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Abstract—The concept of burst buffers has revitalized 
discussions about how to improve the performance of HPC 
storage solutions and parallel filesystems. However, current 
burst buffer implementations are not capable of solving all I/O 
problems facing users today. As a result, HPC researchers are 
investigating new paradigms to accelerate the performance of 
HPC storage in the near-term.  

New concepts such as server-side and storage-side flash 
acceleration enable flash to deliver strategic performance 
enhancements at a reasonable cost. Cray’s flash acceleration 
offering, the NXD storage appliance, uses an SSD cache that is 
transparent behind the block controller in a disk array. As SSDs 
are typically organized in separate storage tiers, for example in 
Cray’s DataWarp solution, the use of additional SSDs in the 
HDD tier might seem redundant. The perception of SSD 
redundancy in the parallel filesystem persists with the 
introduction of features such as Lustre’s Data on MDT.  

In this paper, we challenge this perception by identifying 
workloads that uniquely benefit from the deployment of SSDs 
in various locations within the storage stack. We report the 
results of experiments that measured the performance of 
different I/O workloads with and without NXD. We explore the 
novel use of SSDs in Cray NXD to deliver the benefits of storage-
side flash acceleration in a world of networked SSDs, offering a 
unique, performance-oriented feature set for the HPC realm. 
Finally, we consider planned enhancements that may 
significantly improve the flash acceleration concept. 

Keywords-component; Flash, Burst Buffer, HPC Storage 
accelleration. 

I.  INTRODUCTION 
Over the last five years, the HPC world as well as the 

Big Data community and the growing market of AI, 
have demonstrated that, within these areas, the role of 
storage is becoming a significant bottleneck to compute. 
While streaming I/O (such as check pointing and time 
series data) is adequately serviced by parallel 
filesystems running on comparably inexpensive 
enterprise hardware, new applications and new designs 
in I/O intensive data access have shown that small block, 
random access is not well managed by current designs 
for enterprise filesystems. 

To address this challenge, flash-based storage is 
commonly recommended for small, random I/O 
handling. However, the largest hurdle to wider adoption 
today is cost, although there is hope this will change for 
the better in the near future. 

Currently, there’s also a bit of confusion about what 
constitutes a burst buffer. The most common design is a 
set of arrays, with either SAS SSDs or NVMe drives, 
controlled by a set of servers on the network between the 
compute and the parallel filesystem backend. While this 
layout may be practical for some I/O workloads, such as 
transient data or checkpointing, it suffers from the 
problem of excessive data movement. For most I/O 
operations, data needs to move to and from the burst 
buffer volume which, in many cases, significantly 
impacts network bandwidth. In addition, a networked 
burst buffer usually constitutes a separate namespace 
and mount point in order to create and maintain the 
tiered architecture. 

The authors of this paper consider two different 
models of burst buffers: server-side flash acceleration 
(such as Cray DataWarp[1] that will not be covered in 
this paper) and storage-side flash acceleration (such as 
Cray NXD[2]). With regard to NXD, it is important to 
remember that while the end goal is to accelerate 
application file I/O, NXD acts by accelerating block I/O. 
Within this paper, we consider the capability of NXD to 
offer improved handling of small, random I/O, based on 
the results of recent testing. 

II. AIMS OF THIS STUDY 
The main topic of this study was to further categorize 

the ability of NXD to improve application performance 
and manage a mixture of large streaming I/O in 
conjunction with small, random I/O. Basic test results, 
using synthetic benchmarks, have been presented 
elsewhere[3]. In addition, initial tests of end user 
applications have also been performed. 



III. MATERIAL AND METHODS 
For the majority of reported tests, the following 

system setup was used. The end-user runs were 
performed on a similar setup in collaboration with Atos 
in Angiers, France. 

A. Compute  
• 16 nodes, dual sockets 
• Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz 

o 16 Cores (32 CPUs w/HT) 
• 64GB Memory 
• OPA (IB for the Angiers tests) 
• CentOS Linux  

o release 7.2.1511 (3.10.0-327.el7.x86_64) 
• Lustre 2.7.19.8 client 

B. Storage solution 
ClusterStor L300N 
• 82x Seagate 6TB Enterprise SAS HDDs 
• 2x Seagate (ST3200FM0033) SSDs   
• OPA (IB for the Angiers tests) 
• Lustre 2.7.19.12.x8-51 
• NXD Version 3.1.0.3 (2017.12.20) 

C. Software 
• IOR-2.10.3[4] 
• HDF5 SWMR [5] 
• HYDRA 

• COSMO 
• CDI-PIO 
• FESOM[6] 

D. Experimental Setup 
1) Sequential IOR 
To assess the impact of NXD on high bandwidth 

streaming I/O, a standard IOR benchmark aimed at 
saturating the storage backend was run with NXD turned 
on and turned off. The following parameters were used: 

Sequential IOR:  
IOR -b 32g -t 1m -F -k -m -e -v -v -C -i 5 -o $OUTFILE 
 
2) Mixed IOR 
To understand the impact of NXD when performing 

a concurrent I/O schema, using both large streaming and 
small random I/O, a set of solo and combined runs with 
different load factors were performed with and without 
NXD. The following parameters were used: 

Sequential IOR:  
IOR -b 32g -t 1m -F -k -m -e -v -v -C -i 10 -o $OUTFILE 
Random IOR:  
IOR -b 280m -t 4k -F -k -m -e -v -v -C -i 10 -z -o $OUTFILE 

 
3) Concurrent IOR, Increasing Random I/O 
To assess how an increasing number of small random 

I/O threads would affect the I/O pattern, a number of 
concurrent IOR runs (with and without NXD) were 
performed using 32, 96, 160 and 224 I/O threads with 
the above parameters for mixed IOR. 

 
Figure 1.     Mixed IOR (Experiment 2) - All results above are indicated as a percentage over baseline. Baseline is defined as the performance  

(throughput in the case of streaming I/O and IOPS in the case of random I/O) without NXD.   
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4) SWMR 
Using SWMR in write mode, 1-16 nodes (single 

thread per node) were compared with and without NXD. 
The following parameters were used: 

swmr write --niter 2500 --testdatafile $IN_FILE $OUT_FILE 

IV. RESULTS 
1) Sequential IOR. 
 

NXD Write (MB/s) Read (MB/s) 
Disabled 13 143 11 182  
Enabled 13 014  11 154  

Table 1 – Streaming Write and Read performance with and without 
NXD.  
Results for Experiments 2-4 are described in Figures 1-3. 

V. DISCUSSION AND CONCLUSIONS 
NXD is a transparent filter that intercepts small 

blocks in the I/O chain and redirects them to system 
SSDs, thereby increasing the performance of small I/O 
instead of forcing it to use a 1 MB RPC to write a few 
KBs. In the initial experiment (Table 1), neither the write 
nor read performance of streaming I/O appears to have 
been affected by NXD being enabled or disabled. This 
behavior was mirrored in the experiments using end-
user applications (Table 2) when comparing runs with or 
without NXD enabled. However, when running two 
applications with different loads (medium and large size 
datasets), the positive effect of NXD became more 
pronounced as load increased. 

 

 
Figure 2.   Concurrent IOR, increasing load of random I/O (Experiment 3) – Effects of NXD on concurrent streaming and random I/O expressed  

as throughput (GB/s)  [top] for the former and percent increase in IOPS for the latter [bottom].  
During combined sequential and random writes, overall throughput is slightly reduced but the random I/O shows orders of magnitude improvement. 
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In the experiments that focused on concurrent I/O, 
the streaming component seems to incur a slight, but 
significant reduction (between 1-8%). However, 
random, small block I/O more than makes up for the loss 
of streaming performance with a several order of 
magnitude improvement in performance (Figure 1). 

 When focusing on this part of the I/O spectra, the 
results indicate that despite the increase in small block, 
random I/O activity, the penalty seems stable at 10-15% 
while the IOPS improvement exhibits a linear increase 
with the number of random I/O threads (Figure 2).  

Upon closer inspection at how multiple threads of 
small random I/O affect the overall performance of the 

storage system, it appears that the tradeoff might 
significantly benefit certain applications. While not 
entirely “transparent”, this acceptable decrease in 
streaming performance allows for a far greater benefit as 
the frequency of small I/O and, presumably, small jobs 
have an even chance of completing rather than being 
“pushed to the side” by the dominant streaming I/O. 

This effect is supported by the end-user results 
(Table 2). Although the data does not show orders of 
magnitude performance increases, but rather a modest 1-
10%, it still demonstrates the positive effect of NXD. In 
the case of HYDRA and FESOM, the benefits of NXD 
appear to improve as the storage system load increases. 

 
Figure 3.   SWMR (Experiment 4) – Improvement of write performance (MB/s) using an increasing number of single threaded clients.  

The percentage increase for each group is also indicated. 
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Write Intensive  
Large Block 

4M-8M – 99.9% <4K – 0.1% Minimal No Degradation 

Hydra Write intensive  
Large block 

4M-8M – 99.9% <4k – 0.1% Perf Gain 2.6% to 6%  No Degradation 
StripeSize : 1M and the gains 
started showing up.  

CDI-PIO 
(DKRZ) 

Write Intensive  
Mixed Mode  

1M – 90% < 512 – 10% Perf Gain of 10%  Performance Improvement 
with NXD Enabled / 
Histogram OFF and 
StripeSize – 1M / RPC 512/7 

FESOM 
(DKRZ) 

Read Intensive 
Small Block 

10% large reads 90% Small Read Perf Gain of 6% No Degradation. 
No tuning, no pre-load 

FESOM 
(DKRZ) 

Read intensive  
Small block,  

10% random 
large block 

90% small Read 
(mostly seq.) 

Perf gain of 10% over 
a run of continuous 
100 iterations.  

No Degradation  
CS performs around 10% 
Sample size is 9GiB 

COSMO Write intensive 
large blocks 

1 MB Mostly 4K 1% with stripe count 
1 and stripe size 4m 

No degradation over 7 runs 

 
Table 2 – Effects of NXD on user application (using an earlier NXD version).  

For HYDRA and FESOM, two different tests were run with medium and large sized data sets. 



One might argue that 10% is not a significant 
performance increase, but for sites that contend with a 
substantial backlog of jobs or sites in which time to 
completion is the predominant concern, then 10% is a 
notable gain, especially considering the incidental 
implementation cost of NXD compared to a full-fledged 
burst buffer. Readers should note that the user 
applications for which performance results are reported 
in this paper were tested on a much earlier codebase than 
the other described experiments. We are confident that 
re-running user application tests on a newer codebase 
would yield significantly better results. 

Regarding the final set of experiments, SWMR is, 
essentially, a test to measure single threaded 
performance of a Lustre system. As single threaded I/O 
performance is Lustre’s Achilles heel, the fact that NXD 
can increase performance by ~40-50% is very 
encouraging (see Figure 3). Anecdotally, we also ran an 
UNTAR operation followed by re-taring the data; NXD 
reduced the time to complete the TAR to 43% while the 
UNTAR operation was unaffected. 

At first impression, the results presented in this study 
may seem random and somewhat inconsistent. 
However, if one looks deeper, a specific pattern 
emerges. The initial tests clearly demonstrate that NXD, 
when running large streaming I/O, is entirely transparent 
and does not affect sequential reads and writes. 
However, the results of tests that measure concurrent 
IOR require closer inspection. When saturating 
sequential I/O competes with a significant number of 
small random I/O operations, streaming performance is 
negatively impacted, but, the degree of performance loss 
seems to remain constant regardless of how many 
processes cause interference. This behavior is expected 
as the system now handles a much larger number of 
write threads and the controller’s resources are 
somewhat limited. There does seem to be a direct 
relationship between the number of random, small 
threads and the IOPS measured in the performance tests. 
The main conclusion to be drawn from these results may 
be different from previous assumptions that NXD 
shields large sequential throughput from random I/O. 
The current tests seem to indicate that NXD managed 
SSD block caches, in fact, allows a greater portion of 
small I/O processes to complete despite the 

overwhelming load produced by large sequential writes. 
NXD appears able to preferentially “help” small random 
block I/O operations to be executed despite the pressure 
produced by large sequential I/O. 

To conclude, NXD has the potential to significantly 
improve application execution, especially in mixed I/O 
environments while being considerably less expensive 
than a traditional burst buffer. 

FUTURE WORK 
NXD is under active development and a number of 

new features are planned. Within the current version of 
NXD, several tuning options are available. Further study 
of end-user applications is warranted to gain further 
insight into I/O behavior. 
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