
Continuous integration in a Cray multiuser environment

Ben Lenard, Tommie Jackson
Argonne National Laboratory  
Leadership Computing Facility

9700 S. Cass Ave.
Argonne, IL 60439

blenard@anl.gov, tjackson@alcf.anl.gov

Abstract -- Continuous integration (CI) provides the ability for
developers to compile and unit test their code after commits to
their repository. This is a tool for producing better code by
recompiling and testing often. CI in this environment means that
a build will happen either on a schedule or triggered by a commit
to a software repository. In this paper, we will be looking at how
Argonne National Laboratory’s Leadership Computing Facility
(ALCF) is implementing CI for its users with security
considerations, and project isolation. We currently have
implemented a Jenkins instance that has the ability to connect to
external software repositories, listen for web-events, compile
code, and then execute tests or submit jobs to our job scheduler
Cobalt. While Jenkins provides the ability to build code on
demand and execute jobs on our systems, we will also be
deploying another solution that is tied to GitLab that provides
seamless integration at a later time. This paper will discuss the
how the facility user facing Jenkins solution was implemented at
ALCF with open source plugins, what considerations where
taken into account, and the success so far with projects.

 Keywords--continuous integration; supercomputers; HPC

I. INTRODUCTION
Scientific software testing, particularly simulation

software, faces many unique challenges. Oftentimes
developers and scientists are unable to test their software on
local systems at the scales demanded by leadership class
systems, or even on smaller instances of what are often
unique architectures and software stacks [11]. The ALCF
has received numerous requests from facility end-users to
provide a means to run automated tests of their scientific
software against the unique hardware found at our facility.
To support this, the ALCF has started a pilot project to
provide users a Continuous Integration (CI) solution to allow
users easier access to ALCF platforms for porting, extending
and debugging codes that run on these unique systems.

In 2016, the ALCF acquired Theta [1], which is currently
a 4392-node, 24-rack Cray XC40 system accompanied by a
10PB Lustre file system. Each Theta node is equipped with a
64-core Intel Xeon Phi 7230 Knight’s Landing processors
with 16GB of MCDRAM and 192GB DDR4 RAM
connected to a 10 PB Lustre filesystem. The ALCF also has
a 49K node, 48-rack IBM BlueGene/Q system [5], Mira,
accompanied by 26PB of GPFS file systems. To complement
these resources, the ALCF has a Cray visualization cluster
named Cooley which is 126 nodes [6] and has access to the

26PB GPFS file systems and soon will have direct access to
Theta’s 10PB Lustre file system. Each Cooley node has two
2.4 GHz Intel Haswell E5-2620 v3 processors, one NVIDIA
Tesla K80 (with two GPUs), 384GB RAM per node, and 24
GB GPU RAM.

The ALCF is an open science facility. The user base is
primarily outside of Argonne and is distributed globally.
System users do not typically host their software repositories
at the ALCF, and the majority of projects running at the
ALCF are hosted within their own repositories, often at an
external university or laboratory repositories in various
software repository formats, often git or subversion.
Additionally, some of the users of ALCF systems are from
industry with their own, unique considerations for their
source hosting and security concerns.

CI has many different definitions but in general it means
that a given user or organization has the desire to compile
their code and then run a predefined set of tests, and possibly
repeat these steps on various architectures. Some people
view CI as the desire to compile on every commit, whereas
other users have the desire to only compile and then validate
their build weekly. That being said, the ALCF wanted a
solution that had the ability to meet the needs of a wide range
of unique user requirements as well as be able to connect to
software repositories wherever they might be located.

The ALCF has deployed an open source Jenkins solution
that it is currently running a pilot with facility’s users. The
solution provides the participating projects the ability to
compile and execute code while maintaining the project’s
isolation. The solution utilizes open source Jenkins plugins
to provide the connectivity and security requirements. The
Jenkins server itself has been deployed to the ALCF’s
existing VMWare infrastructure.

The remainder of this paper has been organized into five
sections. First, we will discuss the requirement of the ALCF
for this solution. Next, we will discuss the design and
implementation of the Jenkins solution. This section also
covers the key Jenkins plugins used in this deployment.
Then we will discuss how an ALCF project is configured
within Jenkins. Lastly, we will discuss our results and future
developments.

II. REQUIREMENTS
The ALCF is a user facility with various concurrent

international projects that have been allocated time. As such,

a set of requirements was established to ensure the success of
the CI initiative:

• Security: One of the biggest issues with deploying
this solution with ALCF for our users is
multitenancy. We have many active projects at any
given time and need to ensure isolation between
these projects. Project isolation refers to separating
the execution for projects as well as separating and
keeping their data secure. In addition to this, we
needed a way to expose the service’s User Interface
(UI) to the Internet since most of users remote.
Furthermore, we needed the ability to integrate into
the ALCF multi-factor authentication system, and
log individual’s interactions with the system to our
central logging service.

• Multiplatform support: The ALCF has two different
Cray systems, an IBM BG/Q system, and both
PowerPC and x86_64 build servers, we need a
solution that runs on these current platforms and
would be portable to likely future platforms.

• Ease of use: We need a solution that is easy to use
and well documented since we are offering it as a
service to our users.

• Integration with various repositories: Since the
ALCF does not host software repositories for users,
we needed the solution to be able to interact with
many kinds of repositories and hosts.

• Maintainable / scalable: At any given time, the
ALCF can have over 356 projects with many users
attached to each. We need a solution that can
support a number of projects without a huge demand
on resources. It would inefficient to have 356 agents
sitting idle on a given system waiting for a build or
execution to occur. Build events might happen
every 15 minutes or could occur weekly.

• Cobalt integration: Since ALCF uses Cobalt
exclusively for our scheduling services, we needed a
solution that would provide the ability to interact
with Cobalt. Cobalt has the ability to issue batch
commands.

• Actively Maintained: We want a solution that is
actively maintained so that as new technologies
would emerge, the solution could hopefully embrace
and support these technologies..

III. DESIGN AND IMPLEMENTATION
After review of various open source CI solutions, given

the requirements set forth, and the in-house expertise, we
decided to implement the open source version of Jenkins
along with various open source plugins that are provided by
the Jenkins community. The ALCF currently uses Jenkins
for its internal development projects and support services
scheduling needs. Jenkins is an open source automation
server that provides CI [7] and has been around since the
mid 2000’s (Hudson) [8]. Since Jenkins is Java based, it
will run on almost any platform assuming that there is a
Java Run-Time Environment (JRE) for that platform.

ALCF has an existing VMWare infrastructure, and we
determined it was the right location to host Jenkins as well
as the Nginx webserver. The ALCF infrastructure is
composed of numerous hypervisors as well as the features
that will relocate virtual machines (VMs) on a hardware
failure. The Nginx webserver effectively is a proxy from
the Internet to the Jenkins application. The Argonne
firewall only allows for http and https traffic to the Nginx
server; we only do redirections from http to https on the http
port. We also chose VMWare to house these components of
the solution since we can dynamically allocate additional
resources to the Virtual Machine VM. The current Jenkins
VM is running Red Hat Enterprise Linux 7 with 2 vCPU’s,
8G of ram, with the Jenkins home directory residing on our
NFS server. The reason for hosting the Jenkins working
directory on our NFS server is to provide the ability to grow
the filesystem easily, the ability to take hourly, daily and
weekly snapshots separate from the VM, and to provide a
way to separate the Jenkins data from the VM should we
need to rehost Jenkins. We have deployed a similar
approach with separating the Jenkins data from the OS data
for the internal ALCF Jenkins instance as well.

A brief description of how allocated projects are setup
within the ALCF will be given before describing the Jenkins
solution. Within the ALCF, we create and assign a Unix
group to a project, and then an end user is also assigned to a
project which is in turn a group. In an effort to keep the
projects isolated, we deployed a service account for each
project that wishes to use our CI solution. Service accounts
in this case are internal accounts to ALCF with its group set
to the project’s group. The service account is never directly
logged into by the project’s users but rather it is used to
execute commands under the project’s behalf. The purpose
of this is so that if user has data that needs to be used by the
project’s build process, the user just needs to ensure the
group permissions are correct for that data.

For illustration purposes, for the remainder of the paper,
User1 is tied to Project1 and User2 is tied to Project2, and
User3 is tied to Project1 and Project2. And, Project1 has a
service account called Project1_SVC and Project2 with the
account Project2_SVC. Each of the service accounts are
tied to the respective Unix groups for the project. The
“project and group” concept is an existing practice within
ALCF so we decided to leverage this for our Jenkins
deployment.

The first step to creating this environment is to download
and install Jenkins. There are two download options for
Jenkins, one is a weekly build whereas the other is what
they call Long Term Support (LTS) [9]. LTS builds are
chosen every 12 weeks and tend to be more stable than the
weekly builds; since this service is serving our users, we
decided to deploy the LTS build.

Jenkins has a webserver built into it but instead we utilize
a Ngnix proxy between the Internet and Jenkins itself. We
decided to do this because, if we needed to decouple the
webserver from the VM at a later date, the process would be

easier since the webserver would already be independent.
The use of Ngnix also allows us to expose additional
webservices at a later date on ports 80 and 443 without
opening additional ports. In our case, the main URL is
https://cimaster.alcf.anl.gov but the Uniform Resource
Identifier (URI) of /jenkins/ allows Ngnix to know to direct
web traffic to the Jenkins server. As these practices become
more widespread among the scientific community, this
approach provides a natural and easy way to extend our
support of new tools.

A new Jenkins installation is a blank canvas for one to
deploy the plugins to customize Jenkins for the
organization’s needs. Jenkins has over one thousand
plugins built by its community ranging from interacting
with a git repository to controlling a web service [10]. The
next section will discuss the key plugins that are used by
ALCF to provide the CI solution to its users. We currently
have over one hundred plugins installed; the key plugins
will be discussed in detail below. At the end of the paper in
Appendix A, a complete list of plugins for this configuration
is provided. Everything in this paper is based on the open
source plugins provided by the Jenkins community.
The key Jenkins plugins utilized are as follows:

• Folders: The key to multitenancy within Jenkins is
the ‘Folders’ plugin. The ‘Folders’ plugin allows for
‘Folders’ within Jenkins. Like a Unix filesystem,
there is a parent folder for projects, such as ‘/home,’
and then there are directories for the projects, such as
‘/home/project1.’ Thus, for each project that
requests to use CI, a folder is created with their
matching name. The matching name is not a
requirement of Jenkins but rather a way for ALCF to
keep a handle on organization. Given the example
projects mentioned earlier, there are two folders,
‘Project1’ and ‘Project2.’ With the coordination of
the LDAP and Matrix plugins, these folders are now
locked-down to the project’s group, namely Project1
and Project2 respectively. To take this a step
further, some projects have subprojects and the
‘Folders’ plugin allows for subproject permissions as
well. The credentials used for Jenkins to access a
code repository are stored at the folder level as well.
This ensures that Project1’s credentials will never be
seen by anyone in Project2.

• Credentials: The ‘Credentials’ plugin allows Jenkins
to store credentials to external repositories as well as
the credentials for the project’s slave when a build or
execution needs to occur.

• Job and Node Ownership: The ‘Job and Node
Ownership’ allows for Jenkins to have a notion of
who owns a job and node. This allows for Jenkins to
decide and restrict on what slave to run a given job
on. It is coupled with the ‘Job Restrictions Plugin.’
We assign the owner of a folder to the project’s
service account; this is used in the ‘Job Restrictions
Plugin.’

• Job Restrictions: The open source version does not
have the ability to tie a slave to a folder, the
commercial version of Jenkins does, so we use this
plugin to restrict and direct what project runs on
what slave. When the slave is created by the ALCF
infrastructure staff in Jenkins, the restriction on the
node is to the project’s service account being the
job’s owner, or the person submitting the job is part
of the project. This provides the job routing
functionality needed in this environment.

• LDAP: The LDAP plugin allows the Jenkins server
to authenticate the user against the ALCF LDAP
servers which in turn contacts the ALCF SafeNet
server for onetime passwords. In addition to this, the
LDAP plugin provides Jenkins with the list of
projects, groups, the user belongs to. These groups
are how we use ‘folders’ and the matrix plugins to
achieve isolation.

• Matrix Authorization Strategy and Matrix Project:
The ALCF user management system creates a group
in LDAP per project. This plugin allows for
somewhat fine-grain access control on the folders,
and jobs. It also allows for ALCF, or even the
project's users, to restrict what individual users can
do within a given folder. Similar to the Linux file
system, a user can set the permissions for the group
level, or even an individual. As of right now, ALCF
is only doing this at the group level.

• SCM Sync Configuration: In any system, backups
are key to protect yourself from failure or human
mistakes. That being said, the “SCM Sync
Configuration” plugin commits every Jenkins
configuration change to ALCF’s internal Gitlab
instance. When a user creates a new job for a
project, that new job is automatically committed to
the Gitlab repo when the ‘Save’ button is pressed
during job creation. When a user accidently deletes
a job from Jenkins, we have a copy we can restore
from git. The underlying configurations to Jenkins
are XML files, and this is what gets updated in the
git repository.

• SSH Slaves: In Jenkins there are three methods for
invoking a slave, and for this implementation we
used the SSH Slave method. The two main, three if
you include Windows, methods for slave invocation
are either as a static service or spawned via SSH.
We chose the SSH Slave implementation since this
allows Jenkins to spawn a slave on the target system
when the demand for the slave arose, and shutdown
the slave when the slave was idle for 1 minute,
allowing the resources consumed by the slave Java
process to be released.

• Workspace Cleanup: When a project builds, a
workspace is created under the service account’s
home directory. It is helpful to provide the ability to
our users to clean the build directory after their
testing has completed. This is basically equivalent
to running a ‘make clean’ as the last step after your

tests have finished. Since the service account is part
of the project, the disk space used by the service
account is reflected in the project’s quota. That
being said, the workspace cleanup plugin facilitates
the removal unneeded files and reducing the
project’s disk usage.

IV. PROJECT ONBOARDING PROCESS
Within our Jenkins environment, each on-boarded project

first has their corresponding LDAP group added to the
‘Global Security Matrix’ within Jenkins with the only
permission of ‘Overall Read.’ This is required so that the
Project members are able to login into Jenkins but doesn’t
grant them any privileges at the global level. Then a folder
with the corresponding project name is created. For
example, a Project1 folder is created for Project1 and a
Project2 folder is also created. For each of the project
folders, we enable Project-based security, and the project’s
group and service account, and tell Jenkins not to inherit
permissions from the parent. An example of this can be
found in the appendix C.

Next, we configure a Jenkins slave for project per
computing resource. The ALCF infrastructure team creates
this slave resource and sets the permissions such that the
only thing the project has the ability to build on the slave.
This is key to how we provide project isolate so that Project1
cannot execute something under Project2’s slave. Without
the key plugins listed above, Jenkins does not provide the
security needed in a multitenant environment. When the
service account is created, for example Project1’s,
Project1_SVC, a home directory is also created,
/home/Project1_SVC, on either GPFS or Lustre. Since some
projects could be running tasks on multiple compute
resources, Theta, Cooley, Mira, etc, a subdirectory is created
for the resource name to prevent any type of issues for
Jenkins. In an effort to save resources on the various nodes,
we have the slaves only spawn when the demand for them
arises and then exit when they are idle. A complete list of
slave settings can be found in appendix D.

One might ask why we need to setup a slave per project
and resource? Since we are utilizing the open source version
of Jenkins, this is a limitation of the implementation of
Jenkins as well as Java.

At ALCF, one of security requirements for our users is
two-factor authentication. In order to keep the environment
secure, and not have idle Jenkins slaves in the environment,
we have Jenkins communicate with the compute resources,
the login nodes, via internal non-routable networks.
Therefore, the compute resources will only accept SSH keys
from specific IP’s within ALCF. That being said, as part of
the project’s onboarding process, the ALCF infrastructure
team creates the SSH keypair during the project onboarding
for the slaves use.

Another reason for using the existing compute logins is
so that the project members have access to the environment
and understand the environment. These logins are the same
logins that project member’s log into when using the ALCF

resources. This was also done to lower the learning curve
when a project desired to use our Jenkins instance.

V. PROJECT USAGE
When a user first logs in to Jenkins, they are greeted with

an empty canvas for the project: the project’s folder. While
Jenkins provides functionality out-of-the-box, each project
is required to build their own build scripts and workflows as
each project is unique. Jenkins does not create any build
scripts or testing scripts for the projects, and Jenkins does
not require the use of a certain framework. That being said,
the scripts can usually be ether imported into Jenkins or
executed by Jenkins since projects usually have their own
scripts that would have been executed by a project’s
member.

Once the project's code has been compiled, and test, the
project might have the desire to submit the job for execution
on the system. That being said, Cobalt, the scheduler used
by ALCF, conforms to the POSIX standard for batch
schedulers with extensions to support specialized systems
like flags that only matter for BlueGene platforms, or other
unique architectural features or constraints. Therefore, a
project would extend their scripts or Jenkins jobs to execute
the necessary commands for execution. While Jenkins does
have a Portable Batch System (PBS) plugin to allow it to
interact with schedulers that understand PBS commands, we
have not experimented with this plugin as of yet [2][3].
When an individual submits a job on with Cobalt, Cobalt
looks to see if a user is associated with a project. In our
example, if User1, submitted a job to Cobalt for execution,
Cobalt verifies that User1 can submit a job against
Project1's allocation. Therefore, Project1_SVC is also
attached solely to Project1's allocation and can only submit
against Project1's allocation. ALCF uses Cobalt exclusively
for job submission within the environment, so research into
utilizing other schedulers has not been pursued to date.

Jenkins provides a web-based graphical user interface
(GUI) that provides a quick and easy to navigate view of a
project’ job status. When a user logs into the GUI, they are
greeted with their project’s folder. Under the project’s
folder, a list of the correspond project jobs appear along
with the last successful run, last failed run, and duration of
the last run. The Jenkins GUI also provides the build
history as well as a report that shows the build duration and
success trend over time.

While one might argue that crond could do everything
that Jenkins provides, but Jenkins provides the following
functionality out-of-the-box:

• Build-steps: Jenkins provides the ability to have
conditional steps based on the output of the previous
step.

• Build timeouts: Within Jenkins jobs, you have the
ability to have Jenkins abort the job if it takes too
long to complete.

• Capturing of stdout, stderr: Jenkins captures the
job’s output and saves it for the user corresponding
with the build or run for future review. Jenkins will
also purge the logs based on the policy set in place.

• The ability to throttle users concurrency: Cron will
just execute a script at a given interval. In addition
to executing on a given interval, Jenkins slaves
provide the ability to limit the number of concurrent
tasks a project is able execute on a resource. In other
words, if the previous task has not finished
executing, and someone else in the project tries to
execute against the same resource, and there is only
one degree of concurrency allowed, the second job
will be forced to wait until the completion of the first
task.

• Secure credentials store: Jenkins provides a method
to store project’s credentials to their software
repositories without leaving the credentials on a
shared filesystem.

• Centralization: Jenkins provides a central location
for project members to interact with a CI solution
across the various compute platforms, whereas crond
does not provide this functionality.

VI. CONCLUSIONS AND FUTURE WORK
We have implemented a secure multitenant user facing CI

system that allows our users to compile their project’s code
after fetching it from an external git or SVN repository. We
have deployed Open Source Jenkins in a way that keeps
projects isolated utilizing the existing resources within the
ALCF. The CI system allows for projects to compile their
code ether on a schedule or by listening for webhook events,
for example on a commit. Once the code is compiled,
Jenkins allows the user to submit their job to the compute
resource for execution via Cobalt.

We currently have a few ‘friendly’ projects utilizing the
Jenkins CI solution within ALCF; some of these projects
execute solely against Theta and other projects execute
against Theta, generic X86, and Mira. We are slowly
expanding our friendly user base to both harden the current
solution as well as expose it to more diverse workflows.
More diverse workflows would give us a better
understanding of other users’ needs so we can address them.
This would also allow us to experiment with some of the
advanced features of Jenkins, such as Pipelines.

While we have had success with the current
implementation of Jenkins, we have would like to enhance
our environment. As of right now, the project onboarding
process is a manual process that requires the ALCF
infrastructure team’s intervention. We would like to
automate this process from creating the service account, to
creating the resources within Jenkins. Since the underlying
Jenkins system is XML based, this should not be a difficult
task.

Another area of development would be Jenkins direct
integration with Cobalt and other schedulers. While our

users are able to execute commands against Cobalt in a
batch mode, it would be nice to directly integrate into
Cobalt by utilizing its API. Jenkins provides a documented
plugin architecture, complete with tutorials, for plugin
development.

Currently we do not have special Cobalt queue for CI job
submission, so the given project submits against their
awarded allocation. In an effort to promote CI, and often
code testing, the ability to provide projects with a queue that
they can submit jobs to without effecting their awarded
allocation is something we have been looking into for future
development. While the process of adding another queue is
somewhat trivial, it raises additional questions about how
often a project can submit to the queue, how many compute
nodes should the queue allow, and other policy topics.

ACKNOWLEDGMENT
This research used resources of the Argonne Leadership

Computing Facility, which is a U.S. Department of Energy
Office of Science User Facility operated under contract DE-
AC02-06CH11357.

REFERENCES
[1] Harms, K., Leggett, T., Allen, B., Coghlan, S., Fahey, M.,

Holohan, C., . . . Rich, P. (2017). Theta: Rapid
installation and acceptance of an XC40 KNL
system. Concurrency and Computation: Practice and
Experience,30(1). doi:10.1002/cpe.4336

[2] Vergara Larrea, V. G., Joubert, W., & Fuson, C. (n.d.).

Use of Continuous Integration Tools for Application ...
Retrieved April 15, 2018, from
https://cug.org/proceedings/cug2015_proceedings/include
s/files/pap147.pdf

[3] Kinoshita, P. (n.d.). Jenkins Plug-ins. Retrieved April 16,

2018, from http://biouno.org/jenkins-plugins.html

[4] (n.d.). Retrieved April 16, 2018, from
https://jenkins.io/doc/developer/tutorial/

[5] Mira. (n.d.). Retrieved April 16, 2018, from

https://www.alcf.anl.gov/mira

[6] Visualization Cluster. (n.d.). Retrieved April 16, 2018,
from https://www.alcf.anl.gov/resources-
expertise/analytics-visualization

[7] Jenkins. (n.d.). Retrieved April 16, 2018, from

https://jenkins.io/

[8] Smart, J. F. (n.d.). Jenkins: The Definitive Guide.
Retrieved April 16, 2018, from
https://www.safaribooksonline.com/library/view/jenkins-
the-definitive/9781449311155/ch01s04.html

[9] Jenkins. (n.d.). Retrieved April 16, 2018, from

https://jenkins.io/download/

[10] Jenkins Plugins. (n.d.). Retrieved April 16, 2018, from
https://plugins.jenkins.io/

[11] Hovy, C., & Kunkel, J. (2016). Towards Automatic

and Flexible Unit Test Generation for Legacy HPC
Code. 2016 Fourth International Workshop on
Software Engineering for High Performance
Computing in Computational Science and
Engineering (SE-HPCCSE). doi:10.1109/se-
hpccse.2016.005

APENDIX A
Complete list of currently installed plugin:

• Ant Plugin
• Apache HttpComponents Client 4.x API Plugin
• Audit Trail
• Authentication Tokens API Plugin
• Backup plugin
• Branch API Plugin
• Build Pipeline Plugin
• Build Timeout
• Build-Publisher plugin
• Cobertura Plugin
• Command Agent Launcher Plugin
• Conditional BuildStep
• Credentials Binding Plugin
• Credentials Plugin
• Dashboard View
• Display URL API
• Docker Commons Plugin
• Docker Pipeline
• Durable Task Plugin
• Email Extension Plugin
• External Monitor Job Type Plugin
• Folders Plugin
• Generic Webhook Trigger Plugin
• Git client plugin
• Git Parameter Plug-In
• Git plugin
• GIT server Plugin
• Gradle Plugin
• Green Balls
• HTML Publisher plugin
• Jackson 2 API Plugin
• Javadoc Plugin
• JavaScript GUI Lib: ACE Editor bundle plugin
• JavaScript GUI Lib: Handlebars bundle plugin
• JavaScript GUI Lib: jQuery bundles (jQuery and

jQuery UI) plugin
• JavaScript GUI Lib: Moment.js bundle plugin
• Job and Node ownership plugin
• Job Restrictions Plugin
• jQuery plugin
• JSch dependency plugin
• JUnit Plugin

• LDAP Plugin
• Mailer Plugin
• MapDB API Plugin
• Matrix Authorization Strategy Plugin
• Matrix Project Plugin
• Multi-configuration (matrix) project type.
• Maven Integration plugin
• Multiple SCMs plugin
• OWASP Markup Formatter Plugin
• PAM Authentication plugin
• Parameterized Trigger plugin
• Pipeline
• Pipeline Graph Analysis Plugin
• Pipeline: API
• Pipeline: Basic Steps
• Pipeline: Build Step
• Pipeline: Declarative
• Pipeline: Declarative Agent API
• Pipeline: Declarative Extension Points API
• Pipeline: Groovy
• Pipeline: Input Step
• Pipeline: Job
• Pipeline: Milestone Step
• Pipeline: Model API
• Pipeline: Multibranch
• Pipeline: Nodes and Processes
• Pipeline: REST API Plugin
• Pipeline: SCM Step
• Pipeline: Shared Groovy Libraries
• Pipeline: Stage Step
• Pipeline: Stage Tags Metadata
• Pipeline: Stage View Plugin
• Pipeline Stage View Plugin.
• Pipeline: Step API
• Pipeline: Supporting APIs
• Plain Credentials Plugin
• Resource Disposer Plugin
• Run Condition Plugin
• SCM API Plugin
• SCM Sync Configuration Plugin
• Script Security Plugin
• SSH Agent Plugin
• SSH Credentials Plugin
• SSH Slaves plugin
• Structs Plugin
• Subversion Plug-in
• Timestamper
• Token Macro
• Tracking Git Plugin
• View Job Filters
• Windows Slaves Plugin
• Workspace Cleanup Plugin

APPENDIX B
Environment details:
• VMWare 5.5
• Jenkins VM RHEL 7.x
• Oracle Java 1.8.x
• Nginx 1.x
• Jenkins version 2.107.1
• Theta logins are running SLES 12 SP2
• Generic X86 build servers are running RHEL 7.x
• Cooley is running RHEL 7.x

APPENDIX C

APPENDIX D

