
How to Implement the Sonexion REST API and Correlate it with SEDC and Other
Data

Cary Whitney
National Energy Research Scientific Computing (NERSC)

Lawrence Berkeley National Laboratory
Berkeley, CA USA
clwhitney@lbl.gov

Abstract—This document describes how to write a python
plugin to the Sonexion SeaStream Lustre filesystem. Also
discussed is how to correlate the Lustre data with Cray’s System
Environment Data Collections (SEDC) data to start and give a
better view into what is happening on the system.

Keywords-component; lustre; SeaStream; Sonexion; metric;
plugin

I. INTRODUCTION
SeaStream is the REpresentational State Transfer (REST)

Application Programming Interface (API) that Seagate
created for the Sonexion system. This was the replacement
for the Lustre Monitoring Tool (LMT) data collection method.
At this time, there is a basic Software Development Kit (SDK)
to access this data. I will be presenting a bit on the structure
on how to access the data and what we have done with it. I’ve
included a lot from the setup README into this paper for
completeness.

II. GENERAL DESCRIPTION
First, there are collectors on every Object Storage Service

(OSS) and Metadata Service (MDS) within the filesystem
structure. Data is then sent to the Cluster head node. This is
the node that the SDK connects to gather the data. LMT also
used a similar method of having a collector on each system
and sending its data to a central location. Under LMT, that
central store tends to be a Structured Query Language (SQL)
server and connecting to that database was the way to access
the data. The SQL server tends to be the pinch point in large
systems. Now with SeaStream, the stored data is held for a
shorter period of time and the SDK just polls the data store.

Figure 1 presents our desired end result. This dashboard
allows one to select between the three different filesystems
available on Edison while presenting all the jobs being run by
the listed user ID. The start and end time for each job is listed
along with the number of nodes the job is running and the node
list. Unfortunately, there can be no more that eye correlation
between job execution and Lustre performance. That
correlation will require jobstats to be available.

III. SEASTREAM SDK

A. Getting the SDK
First, ask for the latest SDK from Cray. This is reviewed

on a case by case basis since the site needs to take on a little

more responsibility. The current version is Release 2.1.25
RAS-685 SDK. Once downloaded it comes with a good
README file and three examples. The SDK is written in
Python and the examples plugins are for Graphite, OpenTSDB
and InfluxDB. I have used the OpenTSDB example
extensively as my base.

SeaStream was enable in 2.0 SUXX and 3.0 SUXX. This
is the initial release levels. We have discovered an issue with
gathering data from Cori’s filesystem which should be fixed
in 2.0 SU28 and 3.0 SU11. Follow the README file or the
instructions here to set up the Sonexion.

B. Setting up the Sonexion Cluster
In Figure 2 we first have to check to see if the Cluster Store

admins module is present. If the command displays ‘Invalid
command “admins”’ the admins module is not present and the
alternative method listed in the SDK’s README file should
be used to create the streaming user.

Since the admins module does exist, the few commands
listed in Figure 2 will create and enable the SeaStream service.

C. Installing the SDK
Unzip the source into a location where it will be installed

into.

Figure 1. Combined Grafana Dashboard

Next Figure 3 lists the requirements for SeaStream; the
additional software was required since I was installing the

SDK on the ES management server. Also Figure 4 lists the
process to install the SDK.

D. Verifying the configuration and software
At this point, SeaStream has been enabled and the SDK

installed. We now want to test to make sure we have a valid
data path. We will use the OpenTSDB example plugin to
verify that we can see data from the Sonexion, but first we
need to modify the OpenTSDB configuration file a little.

Figure 5 shows the OpenTSDB configuration file. The
black section is the SeaStream connection section. The red
line is the debug statement and the blue lines are for the plugin
use.

Changes to the OpenTSDB configuration file are:
1. Change the “hosts” IP address to the IP address of the

Sonexion head node.
2. Change the “user” and “password” to the account and

password that was created earlier.
3. Make sure “plugin_mode” is in the configuration file

and set to “test_formatter”. This debug statement
disables all functions of the plugin portion of the
configuration file. We do not need to edit the “dbhost”
or “dbport” lines.

4. Now run the plugin, seastream_opentsdb.py
5. Figure 6 shows an example of output that should be

seen.

E. Configuration file decoded
Figure 7 is what will become the RabbitMQ configuration

file and we will use it to expand what we already know about
the file.

#> cscli admins
cscli: Invalid command "admins"

#> cscli admins add --username=streamapi --role=readonly --disable-ssh —enable-web
Enter the password :
Confirm the password :

#> cscli service_console configure rest_api enable
REST API has been enabled
#> cscli service_console configure rest_api user_add --username=streamapi
User 'streamapi' has been added to REST API authorized users list
#> cscli service_console configure rest_api show
REST API access: enabled

REST API authorized users:

 streamapi

Enabling seastream.

Figure 4. Streaming account creation

Required
python 2.7.5 or greater
python-twisted-core-12.2.0-4.el7.x86_64.rpm

Possible additional software

m2crypto-0.21.1-17.el7.x86_64.rpm
pyserial-2.6-6.el7.noarch.rpm
python-fpconst-0.7.3-12.el7.noarch.rpm
python-twisted-web-12.1.0-5.el7_2.x86_64.rpm
SOAPpy-0.11.6-17.el7.noarch.rpm

Figure 3. Software Requirements

#> cd seastream
#> python setup.py install
#> cd ..
#> cd plugins/plugin_support
#> python setup.py install
#> cd ..

Figure 5. SeaStream Installation Commands

{
"hosts": ["https://1.2.3.4", “https://1.2.3.5”],
"port": 443,
"user": "streamapi",
"password": "SuperSecretPassword",
"stream": "fs_stats",
"plugin_mode": "test_formatter",
"dbhost": "ipaddress",
"dbport": “4242"

}

Figure 2. Opentsdb_fs_stats.json

1) Black section
This is the common block of configuration data associated

with connecting to the Sonexion cluster.
• hosts is the Cluster’s head node. Listing multiple

hosts as a list allows the plugin to follow the data if
the head nodes fails over to it backup.

• port is the default port to query the data.
• user/password are the account and password create in

Cluster Store and allow access to the data stream.
• stream is what data is being desired from Cluster

Store.
o fs_stats are the filesystem statistics.
o node_stats are the hosts metrics.
o jobstats will be the extended filesystem

metrics based on job ID.

2) Red section
There is currently only one line in this section and that is

the plugin_mode which is set to test_formatter when enabled.
I insert an ‘x’ as the first character of the string to disable
debugging but allow me to remember the configuration line.

3) Blue section

This section lists the configuration entries needed for the
plugin. We are using the configuration file to pass in
RabbitMQ information and other data to enrich the data
stream.

• mqhostname/mqport is the RabbitMQ host and port.
• exchange is the RabbitMQ exchange the data will be

sent to.
• routingkey this will be the path through RabbitMQ.
• login/mqpassword is needed since we authenticate to

our RabbitMQ instance, we need to pass this also into
pika.

• mqsystem/mount/type: all three of these are data
enrichment points that are added to each data point
being sent. We use this to distinguish the data.

o type is our data types. This is ‘lustre’.
o mount is the common mount point.
o mqsystem is the Lustre Cluster name since

we have four different Clusters.

F. Debug out of RabbitMQ
At this stage let’s take a look at what the RabbitMQ plugin

will give us. Figure 8 shows the output in JavaScript Object
Notation (JSON) form of the node_stats instead of fs_state
from OpenTSDB. The purple metrics are items that we are
enriching the data via the configuration file.

G. Available metric fields
The current available metrics for each stream for

SeaStream are node_stats listed in Table I, while fs_stats are
in Table II in two parts with target_type Object Storage Target
(OST) metric data for the storage side and target_type
MetaData Target (MDT) for metadata operations. One caveat
is the data can change between versions since the software is
still in development. With Elastic free form storage, the plugin
will pick up any changes in number of metrics presented or
metric name changes and store them. The issue is them
pushed to the display device, aka the graphic labels.

#> python seastream_opentsdb.py -c opentsdb_fs_stats.json
Streaming data from the fs_stats stream
[{'timestamp': 1522785624, 'metric': u'notify', 'value': 0.0, 'tags': {'category': 'fs_stats', 'host': u'snx11039n003', 'target':
'MDT0000', 'filesystem_name': u'snx11039', 'target_type': u'MDT', 'system': '', 'unit': u'Ops/sec', 'filesystem_type':
'lustre'}}]
[{'timestamp': 1522785624, 'metric': u'mknod', 'value': 0.0, 'tags': {'category': 'fs_stats', 'host': u'snx11039n003', 'target':
'MDT0000', 'filesystem_name': u'snx11039', 'target_type': u'MDT', 'system': '', 'unit': u'Ops/sec', 'filesystem_type':
'lustre'}}]
[{'timestamp': 1522785624, 'metric': u'mkdir', 'value': 0.0, 'tags': {'category': 'fs_stats', 'host': u'snx11039n003', 'target':
'MDT0000', 'filesystem_name': u'snx11039', 'target_type': u'MDT', 'system': '', 'unit': u'Ops/sec', 'filesystem_type':
'lustre'}}]

Figure 6. Sample debug output from OpenTSDB plugin

{
"hosts": ["https://1.2.3.4"],
"port": 443,
"user": "streamapi",
"password": "SuperSecretPassword",
"stream": "node_stats",
"plugin_mode": "xtest_formatter",
"mqhostname": "rabbit.server.domain",
"mqport": 1234,
"exchange": "rabbit-exchange",
"routingkey": "rabbit.routing.key",
"mqsystem": "system name",
"mount": "mount point label",
"type": "lustre",
"login": "rabbitAccount",
"mqpassword": "rabbitPassword"

}

Figure 7. RabbitMQ rabbitmq_node_stats.json

IV. RABBITMQ PLUGIN
Since the SDK has several good examples of plugin code,

I basically started with the OpenTSDB plugin and modified it
to present RabbitMQ. This ends up being a fairly easy task.
The plugin name is: seastream_rabbitmq.py.

First, we need to make sure to include the pika module to
gain access to the RabbitMQ libraries for python.

import pika

Now the example plugin has only two basic classes:
• PluginStreamerConsumer - this does not change since

the RabbitMQ plugin only writes out the text similar
to the debug statement.

• SeaStreamRabbitMQ - which is renamed from
SeaStreamOpenTSDB

A. PluginStreamerConsumer
Little if anything changes in this class. For our purposes,

it mainly provides a hook to call the metric parsing functions.
1) class

PluginStreamerConsumer(AbstractStreamerConsumer):
• def __init__(self):
• Gathers system information from the Cluster.
• def insert(self, element):
• Hook to perform any action that may need to be done

when a new data type is seen by the plugin.
• def update(self, element):

• This hook would be called when any new data is
received for a metric that is already being collected.

• def delete(self, element):
• The delete hook removes a collected element from the

stream.
• def process_metrics(self, element):
• The process_metrics hook has these functions:

1. If the stream type is ‘fs_stats’, call
parse_fs_stats.

2. If the stream type is ‘node_stats’, call
parse_node_stats.

3. If the stream type is ‘jobstats’, call
parse_jobstat.

4. Since only one of these will be called at any one
time, if it succeeds then the process send_metric
is called.

#> python seastream_rabbitmq.py -c rabbitmq_snx11039_node_stats.json
Streaming data from the node_stats stream
{"category": "node_stats", "host": "snx11039n003", "mount": "scratch1", "unit": "avg", "timestamp": "2018-04-
03T14:45:13+0000", "metric": "Processor_load_5_min", "identifier": "", "system": "snx11039", "value": 0.0194}
{"category": "node_stats", "host": "snx11039n003", "mount": "scratch1", "unit": "percent", "timestamp": "2018-04-
03T14:45:56+0000", "metric": "CPU_Usage", "identifier": "", "system": "snx11039", "value": 0.0}
{"category": "node_stats", "host": "snx11039n003", "mount": "scratch1", "unit": "percent", "timestamp": "2018-04-
03T14:45:43+0000", "metric": "CPU_idle_time", "identifier": "", "system": "snx11039", "value": 99.6218}

Figure 8. Debug output from RabbitMQ plugin showing the JSON output

TABLE I. NODE_STATS METRICS

Metric Unit
Memory_Usage percent
Memory_Free bytes
Memory_Cached bytes
Memory_Buffers bytes
CPU_Usage percent
CPU_idle_time percent
CPU_iowait_time percent
CPU_nice_time percent
CPU_system_time percent
CPU_softirq_time percent
CPU_user_time percent
CPU_Interrupts ips
Processor_load_1_min avg
Processor_load_5_min avg
Processor_load_15_min avg

TABLE II. FS_STATS METRICS

OST Metric Unit MDT Metric Unit
read bytes/sec available_space bytes
write bytes/sec free_indes inodes
available_space bytes free_space bytes
total_space bytes open ops/sec
free_space bytes close ops/sec
free_inodes inodes mkdir ops/sec
total_inodes inodes rmdir ops/sec
 link ops/sec
 unlink ops/sec
 create ops/sec
 destroy ops/sec
 connect ops/sec
 disconnect ops/sec
 getattr ops/sec
 getxattr ops/sec
 setattr ops/sec
 rename ops/sec
 notify ops/sec
 mknod ops/sec
 statfs ops/sec
 quotactl ops/sec
 process_config ops/sec
 llog_init ops/sec

B. SeaStreamRabbitMQ
This class is where the changes take place. Most of the

changes is in send_metric with a few changes to deal with
extra data in each of the parse definitions.

• < is SeaStreamRabbitMQ
• > is SeaStreamOpenTSDB

1) class SeaStreamRabbitMQ(object):
• def __init__(self, options):

Figure 9 sets up the plugin variables

• def get_stream_type(self):
• def get_systemname(self):
• def get_mount(self):

These three definitions return their associated values.
The systemname and mount have been added to
address the additional information needed for
RabbitMQ and data enrichment.

• def connect(self):
Figure 10 is where connection checking was removed
and should be added back in. Right now it just
connects to RabbitMQ via pika.

• def disconnect(self):
No change.

• def send_metrics(self, metrics):
Figure 11 is part of the debug print out when
test_formatter is set. The lower section is the publish
command to send the data to RabbitMQ. There is no
reconnect code yet. This will be the way to kill the
existing process and restart it if RabbitMQ goes away.

• def parse_node_stats(self, data, system_identifier):
Figure 12 Set our enrichment variables and our
timestamp format. Then converts the output data
format to remove the OpenTSDB tag structure.

• def parse_fs_stats(self, data, system_identifier,
fs_object_stores):

def __init__(self, options):
144,152c142,143
< self.mqhostname = options.get('mqhostname')
< self.mqport = options.get('mqport')
< self.exchange = options.get('exchange')
< self.routingkey = options.get('routingkey')
< self.mqsystem = options.get('mqsystem')
< self.mount = options.get('mount')
< self.type = options.get('type')
< self.login = options.get('login')
< self.mqpassword = options.get('mqpassword')

> self.dbhost = options.get('dbhost')
> self.dbport = options.get('dbport')
155c146
< for var in ['stream', 'mqhostname', 'mqport',
'exchange', 'routingkey', 'mqsystem', 'mount', 'type',
'login', 'mqpassword']:

> for var in ['stream', 'dbhost', 'dbport']:

Figure 10. Setting up the variables for the plugin

def connect(self):
199,233c184,194
< # loop until mqhostname is reachable removed
<
< self.creds = pika.PlainCredentials (self.login,
self.mqpassword)
< self.conn = pika.BlockingConnection
(pika.ConnectionParameters(host = self.mqhostname,
credentials = self.creds))
< self.channel = self.conn.channel()
< self.channel.exchange_declare
(exchange=self.exchange, exchange_type='topic',
durable=True)
<
235,236c196,208
< # CLW this is forced True and will be changed
when the above gets fixed.
< self.connected = True

Figure 9. Pika connection setup

def send_metrics(self, metrics):
250,253c222
< #print (metrics)
< for metric in metrics:
< data=json.dumps(metric)
< print (data)

> print (metrics)
259,268c228,233
< data=json.dumps(metric)
< self.channel.basic_publish (exchange=‘%s'
% (self.exchange),
< routing_key='%s' % (self.routingkey),
< body = '%s' % (data))
< # CLW Dropped OpenTSDB code
272,276c237
< format(self.mqhostname, self.mqport),
'Trying to reconnect')
< # CLW Added sleep here instead of in the
connection area since I do not have it working there
< # Here I am assuming (maybe incorrectly) that
the connection dropped since the service is
< # temporarily down. Thus wait and then try
the reconnect.
< time.sleep(10)

> format(self.dbhost, self.dbport), 'Trying to
reconnect')

Figure 11. RabbitMQ publishing code

• Figure 13 The same logic is used by fs_stats as above
for node_stats. There are two stanzas in this since
there looks to be a format change in one of the SDK
versions. We will follow along.

• def parse_jobstat(self, data, system_identifier):
• Figure 14 is the placeholder for the jobstats section of

the code and should work when jobstats is available.

V. RESULTS
Figures 15 and 16 are using Grafana to display all of the

available data from the plugin. This is a long dashboard and
is viewed in the two graphics. I have removed some
dashboard panels since the data is not very interesting. I can
also select between the different filesystem by the pull-down
box in the upper left corner.

Figure 1 at the beginning is also from Grafana and is
annotated with SEDC job data. Even though we use SLURM,
the alps library is still currently used underneath things. The
alps library still generates a job start/stop entry and the nodes
used in the SEDC data. I can then query that index and add it
to the dashboard. (Caveat, I cannot correlate what data profile
is used by what job. One would need jobstats for that. I can
only visualize it.)

def parse_node_stats(self, data, system_identifier):
291,292d251
< mqsystem = plugin.get_systemname()
< mount = plugin.get_mount()
297,299d255
< # 2016-10-31T09:43:56-0700
< mqtime = time.strftime("%Y-%m-
%dT%H:%M:%S%z", time.localtime(timestamp))
<
321c276
< 'timestamp': mqtime,

> 'timestamp': timestamp,
323,328c278,283
< 'system': mqsystem,
< 'mount': mount,
< 'host': hostname,
< 'category': 'node_stats',
< 'unit': units,
< 'identifier': system_identifier,

> 'tags': {
> 'system': system_identifier,
> 'host': hostname,
> 'category': 'node_stats',
> 'unit': units
> }

Figure 13. Changes to node_stats

def parse_fs_stats(self, data, system_identifier,
fs_object_stores):
343,347d297
< mqsystem = plugin.get_systemname()
< mount = plugin.get_mount()
<
< # 2016-10-31T09:43:56-0700
< mqtime = time.strftime("%Y-%m-
%dT%H:%M:%S%z", time.localtime(timestamp))
361,363c310
< 'system': mqsystem,
< 'mount': mount,
< 'timestamp': mqtime,

> 'timestamp': timestamp,
365,372c312,321
< 'indentifier': system_identifier,
< 'filesystem_name': filesystem_name,
< 'filesystem_type': 'lustre',
< 'target': target,
< 'target_type': target_type,
< 'category': 'fs_stats',
< 'host': host,
< 'unit': units

> 'tags': {
> 'system': system_identifier,
> 'filesystem_name': filesystem_name,
> 'filesystem_type': 'lustre',
> 'target': target,
> 'target_type': target_type,
> 'category': 'fs_stats',
> 'host': host,
> 'unit': units
> }
381,383c330
< 'timestamp': mqtime,
< 'system': mqsystem,
< 'mount': mount,

> 'timestamp': timestamp,
385,389c332,338
< 'identifier': system_identifier,
< 'filesystem_name': filesystem_name,
< 'filesystem_type': 'lustre',
< 'category': 'fs_stats',
< 'unit': units

> 'tags': {
> 'system': system_identifier,
> 'filesystem_name': filesystem_name,
> 'filesystem_type': 'lustre',
> 'category': 'fs_stats',
> 'unit': units
> }

Figure 12. Changes to fs_stats

VI. BRINGING IT ALL TOGETHER
The main point here is; can others use this? Can others

create something that they get value from? Hopefully with the
following resources to help one create a SEDC plugin and this
for Lustre data, a Grafana dashboard like the one opening in
this paper can be created. The JSON is listed at the end of the
paper and will be available for download. Since Grafana has
several data sources that it supports, one could with minimal
effort, create a SEDC plugin to store that data into OpenTSDB
and just use the example OpenTSDB plugin from SeaStream,
take the JSON dashboard and either create data sources of the
same name or create the data sources and change the name in
the JSON. Then a functioning dashboard can be view and
compared with other organizations.

VII. THE FUTURE

A. SEDC Resources
SEDC plugin example is a CSV. [1] is a reference to get

more information on how to write one. [2] refers to a paper
talking about how to write a SEDC plugin that sends data to
either RabbitMQ or Kafka.

def parse_jobstat(self, data, system_identifier):
404,405d352
< mqsystem = plugin.get_systemname()
< mount = plugin.get_mount()
408d354
< # CLW
411c357
< job_name, attribute, mqtime, metric_value,
units = result

> job_name, attribute, timestamp, metric_value,
units = result
413c359
< new_metric = [{

> new_metric = {
415c361
< 'timestamp': mqtime,

> 'timestamp': int(timestamp),
417,429d362
< 'identifier': system_identifier,
< 'system': mqsystem,
< 'mount': mount,
< 'filesystem_name': filesystem_name,
< 'filesystem_type': 'lustre',
< 'target': target, 'jobid': job_name,
< 'category': 'jobstats',
< 'unit': units,
< 'ndc': {
< 'system': mqsystem,
< 'mount': mount,
< 'type': 'lustre'
< },
431,434c364,369
< 'ndc',
< 'lustre',
< mqsystem,
< mount

> 'system': system_identifier,
> 'filesystem_name': filesystem_name,
> 'filesystem_type': 'lustre',
> 'target': target, 'jobid': job_name,
> 'category': 'jobstats',
> 'unit': units
436c371
< }]

> }

Figure 14. Changes to parse_jobstat

Figure 15. First half of the dashboard showing most of the information

from SeaStream

Figure 16. Second half of the dashboard showing most of the

information from SeaStream

B. Additional Metrics
I’ve started to investigate additional metrics to gather in

the hope to build a better understanding of Lustre and a way
to debug and troubleshoot filesystem issues.

C. Grafana JSON Dashboard
The Grafana JSON dashboard file for the annotated

dashboard in Figure 1 is displayed in two partial part in
Figures 17 and 18. The full dashboard file is 10 pages long.
This JSON code could be imported into another Grafana
instance and possibly the only changes would be the
“datasource” in Figure 17 to point to what is available at your
site. Then the multiple “query” also in Figure 17 may have to
be change to make sure the same data is gathered at each
panel. This would be easier than creating from scratch and
would offer a consistent view between organizations.

REFERENCE
[1] S. Martin, “Cray XC Power Monitoring and Management Tutorial”,

CUG 2016,
https://ssl.linklings.net/conferences/cug/cug2016_program/views/incl
udes/files/tut103s2-file1.pdf

[2] S. Martin, D Rush, M Kappel and C Whitney, “How-to write a plugin
to export job, power, energy, and system environmental data from your
Cray XC system”,
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap1
47s2-file1.pdf
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap1
47s2-file2.pdf

{
 "annotations": {
 "list": [
 {
 "builtIn": 1,
 "datasource": "-- Grafana --",
 "enable": true,
 "hide": true,
 "iconColor": "rgba(0, 211, 255, 1)",
 "name": "Annotations & Alerts",
 "type": "dashboard"
 },
 {
 "datasource": "Edison-SEDC",
 "enable": true,
 "hide": false,
 "iconColor": "#629e51",
 "limit": 100,
 "name": "Job Start Time (Green)",
 "query": "event:1 AND jobid:$jobid",
 "showIn": 0,
 "tags": [],
 "textField": "jobid",
 "timeField":

Figure 17. Beginning of the Grafana JSON exported dashboard.

 "timepicker": {
 "refresh_intervals": [
 "5s",
 "10s",
 "30s",
 "1m",
 "5m",
 "15m",
 "30m",
 "1h",
 "2h",
 "1d"
],
 "time_options": [
 "5m",
 "15m",
 "1h",
 "6h",
 "12h",
 "24h",
 "2d",
 "7d",
 "30d"
]
 },
 "timezone": "",
 "title": "Edison NID to JobID",
 "version": 11
}

Figure 18. Ending of the Grafana JSON exported dashboard.

