
CONTINUOUS
INTEGRATION IN A CRAY
MULTIUSER
ENVIRONMENT

erhtjhtyhy

BEN LENARD
HPC Systems & Database
Administrator

May 22nd, 2018
Stockholm, Sweden

– The first science and engineering research national laboratory in the U.S.
– Argonne integrates world-class science, engineering, and user facilities to deliver
innovative research and technologies.
– Argonne creates new knowledge that addresses the scientific and societal needs of
our nation.

Director: Paul Kerns
Managed by: UChicago Argonne, LLC
Budget: $750 million (FY 2017)

Workforce:
3,200 total employees (FTEs)
1,623 scientists and engineers
270 postdoctoral scholars
569 graduate and undergrad students
274 joint faculty
8,300+ facility users

ARGONNE

This research used resources of the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH1135

3

ACKNOWLEDGEMENT

ARGONNE LEADERSHIP COMPUTING
FACILITY SUPERCOMPUTERS

Theta Intel/Cray [Production]
• 4,392 nodes
• 16 GB MCDRAM, 192GB RAM per Node
• Peak flop rate: 9.65 PF
• 10 PB Lustre Filesystem

Mira – IBM BG/Q [Production]
¥ 49,152 nodes / 786,432 cores, Peak flop rate: 10 PF
¥ 786 TB RAM

Cooley – Cray/NVIDIA [Production]
¥ 126 nodes / 1512 Intel Haswell CPU cores
¥ 126 NVIDIA Tesla K80 GPUs
¥ 48 TB RAM / 3 TB GPU memory
¥ Peak flop rate: 223 TF

Storage
¥ Home: 1.44 PB raw capacity
¥ Scratch:

¡ fs0 - 26.88 PB raw, 19 PB usable; 240 GB/s sustained
¡ fs1 - 10 PB raw, 7 PB usable; 90 GB/s sustained

¥ Tape: 21.25 PB of raw archival storage [17 PB in use]

CONTINUOUS INTEGRATION (CI)

§ The ability to checkout code from a software repository
§ The ability to compile the code

– On-Demand or on a set schedule
§ The ability to test the code to verify it still functions as expected.
§ Ideally this provides better code for the project since there’s consistent testing.

What is it?

5

CI IN ALCF

§ In 2017, users started inquiring about a CI solution
§ Since we are an open science user facility, our users are located globally
§ ALCF’s Requirements for a CI solution:

– Security
– Multiplatform Support
– Easy of Use
– Integration with various software repositories
– Maintainable
– Cobalt integration
– Actively maintained

6

THE SOLUTION

§ After considering various options, we deployed a open source Jenkins solution
§ ALCF has extensive knowledge of Jenkins since it used for their internal

software development
§ It is actively developed with a long term support release
§ It provides the project level segregation the we require
§ Integrates within the ALCF environment

– X86_64 and PPC hardware, as well as any environment with a JRE
§ *ALCF already creates a linux group per project

7

THE SOLUTION (CONT)

§ Easy of use

– Jenkins has a large following with tutorials on-line

§ Security

– 2FA for user logins

– Logging of user actions to a central logging service

§ Project isolation

– We isolate our projects based on Linux groups

§ Integration with software repositories external to ALCF

– The ALCF does not host software repositories

– Git, SVN, Mercurial, etc.

8

THE SOLUTION (CONT)

§ Manageable
– We have deployed this solution with all open source plugins
– Limited customization needed

§ Centralization
– Jenkins provides a central location for managing various jobs for the project

§ The compiling of code or execution is occurring on the login nodes and generic
x86_64; therefore, the Jenkins VM is lightweight

9

HOW JENKINS IS DEPLOYED AT THE ALCF

§ How Jenkins is deployed
– The Jenkins service is deployed in a VM since VM Ware provides the ability

to grow the server on-demand
– VM Ware also provides High Availability
– Slaves are deployed on bare metal servers
– The Jenkins data directory is hosted on a NFS appliance which also provides

for snapshotting
§ Nginx is deployed as the webserver front-end

– We deployed NGINX as the webserver so we can decouple the webserver if
needed

10

WHY NOT JUST USE CRON?

§ Jenkins provides the following:
– Build steps within a job – you can have dependent steps within a job
– Build timeouts – you can set a duration for a job to run
– It captures stdout and stderr and keeps this centrally. Jenkins will also prune

the logs as defined by the users
– It also does not start a new job until the currently executing one is completed
– It provides a secure location, not on the shared filesystem, to store the

project’s credentials to the software repositories.
– Lastly, Jenkins provides centralization.

11

JENKINS IN ALCF

12

KEY JENKINS PLUGINS

§ Folders
– Allows for project separation
– Credentials are also stored at the folder level

§ Job and Node ownership
– This also aides in the isolation
– This plugin ties a project’s linux group to a job

§ Job restrictions
– This is how we prevent jobs from running on another project’s slave

§ SCM Sync Configuration
– This enables automatic backups of the Jenkins configurations to a Git repo

13

KEY JENKINS PLUGINS

§ Matrix authorization

– With the use of this and folders, we are able to keep projects isolated

– This is used in conjunction with the LDAP plugin which feeds it group

information

§ SSH Slaves

– The ssh slaves ssh from the VM over a private network to the login nodes or

generic x86_64 servers when the demand arises for a build. Slaves are only

activated when the demand is in the queue

§ LDAP authentication

– This plugin allows Jenkins to communicate with our LDAP systems

– LDAP also provides Jenkins with group membership infomation

14

JENKINS FROM AN ADMIN STAND POINT

15

JENKINS FROM THE PROJECT STANDPOINT

16

JENKINS FROM THE PROJECT STANDPOINT
(CONT)

17

FUTURE JENKINS WORK

§ We are currently seeking more ‘friendly’ projects
§ We would like to explore workflows with a project in Jenkins. Jenkins provides

the framework for workflows natively
§ We would like to automate the project on-boarding process
§ Direct integration into the Cobalt scheduler using it’s API
§ Documentation for our users and catalysts

18

QUESTIONS?

