The use of both libraries additionally
requires a number of parameter choices relative to the
distribution of the matrix across MPI ranks. We investigate
the impact of suboptimal choice of parameters and describe
efficient methods for choosing optimal parameters. Finally
we extract guidelines for when trade-offs must be made due
to other application constraints such as MPI vs OpenMP in
hybrid codes.

II. BACKGROUND

A. Dense symmetric eigen-problems

Numerically the task is to find λ and c such that

Ac = Bcλ

where A and B are N ×N matrices, c is an N ×N matrix
of eigenvectors and λ is a diagonal matrix containing the
eigenvalues.

In the case where only a few eigenpairs are needed an
iterative method is typically very efficient. However in many

cases the full spectrum is desired [6]. The direct solution
for all eigenvector, eigenvalue pairs scales as O(N3) which
in addition to memory requirements motivates research for
efficient parallel solvers.

B. Parallel Block cyclic distributions

Both ELPA and ScaLAPACK utilize block cyclic decom-
positions for dense linear algebra routines. Arrays are split
into many small blocks of (nb × nb) and processes are
arranged in a two-dimensional grid such that n = nx × ny
where n is the number of MPI ranks. The small blocks
are then distributed cyclically on the process grid. The
size of the blocks and process grid then become important
parameters in a solver using such a decomposition. More
detailed discussion of the block cyclic distribution used by
both solvers is available [4].

III. METHODOLOGY

For the purposes of examining the performance of both
PZHEEVD (SCALAPACK) and ELPA, we developed a stan-
dalone benchmark capable of generating and diagonalizing
Hermitian matrices of arbitrary dimension across different
MPI and OpenMP configurations and block-cyclic layouts.
The standalone benchmark supports diagonalization with
both PZHEEVD and ELPA.

A. Input matrix

The input matrix is built in both PZHEEVD and ELPA
codes based on the same random seeds that generates a com-
mon matrix, using the zlarnv routine. ELPA transposes the
generated upper triangle matrix, while SCALAPACK does
not store the lower triangle of the matrix:

numEle = ml∗ n l
c a l l z l a r n v (1 , i s e e d , numEle , a r e f)
c a l l t r a n s p o s e m a t r i x (” L” , . . .)

We only consider matrices larger than N = 10000 as
node local solvers such as LAPACK are more appropriate
for smaller problems, and as is commonly required in many
applications we utilize complex numbers for the matrix
elements.

Source codes and compilation instructions for the ELPA
and PZHEEVD benchmark drivers, which provide identical
input matrices, are shown in Appendices A, B and C.

B. ELPA

Eigenvalue SoLvers for Petaflop-Applications (ELPA) of-
fers a variety of options in terms of specific algorithms used.
In our case we are using an ELPA 2stage solver. The specific
mathematics of these algorithms is not the focus of this paper
and details can be found elsewhere [5], [6].

Table I
CPU/ SYSTEM ARCHITECTURES

Architecture System Sockets per node Cores per node
HSW Cori 2 32
KNL Cori 1 68
BDW crystal 2 36
SKX horizon 2 40

C. ScaLAPACK

The ScaLAPACK routine PZHEEVD uses a divide and
conquer algorithm. The algorithm has natural parallelism as
the initial problem is partitioned into several subproblems
that can be solved independently [7]. This algorithm is
widely used since it offers a very stable and efficient parallel
solution to Hermitian matrices used in a wide variety of
applications. The cray-libsci library, as well as the
Intel MKL library, include and optimize this ScaLAPACK
routine. For the purposes of this paper, we consider the
cray-libsci implementation.

D. System Architecture

The Cray XC series (XC40 or XC50) offers the combined
advantages of the Aries interconnect [8] and Dragonfly
network topology, Intel Xeon multi-core and Intel c© Xeon
PhiTM many-core processors, delivering up to 100 PF sus-
tained system performance. It is designed for production
supercomputing and user productivity.

Haswell and Xeon Phi (KNL) results collected on Cori a
Cray XC40 sited at NERSC at Lawrence Berkeley National
Laboratory. Broadwell-18 and Skylake-20 results were col-
lected on crystal (a Cray XC40) and horizon (a Cray XC50).
Those 2 systems are a mixture of various Intel processors,
and offer up to 926 and 378 compute nodes, respectively on
crystal and horizon, sited locally at Cray Inc. The evaluated
architectures are summarized in Table I.

IV. PARAMETERS

The 2-dimensional block decomposition of data in both
solvers in controlled primarily by two parameters: nb, the
blocksize, and (nx, ny) which is the processes grid subject
to the constraint nx × ny = n, where n is the total number
of MPI ranks.

One may also choose the number of nodes and number
of MPI ranks per node (or number of OpenMP threads per
rank). These parameters may have additional constraints in
real applications which may rely on specific numbers of MPI
ranks or OpenMP threads, or require a minimum number of
nodes due to memory requirements. Additionally one may
have access to a variety of compute platforms with different
computational characteristics. For example: Cori at NERSC
contains both Haswell and Xeon Phi nodes. Given the variety
and range of valid parameters one may have to choose from
several thousand valid combinations of (M, r, nx, nb), where
M is the number of nodes, r is MPI ranks per node, nx

0
50

100
150
200

Fr
eq

ue
nc

y

elpa

t

0 200 400 600 800 1000
time [s]

0
50

100
150
200

Fr
eq

ue
nc

y

pzheevd

t

Figure 1. Histogram of solution times for N = 20000 on 4 Xeon Phi
nodes of Cori for range valid combinations of (nx, ny), ranks per node,
nb ∈ [1, 100] for ELPA and ScaLAPACK

0 20 40 60 80 100 120 140 160
nb

0.9

1.0

1.1

1.2

1.3

1.4

ti
m

e
[s

]

ELPA
PZHEEVD

Figure 2. ELPA time as a function of nb, for (nx, ny) = (10, 32) on
SKX with N = 40000.

determines the process grid and nb is the block size. Figure
1 illustrates the potential range of performance by showing
a histogram of solution times for a full sweep of the valid
parameter space for a N = 20000 matrix on 4 Xeon Phi
nodes. Note that for some choices the performance could be
10x worse than the optimal case.

A. Block size

The block size of the decomposition is one of the most
straightforward parameters to vary. Typical advice for this
parameter is either anecdotal or “it depends” [4]. However,
in the case of ELPA an internal blocksize is used for
operations, but the nb parameter is still important for parallel
load balancing and efficiency.

Figure 2 shows the nb landscape for a matrix of size
N = 40, 000, as a function of the parameter nb. This
graph is provided as a reminder that the time-to-solution
minimization landscape is not a smooth function of any of

0 20 40 60
nb

50
100
150
200
250
300
350
400
450
500

ti
m

e
[s

]

elpa

nx
1
2
4
8
16

0 20 40 60
nb

pzheevd

Figure 3. Time to solution for N = 20000 matrix on 4 KNL nodes with
64 ranks per node.

the parameters- nb in this example. Generally the choice of
nb is a tradeoff between good load balancing with very small
nb and higher level BLAS for local operations with larger
nb.

Figure 3 shows that ELPA and ScaLAPACK have a very
different dependence on nb. Generally the optimal block
size is between 1 and 200, with 1 almost never being a
good solution. For ELPA there may be multiple minima, but
they are generally similar in performance. For ScaLAPACK
small block sizes nb <= 4 are not desirable and result in
significantly worse performance while in ELPA there is a
smaller penalty for a suboptimal choice of nb, likely due to
the additional internal blocking which ELPA performs.

B. Process Grid

The process grid should be chosen such that nx×ny = n,
where n is the total number of MPI ranks.

Figure 4 shows that the main MPI communication pat-
terns are a function of the nx and ny parameters, as
one departs from the optimum solution. The optimum
that corresponds to the lowest time is on the left, for
nx = 6 (i.e., not nx = 12). The goal of optimization
process is essentially to eliminate the MPI_Wait (brown
blocks) and MPI_Allreduce (orange blocks) times. As
those MPI times increase, the ratio of the main computa-
tion hh_trafo_complex_kernel_12_AVX_1hv_double,
to the total time diminishes. Noticeably, the MPI_Bcast
improves as the total compute time increases. Therefore, the
Perftools profile seems to indicate that the nx × ny is an
interplay between MPI_Bcast and MPI_Allreduce +
MPI_Wait. We observe that nb correlates to MPI_Bcast
to a lesser extent than (nx, ny).

C. Optimization

For a given number of OpenMP threads per rank, number
of nodes, and matrix size there are essentially only 2 param-

6 12 36 72

nx

0

5

10

15

20

25

ti
m

e
[s

]

MPI_Bcast
MPI_Allreduce
MPI_Reduce
MPI_Recv
MPI_Sendrecv_replace
MPI_Wait
sci_zgemm
hh_trafo_complex_kernel_12_AVX_1hv_double
elpa2_compute_mp_trans_ev_tridi_to_band_complex_double
intel_memcpy/memset
etc
other

Figure 4. Influence of nx and ny on the MPI communication. The fastest
time is on the left, with nx = 6. ELPA times vary as 14.85, 15.92, 19.6,
and 27.9, with nx that varies as 6, 12, 36, and 72, in the graph.

Figure 5. Manual optimization

eters that need to be minimized for a given number of MPI
ranks: the matrix grid that needs to satisfy MPI comm size
= nx × ny , and the block size, nb.

Figure 2 shows the actual landscape for a matrix of size
40,000 × 40,000, as a function of the parameter nb. The
minimization is obviously not as clean and perfect as shown
in Fig. 5.

1) Manual: Optimization can be performed manually, in
just few steps. Figure 5 shows the general approach for
finding the fastest ELPA (or PZHEEVD) compute time,
which is essentially a minimization procedure where the
variable that needs to be minimized is the total compute
time. It is a simple and efficient approach for finding the

minimum of 2 sets of variables (nx depends on ny , through
MPI comm size), corresponding to the fastest solution. The
iteration starts at the upper left part of the figure, where
one chooses 2 guess values for nx and ny that satisfy
MPI comm size = nx ×ny . An initial guess is also chosen
for nb (e.g., the number of cores per node on the hardware
is a good choice).Then the pair (nx, ny) is multiplied/di-
vided by 2, or any factors that gives an integer value of
MPI comm size. A faster runtime combination of (nx, ny)
corresponds to the local optimum value. The pair (n1x, n

1
y) is

then fixed, while nb now is set to vary. The same process is
repeated for nb, until a faster runtime is found, with n1b . Two
runs are done at this n1b , surrounding the local minimum,
using (2nx, ny/2) and (nx/2, 2ny), as shown in the box
at the bottom-right. Two possibilities can occur, either the
minimum was found, or that there is a new value for the pair
(nx, ny) that can lead to a faster time. If that is the case, then
the entire procedure is repeated, until no more variations are
observed. In practice that process is rarely repeated.

The method is sequential, since the choice of the next
parameters depend on the outcome of the current run. On
the other hand, in practice, a global minimum can be found
in most case, in less then 10 steps of Fig. 5. However, the
procedure does not guarantee that the global minimum is
found, especially when multiple minima are shown to exist,
as shown in Table II, or shown in the landscape of the
parameter nb Figure 2. This is true even when using random
searches, although random search might help jump out of
a local minimum (which is of crucial importance for the
physics of energy minimization problems, but less crucial
here, since we are only trying to find the fastest time-to-
solution).

2) Bayesian Parameter Optimization: There is a vast
amount of literature on Bayesian (hyper-)parameter estima-
tion. Most algorithms were developed to efficiently perform
high dimensional parameter space searches in order to
optimize a cost (or maximize an objective) function. For our
studies we will use the spearmint software package [9] which
was developed to find good hyper parameters of neural
networks. However, the package can be used to perform
arbitrary parameter searches as long as a good objective
function is defined. The idea behind spearmint is that it
uses Gaussian Process Regression on a sequence of pairs of
parameter guesses and objective function values to estimate
the next step in this sequence by maximizing the expected
improvement over the current best value for the objective
function. Spearmint can perform concurrent searches in
which it will estimate an expected improvement based on
observed as well as queued data points. It achieves this by
interpreting the outstanding expected best improvements as a
multivariate Gaussian distribution from which it can sample
in order to generate a next best guess (cf. [10] for details).

For our experiments we use the execution time of the
diagonalization algorithm as the objective function. We

0 2000 4000 6000 8000 10000 12000 14000
Run time [s]

400

600

800

1000

1200

1400

1600

1800

Be
st

 E
LP

A
ti

m
e

[s
]

Figure 6. Optimization with Spearmint. As spearmint is designed to run
multiple experiments in parallel we show the current best benchmark time
as a function of wall clock time for the optimization job

fix the number of nodes and use spearmint to perform a
parameter search within these bounds, i.e. the unconstrained
parameters are the number of ranks per node, the number of
row-ranks (nx) and the number of blocks. The number of
column ranks (ny) will be computed from the total number
of ranks and the number of row-ranks and the block size
(nb) is varied. The efficiency of spearmint for finding good
solutions is show in Figure 6.

V. DISCUSSION

Table III shows the general trend that for a given matrix
size there are essentially no correlation between (nx, ny)
and nb as the size of the matrix is increased. For example,
Figure 7 shows the scaling of the optimum values of nx,
ny , and nb, for various sizes of matrices. Table III shows
the optimum values used in the Fig. 7. Considering the 8
node case, and varying the dimension of the matrix, one
finds that as N increases from 10000 to 60000, in increments
of 10000, the optimum values of nx, ny , and nb do not
follow any precise trends. For example, as N=10000, 20000,
30000, 40000, 50000, 60000; nx=10, 8, 20, 10, 8, and
20; ny=32, 40, 16, 32, 40, 16; nb=20, 20, 10, 5, 20, 10.
The conclusion is that often simulations are started using
a smaller problem size, with the goal of increasing the
accuracy of the total energy, say, by increasing the cutoff
energy of the plane wave basis, or doubling the number
of atoms, etc., a procedure typical in VASP or quantum
espresso FFT-based code simulations. The set of optimum
(nx, ny) and nb values for that smaller problem can certainly
be taken as an initial guess for the larger problem, however,
in practice, that larger size simulation will require a new set
of nx, ny and nb in order to be optimum.

In comparison to ELPA, the PZHEEVD parameters seem
to show a more regular variation with the matrix size
(nx is more or less constant as the matrix size increases).
Therefore, PZHEEVD has the advantage to not require that

Table II
CHOICE OF PARAMETERS nx , ny , FOR N = 40000, nb = 2 (ELPA)

AND nb = 70 (PZHEEVD), USING 36 CORES/NODE ON 4 BROADWELL
NODES (nb = 2 AND nb = 70 CORRESPOND RESPECTIVELY TO THE
ELPA AND PZHEEVD OPTIMUM VALUES FOR nx = 12, ny = 12)

nx ny ELPA time PZHEEVD time
1 144 739.10 1503.82
2 72 625.05 1109.87
3 48 600.12 989.70
4 36 579.62 914.85
6 24 544.87 887.56
8 18 552.19 839.23
9 16 579.21 819.93
12 12 546.52 888.01
16 9 600.16 783.72
18 8 581.08 866.30
24 6 599.62 979.10
36 4 602.15 1075.34
48 3 850.71 1168.19
72 2 1019.38 1369.65
144 1 930.02 1798.52

Table III
DATA CORRESPONDING TO FIGURE 7, FOR ELPA. WE ALSO HAVE

EXTRA DIMENSIONS OF THE MATRIX N INCLUDED IN THE TABLE. ALL
RUNS ARE USING OMP_NUM_THREADS=1. RUNS ARE ON SKYLAKE

USING AVX512

N nodes MPI nx ny nb ELPA time
10000 1 40 5 8 10 20.43
10000 2 80 10 8 20 11.51
10000 4 160 10 16 20 7.18
10000 8 320 10 32 20 5.31
20000 1 40 5 8 10 145.58
20000 2 80 8 10 10 77.32
20000 4 160 8 20 20 43.60
20000 8 320 8 40 20 29.09
20000 16 640 8 80 10 21.22
30000 1 40 5 8 20 468.49
30000 2 80 10 8 10 245.28
30000 4 160 10 16 20 132.19
30000 8 320 20 16 10 76.12
30000 16 640 20 32 10 47.44
30000 32 1280 20 64 5 35.74
40000 1 40 5 8 20 1090.04
40000 2 80 10 8 20 566.55
40000 4 160 10 16 20 299.41
40000 8 320 10 32 5 175.48
40000 16 640 20 32 10 100.30
40000 32 1280 40 32 10 69.33
50000 1 40 5 8 10 2142.55
50000 2 80 4 20 20 1113.33
50000 4 160 8 20 10 570.83
50000 8 320 8 40 20 324.59
50000 16 640 8 80 20 200.34
50000 32 1280 32 40 10 144.74
50000 64 2560 128 20 5 92.68
60000 2 80 5 16 20 1852.40
60000 4 160 10 16 10 963.72
60000 8 320 20 16 10 522.03
60000 16 640 20 32 5 299.50
60000 32 1280 40 32 10 187.67
60000 64 2560 80 32 10 136.36

Table IV
DATA CORRESPONDING TO FIGURE 7, FOR PZHEEVD. ALL RUNS ARE

USING OMP_NUM_THREADS=1. RUNS ARE ON SKYLAKE-20 USING
AVX512

N nodes MPI nx ny nb PZHEEVD time
10000 1 40 8 5 40 31.59
10000 2 80 5 16 40 17.25
10000 4 160 10 16 40 9.79
10000 8 320 10 32 40 6.88
20000 1 40 8 5 40 264.11
20000 2 80 16 5 40 131.92
20000 4 160 16 10 40 69.22
20000 8 320 16 20 50 40.02
20000 16 640 8 80 30 24.10
30000 1 40 8 5 70 878.59
30000 2 80 8 10 60 457.92
30000 4 160 32 5 40 223.03
30000 8 320 32 10 40 122.62
30000 16 640 32 20 40 74.56
30000 32 1280 16 80 40 46.60
40000 1 40 8 5 60 2085.62
40000 2 80 16 5 40 1035.70
40000 4 160 32 5 40 534.76
40000 8 320 32 10 40 286.01
40000 16 640 32 20 50 166.77
40000 32 1280 16 80 40 97.38

much optimization as the problem size (or when increasing
the energy cutoff in plane wave codes) is increased.

The optimum block size, NB, is in general much larger
in PZHEEVD than in ELPA. For instance, the average value
that NB takes in ELPA is 10, while in PZHEEVD, it is 40.

Table II shows an interesting case on broadwell-18 cores,
using 4 nodes, which corresponds to 144 MPI ranks, easily
divisible by 2432. We show all the possible combinations
of nx for ELPA and PZHEEVD. Note that nx and ny
are not symmetric. In other words, the runtime completed
using the pair (nx, ny) does not equates that using the
reversed pair (ny, nx). The important observation from this
set of computations is that having nx × ny = 122, is
essentially a good option, it is however not necessarily the
only best option in both algorithms. For instance, the pair
(nx, ny) = (6, 24) gives a slightly better performance than
(nx, ny) = (12, 12) with ELPA, while (nx, ny) = (16, 9) is
clearly the optimum for PZHEEVD. Note that there are 3
local minima in ELPA, shown in bold in the Table [excluding
the extreme case of (nx, ny) = (144, 1)], and 2 local
minima in PHZEEVD, although one is much lower than
the other. Table II also indicates a feature less apparent with
PZHEEVD, that there may be multiple optima to consider.
This feature was also observed in the case of the parameter
nb, shown in Figure 2.

In summary, the optimum values that ELPA requires is
based on these two general considerations: (a) The optimum
value that nx and ny should take are not too far from
each others. (b) The pair (nx, ny) is not symmetric. For
example, if (nx, ny) is fast, consider swapping the number,
(ny, nx), and verify that it is still an optimum. (c) If

1 2 4 8 16 32
nodes

101

102

103

ti
m

e
[s

]

ELPA N=10000
ELPA N=20000
ELPA N=30000
ELPA N=40000
ELPA N=50000

ELPA N=60000
PZHEEVD N=10000
PZHEEVD N=20000
PZHEEVD N=30000
PZHEEVD N=40000

Figure 7. Comparison of scaling between PZHEEVD and ELPA, for
N=10000, 20000, 30000, 40000 on SKX. The (nx, ny) and nb values
were optimized manually.

the optimum parameter, nb, from SCALAPACK is known,
consider reducing its value by a factor of 10, when running
with ELPA. (d) The nx parameter increases more or less
with the number of nodes. There are no exact rules that can
dictate exactly how to match the number of nodes to nx, but
that general trend is still valid.

A. Strong Scaling

Figure 7 shows graphically the scaling data from Tables
III and IV, in a log-log scale. The parameters in this figure
were obtained via manual optimization show in Figure 5.
Overall, the two methods scale with equivalent ratio. The
ELPA method is approximately 1.5 times faster than than
PZHEEVD, although this ratio is not constant and depends
on the size of the problem. In our testing ELPA was always
faster than PZHEEVD.

B. OpenMP vs MPI

Figure 9 shows the performance of openMP threading for
the 2 codes, ELPA and PZHEEVD from ScaLAPACK. One
advantage of ELPA is that threading performs better than
SCALAPACK, at least up to 4 threads. This is very impor-
tant for codes such as quantum espresso, where threading
has been optimized (for example, within the computation of
the exact-exchange).

C. Architecture comparison

To compare architectures we focus on a N = 40000
problem size on 4 nodes of a given platform. Table V
shows the best combination of parameters for each solver
on Skylake, Broadwell, Haswell and Xeon Phi. Xeon Phi

elpa
1

elpa
2

elpa
4

elpa
8

elpa
32

elpa
64

pzheevd
1

pzheevd
2

pzheevd
4

pzheevd
8

pzheevd
32

pzheevd
64

solver
ranks per node

0

50

100

150

200

250

300

ti
m

e
[s

]

Figure 8. Range of solution time for ELPA and PZHEEVD on 4 KNL
nodes for different ranks per node. The matrix is N = 10000. All valid
combinations of (nx, ny) were run for each (solver, ranks per node)
combination. The blocksize was varied in the range of nb ∈ [1, 60].

1 2 4 8 20
OMP_NUM_THREADS

10

15

20

25

30

Ru
n

ti
m

e
[s

]

PZHEEVD
ELPA

Figure 9. Performance variation for a matrix N=10000 on 4 SKX nodes.

outperforms both Haswell and Broadwell with optimal pa-
rameters with ELPA, but is slower than Skylake. The same
trend is continued for ScaLAPACK. Though one interesting
thing to note is that the performance gain of ELPA over
ScaLAPACK is smallest on Xeon Phi. The choice of block
size on each (platform, solver) combination fits with the
previously discussed guidelines. One interesting finding was
that with this specific problem and node count the hybrid
OpenMP/MPI version with 2 OpenMP threads on Haswell
outperformed the pure MPI version. This may be due to
cache effects and the better parallel load balancing with
nx = ny .

VI. CONCLUSION

We have examined the performance of ELPA and ScaLA-
PACK for complex eigenvalue problems on a range of
Cray XC platforms with different architectures. We provide
methods for choosing optimal parameters and discuss the
tradeoffs involved. We have found that the choice of non-
optimal parameters can result in a 2x or worse slowdown

Table V
CHOICE OF PARAMETERS nx , ny , FOR N = 40000 ON DIFFERENT

ARCHITECTURES)

Architecture solver MPI (nx, ny) nb t[s]
HSW ELPA 128 (8,16) 16 611.84
HSW PZHEEVD 64 (8,8) 50 929.18
KNL ELPA 256 (8,32) 36 501.79
KNL PZHEEVD 256 (8,32) 50 633.58
BDW ELPA 144 (6,24) 2 544.87
SKX ELPA 160 (10,16) 20 299.41
SKX PZHEEVD 160 (32,5) 40 534.76

when compared to optimal parameters. ELPA is particularly
sensitive to parameters like the block-size in the block-cyclic
distribution, where the performance of the diagonalization
varies in a non-smooth way with this parameter choice.
We also note that the optimal parameter choice is architec-
ture dependent with Intel’s Xeon-Phi processors generally
outperforming dual-socket Haswell and Broadwell nodes.
Dual socket Skylake nodes generally showed the best per-
formance, with ELPA providing close to a 2x performance
advantage over SCALAPACK.

Despite the extra sensitivity, we found that ELPA out-
performs SCALAPACK on all architectures tested and all
matrix sizes and concurrencies. In addition, ELPA performs
significantly better than SCALAPACK in scenarios where
multiple OpenMP threads are used for each MPI rank. The
performance gap between ELPA and SCALAPACK widens
as function of threads used. While, ELPA performance is
still generally optimal in a pure MPI configuration, improved
OpenMP scaling is important when using these libraries
in applications that implement a hybrid MPI-OpenMP ap-
proach because of other memory of performance consider-
ations.

Given the significant use of dense diagonalization in a
number of important HPC applications and the potential
penalty of poor parameter choice, the strategy presented
can help make more efficient use of systems and show the
comparison of architectures for parallel dense linear algebra.

ACKNOWLEDGMENT

The authors would like to thank Cray Inc for generous
allocation of computing time on the Cray internal ma-
chines, crystal (XC40), and horizon (XC50). This research
used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken,
F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas,
M. Ct, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi,
S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard,
S. Leroux, M. Mancini, S. Mazevet, M. Oliveira,
G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese,

D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah,
and J. Zwanziger, “Abinit: First-principles approach to
material and nanosystem properties,” Computer Physics
Communications, vol. 180, no. 12, pp. 2582 – 2615,
2009, 40 {YEARS} {OF} CPC: A celebratory issue
focused on quality software for high performance, grid
and novel computing architectures. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0010465509002276

[2] A. Marini, C. Hogan, M. Grüning, and D. Varsano, “Yambo:
an ab initio tool for excited state calculations,” Computer
Physics Communications, vol. 180, no. 8, pp. 1392–1403,
2009.

[3] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L.
Cohen, and S. G. Louie, “Berkeleygw: A massively parallel
computer package for the calculation of the quasiparticle and
optical properties of materials and nanostructures,” Computer
Physics Communications, vol. 183, no. 6, pp. 1269–1289,
2012.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK
Users’ Guide. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997.

[5] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Jo-
hanni, L. Krämer, B. Lang, H. Lederer, and P. R. Willems,
“Parallel solution of partial symmetric eigenvalue problems
from electronic structure calculations,” Parallel Computing,
vol. 37, no. 12, pp. 783–794, 2011.

[6] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auck-
enthaler, A. Heinecke, H.-J. Bungartz, and H. Lederer, “The
elpa library: scalable parallel eigenvalue solutions for elec-
tronic structure theory and computational science,” Journal
of Physics: Condensed Matter, vol. 26, no. 21, p. 213201,
2014.

[7] F. Tisseur and J. Dongarra, “A Parallel Divide and Conquer
Algorithm for the Symmetric Eigenvalue Problem on Dis-
tributed Memory Architectures,” SIAM J. Sci. Comput. 6:20,
1999.

[8] B. Alverson, E. Froese, L. Kaplan, and
D. Roweth, “Cray XC Series Network,”
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf.

[9] https://github.com/HIPS/Spearmint.

[10] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
Optimization of Machine Learning Algorithms,” ArXiv e-
prints, Jun. 2012.

APPENDIX A.
ELPA BENCHMARK

module helper
implicit none
contains
subroutine transpose_matrix(uplo, ln, a_ref, a_sym, desca)

character, intent(in) :: uplo
integer, intent(in) :: ln
complex(kind=8), intent(in) :: a_ref(:,:)
complex(kind=8), intent(out) :: a_sym(:,:)
integer, intent(in) :: desca(:)
complex(kind=8) :: alpha, beta
logical :: lsame

alpha = (1.0, 0.0)
beta = (0.0, 0.0)

call pztranc(ln, ln, alpha, a_ref, 1, 1, desca, &
& beta, a_sym, 1, 1, desca)

if (lsame(uplo, "L")) then
call pztrmr2d("L", "N", ln, ln, a_ref, 1, 1, &
& desca, a_sym, 1, 1, desca, desca(2))

else
call pztrmr2d("U", "N", ln, ln, a_ref, 1, 1, &
& desca, a_sym, 1, 1, desca, desca(2))

end if

end subroutine transpose_matrix

elemental subroutine convert_to_int(str, i, stat)
character(len=*), intent(in) :: str
integer, intent(out) :: i, stat
read(str, *, iostat=stat) i
end subroutine convert_to_int

end module helper

program benchmark_elpa
use elpa
use elpa_driver
use helper

implicit none
include ’mpif.h’

integer :: ctxt_sys
integer :: rank, size, i, j
integer :: ln, lnprow, lnpcol, lnbrow, lnbcol
integer :: llda, ml, nl, lsize, numEle
integer :: myrow, mycol, info, err
real(kind=8) :: t1, t2

class(elpa_t), pointer :: e

integer, allocatable :: desca(:)
complex(kind=8), allocatable :: a_ref(:,:), a_sym(:,:), z(:,:)
real(kind=8), allocatable :: w(:)
integer, dimension(4) :: iseed
character(len=10), dimension(4) :: argc
integer numroc, mpi_comm_rows, mpi_comm_cols
integer, parameter :: ELS_TO_PRINT = 5

! Initialize MPI and BLACS
call mpi_init(err)
call mpi_comm_rank(MPI_COMM_WORLD, rank, err)
call mpi_comm_size(MPI_COMM_WORLD, size, err)

do i = 1, 4
call get_command_argument(i, argc(i))

end do

call convert_to_int(argc(1), ln, err)
call convert_to_int(argc(2), lnprow, err)
call convert_to_int(argc(3), lnpcol, err)
call convert_to_int(argc(4), lnbrow, err)
lnbcol = lnbrow

if (rank == 0) then
print *, "ln =", ln
print *, "lnprow =", lnprow
print *, "lnpcol =", lnpcol
print *, "lnbropw =", lnbrow

end if

call blacs_get(0, 0, ctxt_sys)
call blacs_gridinit(ctxt_sys, "C", lnprow, lnpcol)
call blacs_gridinfo(ctxt_sys, lnprow, lnpcol, &
& myrow, mycol)

if (myrow .eq. -1) then
print *, "Failed to properly initialize

MPI and/or BLACS!"
call MPI_FINALIZE(err)
stop

end if

! Explicitly get and set the row and column
! communicators, as the API seems to be
! failing to initialize them as they should
err = elpa_get_communicators(MPI_COMM_WORLD,
& myrow, mycol, &
& mpi_comm_rows, mpi_comm_cols)

! Allocate my matrices now
ml = numroc(ln, lnbrow, myrow, 0, lnprow)
nl = numroc(ln, lnbcol, mycol, 0, lnpcol)
llda = ml

allocate(a_ref(ml,nl))
allocate(a_sym(ml,nl))
allocate(z(ml,nl))
allocate(w(ln))
allocate(desca(9))

! Create blacs descriptor for transposing matrix
call descinit(desca, ln, ln, lnbrow, lnbcol, &
& 0, 0, ctxt_sys, llda, info)

iseed(1) = myrow
iseed(2) = mycol
iseed(3) = mycol + myrow*lnpcol
iseed(4) = 1
if (iand(iseed(4), 2) == 0) then

iseed(4) = iseed(4) + 1
end if

! Try initializing and allocating elpa
if (elpa_init(20170403) /= elpa_ok) then

print *, "ELPA API not supported"
stop

end if

e => elpa_allocate()

numEle = ml*nl
call zlarnv(1, iseed, numEle, a_ref)
call transpose_matrix("L", ln, a_ref, a_sym, desca)

deallocate(a_ref)
t1 = MPI_WTIME()

e => elpa_allocate()
call e%set("na", ln, err)
call e%set("nev", ln, err)
call e%set("local_nrows", ml, err)
call e%set("local_ncols", nl, err)
call e%set("nblk", lnbrow, err)
call e%set("mpi_comm_parent", mpi_comm_world, err)
call e%set("mpi_comm_rows", mpi_comm_rows, err)
call e%set("mpi_comm_cols", mpi_comm_cols, err)
call e%set("process_row", myrow, err)
call e%set("process_col", mycol, err)
call e%set("solver", ELPA_SOLVER_2STAGE, err)
call e%set("complex_kernel", &
& ELPA_2STAGE_COMPLEX_AVX512_BLOCK1, err)

call e%eigenvectors(a_sym, w, z, err)

call elpa_deallocate(e)
call elpa_uninit()

t2 = MPI_WTIME()

if (rank == 0) then
print *, "ELPA time: ", t2 - t1

end if

! deallocate stuff

if (rank == 0) then
do j=1, ELS_TO_PRINT

write(6,*) "w(", j, ")=", w(j), "z(", j, ")=", z(j,1)
end do

end if

deallocate(a_sym)
deallocate(z)
deallocate(w)
deallocate(desca)

! Finish MPI
call MPI_FINALIZE(err)

end program benchmark_elpa

The following is the code for the pzheevd LAPACK calls.

APPENDIX B.
SCALAPACK BENCHMARK

module helper
implicit none
contains

elemental subroutine convert_to_int(str, i, stat)
character(len=*), intent(in) :: str
integer, intent(out) :: i, stat

read(str, *, iostat=stat) i

end subroutine convert_to_int

end module helper

program pzheevd_test
use mpi
use helper

implicit none

integer, parameter :: MY_NPROW = 2
integer, parameter :: MY_NPCOL = 2
integer, parameter :: MY_N = 1024
integer, parameter :: MY_NB = 256
integer, parameter :: MY_IL = 1
integer, parameter :: MY_IU = 1024
integer, parameter :: ELS_TO_PRINT = 5

integer :: info = 0
character :: jobz = ’V’
character :: uplo = ’L’
integer :: ln = MY_N
integer :: lnbrow = MY_NB
integer :: lnbcol
integer :: m, nz
integer :: err
integer :: il = MY_IL, iu = MY_IU
real(kind=8) :: dummyL, dummyU
real(kind=8) :: t1, t2
integer :: lnprow = MY_NPROW
integer :: lnpcol = MY_NPCOL
integer :: myrow, mycol
integer :: ia=1, ja=1, iz=1, jz=1
integer :: desca(15), descz(15)
integer :: ctxt_sys
integer :: moneI = -1, zeroI = 0, oneI = 1
integer :: rank, size, i
integer :: llda
character(len=9) :: procOrder = "Row-major"

character(len=10), dimension(4) :: argc

! ADDED DEFINITIONS
integer :: ml, nl
integer :: iseed(4)
integer :: numEle
complex(kind=8), allocatable :: a_ref(:,:), z(:,:)
real(kind=8), allocatable :: w(:)
complex(kind=8), allocatable :: work(:)
real(kind=8), allocatable :: rwork(:)
integer, allocatable :: iwork(:)
real(kind=8) :: temp(2), rtemp(2)
integer :: liwork, lwork, lrwork
integer :: my_rank, j, ierror

! .. External Functions ..
integer, external :: numroc

! Initialize MPI and BLACS
call MPI_INIT(err)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, err)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, err)

do i = 1, 4
call get_command_argument(i, argc(i))

end do

call convert_to_int(argc(1), ln, err)
call convert_to_int(argc(2), lnprow, err)
call convert_to_int(argc(3), lnpcol, err)
call convert_to_int(argc(4), lnbrow, err)
lnbcol = lnbrow

if (rank == 0) then
print *, "ln =", ln
print *, "lnprow =", lnprow
print *, "lnpcol =", lnpcol
print *, "lnbropw =", lnbrow

end if

call blacs_get(moneI, zeroI, ctxt_sys)
call blacs_gridinit(ctxt_sys, procOrder, lnprow, lnpcol)
call blacs_gridinfo(ctxt_sys, lnprow, lnpcol, myrow, mycol)

if (myrow .eq. -1) then
print *, "Failed to initialize MPI and/or BLACS!"
call MPI_FINALIZE(err)
stop

end if

! Allocate my matrices now
ml = numroc(ln, lnbrow, myrow, zeroI, lnprow)
nl = numroc(ln, lnbrow, mycol, zeroI, lnpcol)
llda = ml

call descinit(desca, ln, ln, lnbrow, lnbrow, &
& zeroI, zeroI, ctxt_sys, llda, info)
call descinit(descz, ln, ln, lnbrow, lnbrow, &
& zeroI, zeroI, ctxt_sys, llda, info)

allocate(a_ref(ml,nl))
allocate(z(ml,nl))
allocate(w(ln))

iseed(1) = myrow
iseed(2) = mycol
iseed(3) = mycol + myrow*lnpcol
iseed(4) = 1
if (iand(iseed(4), 2) == 0) then

iseed(4) = iseed(4) + 1
end if
numEle = ml*nl

call zlarnv(oneI, iseed, numEle, a_ref)
call zlarnv(oneI, iseed, numEle, z)

t1 = MPI_WTIME()

call pzheevd(jobz, uplo, ln, a_ref, ia, ja, &
& desca, w, z, iz, jz, descz, temp, moneI, &

& rtemp, moneI, liwork, moneI, info)
lwork = temp(1)
allocate(work(lwork))
lrwork = rtemp(1)
allocate(rwork(lrwork))
allocate(iwork(liwork))
call pzheevd(jobz, uplo, ln, a_ref, ia, &
& ja, desca, w, z, iz, jz, descz, work, &
& lwork, rwork, lrwork, iwork, liwork, info)
if (info /= 0) then

write(6,*) "PZHEEVD returned non-zero info val of ", info
end if

t2 = MPI_WTIME()

if (rank == 0) then
print *, "PZHEEVD time: ", t2 - t1

end if

call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, ierror)
call blacs_gridexit(ctxt_sys)
call blacs_exit(zeroI)

! if (rank == 0) then
! do j=1, ELS_TO_PRINT
! write(6,*) "w(", j, ")=", w(j), "z(", j, ")=", z(j,1)
! end do
! end if

deallocate(a_ref, z, w)
deallocate(work, rwork, iwork)

end program pzheevd_test

APPENDIX C.
COMPILATION

Codes were compiled using Intel compilers version 17.0.2.174.

#!/bin/bash

export CRAYPE_LINK_TYPE=dynamic
module swap PrgEnv-cray PrgEnv-intel
module swap intel intel/17.0.2.174

export base_dir=‘pwd‘

pzheevd:
ftn -O2 -openmp -o pzheevd benchmark_pzheevd.f90

elpa:
mkdir ELPA
cd ELPA/
mkdir build
mkdir tmp
export TMPDIR=$base_dir/ELPA/tmp
wget http://elpa.mpcdf.mpg.de/html/Releases/...
2017.05.001.rc2/elpa-2017.05.001.rc2.tar.gz
tar -xvf elpa-2017.05.001.rc2.tar.gz
cd elpa-2017.05.001.rc2
./configure --prefix=$base_dir/ELPA/build \
--enable-openmp --disable-timings \
--disable-mpi-module --enable-legacy \
--enable-avx512 --host=x86_64 \
--enable-single-precision CC=cc FC=ftn \
CXX=CC CFLAGS="-fPIC -std=c99 -O3" \
FCFLAGS="-fPIC -O3" FCLIBS=" "

make
make install
cd ../..
export FFLAGS="-I$base_dir/ELPA/build/include/...
elpa_openmp-2017.05.001.rc2/modules"
export LDFLAGS="-L$base_dir/ELPA/build/lib -lelpa_openmp"
ftn -O2 -openmp ${FFLAGS} benchmark_elpa.f90 -o elpa ${LDFLAGS}

