
The Role of SSD Block Caches in a
World of Networked Burst Buffers

Torben Kling Petersen, PhD
Cray

Billdal, Sweden
tpetersen@cray.com

Bill Loewe, PhD
Cray

Pleasanton, CA, USA
bloewe@cray.com

Abstract—The concept of burst buffers has revitalized
discussions about how to improve the performance of HPC
storage solutions and parallel filesystems. However, current
burst buffer implementations are not capable of solving all I/O
problems facing users today. As a result, HPC researchers are
investigating new paradigms to accelerate the performance of
HPC storage in the near-term.

New concepts such as server-side and storage-side flash
acceleration enable flash to deliver strategic performance
enhancements at a reasonable cost. Cray’s flash acceleration
offering, the NXD storage appliance, uses an SSD cache that is
transparent behind the block controller in a disk array. As SSDs
are typically organized in separate storage tiers, for example in
Cray’s DataWarp solution, the use of additional SSDs in the
HDD tier might seem redundant. The perception of SSD
redundancy in the parallel filesystem persists with the
introduction of features such as Lustre’s Data on MDT.

In this paper, we challenge this perception by identifying
workloads that uniquely benefit from the deployment of SSDs
in various locations within the storage stack. We report the
results of experiments that measured the performance of
different I/O workloads with and without NXD. We explore the
novel use of SSDs in Cray NXD to deliver the benefits of storage-
side flash acceleration in a world of networked SSDs, offering a
unique, performance-oriented feature set for the HPC realm.
Finally, we consider planned enhancements that may
significantly improve the flash acceleration concept.

Keywords-component; Flash, Burst Buffer, HPC Storage
accelleration.

I. INTRODUCTION
Over the last five years, the HPC world as well as the

Big Data community and the growing market of AI,
have demonstrated that, within these areas, the role of
storage is becoming a significant bottleneck to compute.
While streaming I/O (such as check pointing and time
series data) is adequately serviced by parallel
filesystems running on comparably inexpensive
enterprise hardware, new applications and new designs
in I/O intensive data access have shown that small block,
random access is not well managed by current designs
for enterprise filesystems.

To address this challenge, flash-based storage is
commonly recommended for small, random I/O
handling. However, the largest hurdle to wider adoption
today is cost, although there is hope this will change for
the better in the near future.

Currently, there’s also a bit of confusion about what
constitutes a burst buffer. The most common design is a
set of arrays, with either SAS SSDs or NVMe drives,
controlled by a set of servers on the network between the
compute and the parallel filesystem backend. While this
layout may be practical for some I/O workloads, such as
transient data or checkpointing, it suffers from the
problem of excessive data movement. For most I/O
operations, data needs to move to and from the burst
buffer volume which, in many cases, significantly
impacts network bandwidth. In addition, a networked
burst buffer usually constitutes a separate namespace
and mount point in order to create and maintain the
tiered architecture.

The authors of this paper consider two different
models of burst buffers: server-side flash acceleration
(such as Cray DataWarp[1] that will not be covered in
this paper) and storage-side flash acceleration (such as
Cray NXD[2]). With regard to NXD, it is important to
remember that while the end goal is to accelerate
application file I/O, NXD acts by accelerating block I/O.
Within this paper, we consider the capability of NXD to
offer improved handling of small, random I/O, based on
the results of recent testing.

II. AIMS OF THIS STUDY
The main topic of this study was to further categorize

the ability of NXD to improve application performance
and manage a mixture of large streaming I/O in
conjunction with small, random I/O. Basic test results,
using synthetic benchmarks, have been presented
elsewhere[3]. In addition, initial tests of end user
applications have also been performed.

III. MATERIAL AND METHODS
For the majority of reported tests, the following

system setup was used. The end-user runs were
performed on a similar setup in collaboration with Atos
in Angiers, France.

A. Compute
• 16 nodes, dual sockets
• Intel® Xeon® CPU E5-2630 v3 @ 2.40GHz

o 16 Cores (32 CPUs w/HT)
• 64GB Memory
• OPA (IB for the Angiers tests)
• CentOS Linux

o release 7.2.1511 (3.10.0-327.el7.x86_64)
• Lustre 2.7.19.8 client

B. Storage solution
ClusterStor L300N
• 82x Seagate 6TB Enterprise SAS HDDs
• 2x Seagate (ST3200FM0033) SSDs
• OPA (IB for the Angiers tests)
• Lustre 2.7.19.12.x8-51
• NXD Version 3.1.0.3 (2017.12.20)

C. Software
• IOR-2.10.3[4]
• HDF5 SWMR [5]
• HYDRA

• COSMO
• CDI-PIO
• FESOM[6]

D. Experimental Setup
1) Sequential IOR
To assess the impact of NXD on high bandwidth

streaming I/O, a standard IOR benchmark aimed at
saturating the storage backend was run with NXD turned
on and turned off. The following parameters were used:

Sequential IOR:
IOR -b 32g -t 1m -F -k -m -e -v -v -C -i 5 -o $OUTFILE

2) Mixed IOR
To understand the impact of NXD when performing

a concurrent I/O schema, using both large streaming and
small random I/O, a set of solo and combined runs with
different load factors were performed with and without
NXD. The following parameters were used:

Sequential IOR:
IOR -b 32g -t 1m -F -k -m -e -v -v -C -i 10 -o $OUTFILE
Random IOR:
IOR -b 280m -t 4k -F -k -m -e -v -v -C -i 10 -z -o $OUTFILE

3) Concurrent IOR, Increasing Random I/O
To assess how an increasing number of small random

I/O threads would affect the I/O pattern, a number of
concurrent IOR runs (with and without NXD) were
performed using 32, 96, 160 and 224 I/O threads with
the above parameters for mixed IOR.

Figure 1. Mixed IOR (Experiment 2) - All results above are indicated as a percentage over baseline. Baseline is defined as the performance

(throughput in the case of streaming I/O and IOPS in the case of random I/O) without NXD.

95 99 95 99 105 107 96 92

541
742

308
483 562

3763

396

3793

10

100

1000

10000

Write Read Write Read Write Read Write Read

%
 o

f b
as

el
in

g
(L

og
 sc

al
e)

Effects of NXD on I/O

Throughput

IOPS

Solo
Unaligned Aligned

Combined
Unaligned Aligned

4) SWMR
Using SWMR in write mode, 1-16 nodes (single

thread per node) were compared with and without NXD.
The following parameters were used:

swmr write --niter 2500 --testdatafile $IN_FILE $OUT_FILE

IV. RESULTS
1) Sequential IOR.

NXD Write (MB/s) Read (MB/s)
Disabled 13 143 11 182
Enabled 13 014 11 154

Table 1 – Streaming Write and Read performance with and without
NXD.
Results for Experiments 2-4 are described in Figures 1-3.

V. DISCUSSION AND CONCLUSIONS
NXD is a transparent filter that intercepts small

blocks in the I/O chain and redirects them to system
SSDs, thereby increasing the performance of small I/O
instead of forcing it to use a 1 MB RPC to write a few
KBs. In the initial experiment (Table 1), neither the write
nor read performance of streaming I/O appears to have
been affected by NXD being enabled or disabled. This
behavior was mirrored in the experiments using end-
user applications (Table 2) when comparing runs with or
without NXD enabled. However, when running two
applications with different loads (medium and large size
datasets), the positive effect of NXD became more
pronounced as load increased.

Figure 2. Concurrent IOR, increasing load of random I/O (Experiment 3) – Effects of NXD on concurrent streaming and random I/O expressed

as throughput (GB/s) [top] for the former and percent increase in IOPS for the latter [bottom].
During combined sequential and random writes, overall throughput is slightly reduced but the random I/O shows orders of magnitude improvement.

 -

 2 000

 4 000

 6 000

 8 000

 10 000

 12 000

32 96 160 224

GB
/s

Number of random threads

Streaming I/O Combined

GridRaid

NXD

930%

1182%
1366%

1748%

0%

200%

400%

600%

800%

1000%

1200%

1400%

1600%

1800%

2000%

0

10 000

20 000

30 000

40 000

50 000

60 000

32 96 160 224

IO
PS

Number of random threads

IOPS combined

GridRaid

NXD

% increase

In the experiments that focused on concurrent I/O,
the streaming component seems to incur a slight, but
significant reduction (between 1-8%). However,
random, small block I/O more than makes up for the loss
of streaming performance with a several order of
magnitude improvement in performance (Figure 1).

 When focusing on this part of the I/O spectra, the
results indicate that despite the increase in small block,
random I/O activity, the penalty seems stable at 10-15%
while the IOPS improvement exhibits a linear increase
with the number of random I/O threads (Figure 2).

Upon closer inspection at how multiple threads of
small random I/O affect the overall performance of the

storage system, it appears that the tradeoff might
significantly benefit certain applications. While not
entirely “transparent”, this acceptable decrease in
streaming performance allows for a far greater benefit as
the frequency of small I/O and, presumably, small jobs
have an even chance of completing rather than being
“pushed to the side” by the dominant streaming I/O.

This effect is supported by the end-user results
(Table 2). Although the data does not show orders of
magnitude performance increases, but rather a modest 1-
10%, it still demonstrates the positive effect of NXD. In
the case of HYDRA and FESOM, the benefits of NXD
appear to improve as the storage system load increases.

Figure 3. SWMR (Experiment 4) – Improvement of write performance (MB/s) using an increasing number of single threaded clients.

The percentage increase for each group is also indicated.

51%

51%

47%

48%

40%

 -

 1 000

 2 000

 3 000

 4 000

 5 000

 6 000

1 2 4 8 16

M
B/

s

Number of Nodes (single process per node)

SWMR - Write

GridRAID

NXD

Application Work load type Large block
range

Small block
range NXD impact Overall CS Performance

Hydra

Write Intensive
Large Block

4M-8M – 99.9% <4K – 0.1% Minimal No Degradation

Hydra Write intensive
Large block

4M-8M – 99.9% <4k – 0.1% Perf Gain 2.6% to 6% No Degradation
StripeSize : 1M and the gains
started showing up.

CDI-PIO
(DKRZ)

Write Intensive
Mixed Mode

1M – 90% < 512 – 10% Perf Gain of 10% Performance Improvement
with NXD Enabled /
Histogram OFF and
StripeSize – 1M / RPC 512/7

FESOM
(DKRZ)

Read Intensive
Small Block

10% large reads 90% Small Read Perf Gain of 6% No Degradation.
No tuning, no pre-load

FESOM
(DKRZ)

Read intensive
Small block,

10% random
large block

90% small Read
(mostly seq.)

Perf gain of 10% over
a run of continuous
100 iterations.

No Degradation
CS performs around 10%
Sample size is 9GiB

COSMO Write intensive
large blocks

1 MB Mostly 4K 1% with stripe count
1 and stripe size 4m

No degradation over 7 runs

Table 2 – Effects of NXD on user application (using an earlier NXD version).

For HYDRA and FESOM, two different tests were run with medium and large sized data sets.

One might argue that 10% is not a significant
performance increase, but for sites that contend with a
substantial backlog of jobs or sites in which time to
completion is the predominant concern, then 10% is a
notable gain, especially considering the incidental
implementation cost of NXD compared to a full-fledged
burst buffer. Readers should note that the user
applications for which performance results are reported
in this paper were tested on a much earlier codebase than
the other described experiments. We are confident that
re-running user application tests on a newer codebase
would yield significantly better results.

Regarding the final set of experiments, SWMR is,
essentially, a test to measure single threaded
performance of a Lustre system. As single threaded I/O
performance is Lustre’s Achilles heel, the fact that NXD
can increase performance by ~40-50% is very
encouraging (see Figure 3). Anecdotally, we also ran an
UNTAR operation followed by re-taring the data; NXD
reduced the time to complete the TAR to 43% while the
UNTAR operation was unaffected.

At first impression, the results presented in this study
may seem random and somewhat inconsistent.
However, if one looks deeper, a specific pattern
emerges. The initial tests clearly demonstrate that NXD,
when running large streaming I/O, is entirely transparent
and does not affect sequential reads and writes.
However, the results of tests that measure concurrent
IOR require closer inspection. When saturating
sequential I/O competes with a significant number of
small random I/O operations, streaming performance is
negatively impacted, but, the degree of performance loss
seems to remain constant regardless of how many
processes cause interference. This behavior is expected
as the system now handles a much larger number of
write threads and the controller’s resources are
somewhat limited. There does seem to be a direct
relationship between the number of random, small
threads and the IOPS measured in the performance tests.
The main conclusion to be drawn from these results may
be different from previous assumptions that NXD
shields large sequential throughput from random I/O.
The current tests seem to indicate that NXD managed
SSD block caches, in fact, allows a greater portion of
small I/O processes to complete despite the

overwhelming load produced by large sequential writes.
NXD appears able to preferentially “help” small random
block I/O operations to be executed despite the pressure
produced by large sequential I/O.

To conclude, NXD has the potential to significantly
improve application execution, especially in mixed I/O
environments while being considerably less expensive
than a traditional burst buffer.

FUTURE WORK
NXD is under active development and a number of

new features are planned. Within the current version of
NXD, several tuning options are available. Further study
of end-user applications is warranted to gain further
insight into I/O behavior.

ACKNOWLEDGMENT
This work could not have been completed without

the support of several people in our management chain
including, but not limited to, Rex Tanakit and Charlie
Carroll. In addition, the extended NXD team invested
significant time and effort reviewing and discussing the
test results, and they provided valuable insights into the
finer points of small block, random I/O behavior. We
wish to thank the following people for their help: Prasad
Balakrishnan, Dipak Ghosh, Marc Roskow, Nathan
Rutman, Wolfgang Szoecs and Vipin Verma.

Last, but not least, we wish to thank Sheila Barthel
for helping correct and improve the “no nativ Engrish
speeker’s” many linguistical errors.

REFERENCES
[1] http://www.cray.com/datawarp
[2] Kling Petersen, T., and Balakrishnan, P.: ‘Flash Acceleration of HPC

Storage - Nytro Intelligent I/O Manager’, (Seagate Technologies,
2017).

[3] Kling Petersen, T., and Bent, J.: ‘Hybrid flash arrays for HPC storage
systems: An alternative to burst buffers’. Proc. 2017 IEEE High
Performance Extreme Computing Conference (HPEC) 2017.

[4] http://sourceforge.net/projects/ior-sio/
[5] https://github.com/ulrikpedersen/swmr-testapp/SWMR - Single Write

Multiple Read
[6] http://fesom.de

