
Tutorial: Analytics and AI on Crays
CUG 2018
Kristyn Maschhoff and Michael Ringenburg

Agenda

CUG 2018 Copyright 2018 Cray Inc.

● Session I
● Introduction/Urika-XC/Accounts
● Python, Anaconda, and Dask
● Deep Learning with TensorFlow

● Session II
● Scaling Deep Learning with the Cray PE Machine Learning Plugin
● HPC, AI, and Analytics with R and pbdR

● Session III
● Spark and Alchemist
● BigDL

● Session IV
● Cray Graph Engine
● Wrap-up and questions

2

Cray Platforms – Urika-XC

● Urika-XC provides the unified stack to support Analytics,
AI and HPC workloads at scale

● Urika-XC enables IT Director to leverage the existing
investment in an XC system to support emerging
Analytics and AI workloads, along with Simulations:
● Data Processing and General-purpose Big Data

Analytics with Spark (Hadoop not supported)
● Predictive Analytics (ML)
● Pattern Matching (DL)
● Data discovery with Cray Graph Engine, with ability to

scale to extremely large graphs

CUG 2018 Copyright 2018 Cray Inc.
3

At The Core Of Urika-XC: Analytics At
Supercomputer Scale

Cray
Aries™

Run a mix of workloads on a shared
system, each able to scale to >256
nodes leveraging the power of the
Cray Aries network and Cray Linux
Environment

Cray Graph Engine

Python distributed Dask
Apache Spark

HPC Simulation

CUG 2018 Copyright 2018 Cray Inc.
4

Urika-XC includes two core components

§ A collection of scalable analytics frameworks
and tools, enabling analytics, machine
learning, and deep learning at scale

§ A unique in-memory Semantic Graph
database, implemented using HPC
technology, designed to handle the largest
and most demanding use cases where graph
discovery and pattern matching are required

CUG 2018 Copyright 2018 Cray Inc.
5

Urika-XC component packages

● Apache® Spark™
● Intel BigDL

● TensorFlow
● Cray PE Machine Learning

Plugin
● Anaconda Python
● Dask Distributed
● Jupyter Notebook
● Java
● R
● Scala
● Standard build tools

● Cray Graph Engine (CGE)

Runs inside a Container

CUG 2018 Copyright 2018 Cray Inc.
6

Bringing Open Source Frameworks to
Supercomputing

● Distributed in-memory processing for Big
Data
● Extensive set of libraries and packages for the Spark

environment

● Anaconda open data science platform and
Dask for Python-based distributed parallel
computing
● Well suited for large-scale data processing, predictive

analytics, and scientific computing

● Jupyter Notebooks for interactive supercomputing

● Integrated Deep Learning

● TensorFlow popular deep learning framework

● Native deep learning in Spark

CUG 2018 Copyright 2018 Cray Inc.
7

Web UIs for Interactivity and Monitoring

● Jupyter Notebooks
● Interactive computing and

visualization
● Works with TensorFlow,

Dask, PySpark, or other
Python-based workflows

● TensorBoard
● Visualize training
● Examine DNN layers
● Run live (monitor training)

or after-the-fact

CUG 2018 Copyright 2018 Cray Inc.
8

Urika-XC Focus: Support the Entire AI Workflow

Deep Learning
workflows are not
limited to training

Similar to other HPC and
analytics workloads,
significant portions of DL
jobs are devoted to data
collection, preparation and
management.

Data
Acquisition

Data
Preparation

Model
Training

Model
Testing

• Cleansing
• Shaping
• Enrichment

Data Annotation
(Ground Truth)

Test
Set

Validation
Set

Train
Model

Evaluate Performance and
optimize model

Cross-
Validation

Iterative

Training
Set

CUG 2018 Copyright 2018 Cray Inc.
9

Anaconda Python and Dask Distributed
CUG 2018
Michael Ringenburg, Cray Inc.
mikeri@cray.com

mailto:mikeri@cray.com

Training Accounts on Piz Daint

CUG 2018 Copyright 2018 Cray Inc.

● CSCS has generously provided temporary training accounts on Piz Daint

● Login through the front end, ela.cscs.ch, then can ssh daint

● Setup passwordless ssh. From daint:

● Add to local .ssh/config to go directly to daint (simplifies notebook setup):

● To run Urika-XC (please limit to at most 5 nodes each for now)

11

user@daint102:~> ssh-keygen
user@daint102:~> ssh-copy-id -i .ssh/id_rsa.pub ela1

user@daint104:~> module use /apps/daint/system/cug
user@daint104:~> module load analytics
user@daint104:~> salloc -N 5 -C gpu --reservation=craycug start_analytics

Host daint
HostName daint.cscs.ch
User your-daint-username
ProxyCommand ssh -q -Y ela.cscs.ch -W %h:%p

Anaconda Distribution of Python

● Comes with large set of data science
packages preinstalled
● 250+ Python and R packages preinstalled
● >1000 available in repositories
● Many optimized – e.g., work with Intel Python

team
● Conda environment manager

● Linked to conda repos for more Python and R
packages

● Ability to create, clone, share custom
environments with your own python/package
versions

● Handles all dependencies
● Allows sharing environments

● Anaconda and conda built in to Urika-XC

CUG 2018 Copyright 2018 Cray Inc.
12

Using the Conda Environment Manager
● Create a new conda environment with conda create

● E.g., create an environment with Python 3.5 and biopython:
conda create --name bio biopython python=3.5

● Activate your environment:
source activate bio
(bio) mikeri:~>

● Python 3.5 with biopython will now be your default python:
(bio) mikeri:~> python
Python 3.5.3 | Anaconda, Inc.
>>> import Bio
>>> from Bio.Seq import Seq
>>> my_seq = Seq('CATGTAGACTAG')
>>> my_seq.translate()
Seq('HVD*', HasStopCodon(ExtendedIUPACProtein(), '*'))

CUG 2018 Copyright 2018 Cray Inc.
13

More Conda Commands

● Deactivate an environment: source deactivate
● Get rid of an environment: conda remove
● Clone an environment: conda clone
● List environments: conda info --envs
● Find available packages: conda search
● List packages: conda list
● Add package to current environment: conda install

● Can even install pip, and use that to install in a conda environment!
● More in docs: https://conda.io/docs/index.html

CUG 2018 Copyright 2018 Cray Inc.
14

https://conda.io/docs/index.html

Using Conda Environments with PySpark

● Start up Spark cluster (will discuss in Session III)
● Activate your Conda environment

source activate bio

● Set PYSPARK_PYTHON to point to environment python
export PYSPARK_PYTHON=$(which python)

● Run pyspark
pyspark
>>> import Bio

CUG 2018 Copyright 2018 Cray Inc.
15

Let’s try this now, in a notebook

CUG 2018 Copyright 2018 Cray Inc.

● Make sure your local .ssh/config is set up for daint
● Set up a tunnel from your laptop to daint:

● Launch Urika-XC, pointing to the tunneled port on daint

● Urika-XC will create a tunnel from ui-port on the compute
node to login-port on daint

● Run your notebook, passing it ui-port

● Connect browser on laptop to localhost:local-port
16

% ssh -L <local-port>:localhost:<login-port> daint

% salloc -N 5 -C mc start_analytics --login-port <login-port> --ui-port <ui-port>

% export SHELL=$(which bash)
% jupyter notebook --port ui-port

Optional, for terminal access

Anaconda and PySpark on XC Demo

CUG 2018 Copyright 2018 Cray Inc.
17

Dask and Dask Distributed
● Dask

● Set of parallel collections and operations for
Python

● Integrated with most common packages, e.g.,
parallel version of numpy arrays

● Supports multiple task schedulers
● Threaded scheduler

● Backed by low-overhead thread pool
● Subject to Python Global Interpreter Lock (GIL)
● Best if application dominated by non-Python code

CUG 2018 Copyright 2018 Cray Inc.
18

● Multiprocess scheduler
● Tasks shipped to separate local processes
● Not subject to Python GIL – allows true on-node parallelism
● Low overhead to launch/utilize pool, but overhead of moving data
● Best for mostly Python code (allows parallelism even with GIL)

Dask and Dask Distributed

● Distributed scheduler
● Dask scheduler for multi-node

parallelism
● Runs a scheduler on one node,

workers across allocated nodes
● Nanny processes for fault tolerance
● Supports distributed versions of all

Dask data structures
● Allows asynchronous execution

(futures)

client scheduler

nanny

worker

nanny

worker

nanny

worker

CUG 2018 Copyright 2018 Cray Inc.
19

Setting Up a dask.distributed Cluster

● Set up a dask distributed environment in anaconda
● conda create --name mydask dask distributed

● Get allocation
● salloc -N 4 -C mc

● Activate dask distributed
● source activate mydask

● Start scheduler on one node, start workers on rest
● Urika-XC can do this automatically:

● start_analytics --dask-env mydask
● Otherwise can use ssh or srun/aprun (details will vary based on your

system)

CUG 2018 Copyright 2018 Cray Inc.
20

Demo: dask.distributed on XC

CUG 2018 Copyright 2018 Cray Inc.
21

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

CUG 2018 Copyright 2018 Cray Inc.
22

Q&A

Michael Ringenburg
mikeri@cray.com

Introduction to Deep Learning,
TensorFlow, and Keras
CUG 2018
Michael Ringenburg, Cray Inc.

Outline

● Demystifying artificial intelligence / neural networks /
deep learning

● What does the computational problem that is deep
learning look like?

● Parallel DL – Kristi will cover this in more depth
● What are TensorFlow and Keras?

CUG 2018 Copyright 2018 Cray Inc.
25

A Specific Example

● An organic gardener is building a robot in his garage to recognize the
10 insects found in his garden, and decide which ones to kill with a
laser

● The robot will have a camera, and will capture JPEG files of the
insects

● The robot needs a ‘program’ to classify each JPEG according to
which of the 10 kinds of insect was photographed

JPEG ‘Program’
“That’s a
Japanese
beetle”!

CUG 2018 Copyright 2018 Cray Inc.
26

Inputs & Outputs

● Our input is a JPEG
● 224x224 pixels, 3 colors à a 224x224x3 element vector of the

pixel values
● Our output is a classification

● One of 10 categories à a 10 element vector with a “1” in the
position representing the category to which the image belongs

How many “IF” statements will we need to
figure out that a bunch of pixel values is a
Japanese beetle?

CUG 2018 Copyright 2018 Cray Inc.
27

This is an Artificial Intelligence Problem

● If you can’t get the output from the input with a bunch
of loops and conditionals, it’s AI

● But, if that won’t work, how can we do it?

● Hint #1: Any mapping of inputs to outputs is a function
● Hint #2: A function can be approximated using a (good)

approximating function

CUG 2018 Copyright 2018 Cray Inc.
28

An Approximating Function

● How can we determine a good approximating function?
● Choose its form (linear, polynomial, …)
● Minimize the overall error at a finite number of inputs with known

outputs - - fit the curve
● We have to find the values of the free parameters of the function that

minimize the error – it doesn’t matter how we do it

Fitting the curve is a lot like training the function
to know the answer for arbitrary inputs

CUG 2018 Copyright 2018 Cray Inc.
29

Training via Gradient Descent

● We want to approximate y=f(x)
● Really, we want to find a function that maps a set of inputs to a set of

outputs, to some level of accuracy
● We know yi=f(xi), for i=1,N
● Iterate:

● First iteration only: initialize the free parameters of f
● Calculate error (over our N known points)
● Calculate gradient of error, as a function of the free parameters of

function f
● Adjust the free parameters of function f a ‘small’ distance in the

direction of the negative of the error gradient
● Assess convergence & stop when ‘good enough’

CUG 2018 Copyright 2018 Cray Inc.
30

Training Error and Validation Error

● Here, we chose the
function y=ax+b, with “a”
and “b” as the free
parameters

● “a” and “b” were chosen
to minimize the training
error, using the 5 points
shown

● If we test this function
against a distinct set of
known data points, we
could determine the
validation error

y = 0.8889x + 0.8156

0

2

4

6

8

10

12

0 2 4 6 8 10 12

y

CUG 2018 Copyright 2018 Cray Inc.
31

A Really Useful Kind of Function
● This image shows a

deep neural network
● An approximating

function, with free
parameters called
weights and biases

● Deep networks have
been found to be
especially powerful

● Neural networks can
approximate any
continuous function
arbitrarily wellX

f(X)

CUG 2018 Copyright 2018 Cray Inc.
32

The Big Picture

● Training a “sufficiently complex” neural network on a
“large” and “representative” data set should allow it to
“know” about novel data
● If we show the neural network 1,000,000 pictures of cats, it should

recognize new pictures of cats
● If we only show the network pictures of black cats, it might not

recognize white cats
● If the network only has 4 “neurons”, it probably can’t learn to

recognize cats

CUG 2018 Copyright 2018 Cray Inc.
33

Some Terminology

● The training data consists of training examples
● Each example is an input with a known correct output, called a
label

● Having labeled examples is a special but common case, and we
won’t go deeper on this topic today

● A subset of the training data is often called a minibatch
● One ‘trip’ through the whole training set is called an
epoch
● Often, bookkeeping, convergence testing, checkpointing, etc. are

done after each epoch

CUG 2018 Copyright 2018 Cray Inc.
34

Gradient Descent Algorithm

Calculate
gradient, using

the entire
training set

Use gradient to
update the

model

Converged
? Done

Yes

No

CUG 2018 Copyright 2018 Cray Inc.
35

Training Schematic

Weights

Weights

Weights

Error

dW

dW

dW

Weights

Weights

Weights

dW

dW

dW

One or more training examples
feedforward through the layers
of weights, producing an output

The error, which is the
difference between the
label and the output, is
backpropagated through
the layers, producing the
gradients

The weights are
updated by adding
the gradients (scaled
by a multiplier) to
them

Weights

Weights

Weights

Example

Output

+ Label

Feedforward
Backpropagate Update

Feedforward and
backpropagate are
much more
expensive than
update (>100X)

CUG 2018 Copyright 2018 Cray Inc.
36

Variations on the Gradient Descent Algorithm

● Stochastic Gradient Descent
● A gradient is calculated, and the model is updated, for each training

example
● Batch Gradient Descent

● The training examples are divided into minibatches
● A gradient is calculated and the model is updated for each minibatch

● Strict Gradient Descent is seldom if ever used
● Strict Stochastic Descent is seldom if ever used
● Batch Gradient Descent is almost always used

● And, everyone calls it Stochastic Gradient Descent (SGD)

CUG 2018 Copyright 2018 Cray Inc.
37

Parallelizing SGD

● Data parallel methods
● “Minibatch Parallel”
● Every worker independently calculates a “local gradient” using a

“local minibatch”
● All workers participate in an allreduce, or communicate with a

parameter server, to average all the gradients and synchronize
with other workers

● Model parallel methods
● Break the neural network up – different layers on different nodes
● Useful if the model is too large for a single node
● But often more communication that data parallel methods

CUG 2018 Copyright 2018 Cray Inc.
38

For More Information…

A good overview:

Efficient Processing of Deep Neural Networks: A Tutorial and
Survey

https://arxiv.org/abs/1703.09039

CUG 2018 Copyright 2018 Cray Inc.
39

https://arxiv.org/abs/1703.09039

Don’t miss Alex Heye’s talk on Tuesday!

Scaling Deep Learning without Impacting Batchsize

Technical Session 9C
Tuesday, 3:30-4:00PM

TensorFlow

CUG 2018 Copyright 2018 Cray Inc.
41

● Developed by Google
● Most popular DL framework
● Large open source community
● APIs for

● Python
● C++
● Go
● Java

● Optimized for CPU and GPU architectures
● Ships with Urika-XC
● Learn TensorFlow

● Docs: https://www.tensorflow.org/get_started/
● Programmer’s Guide: https://www.tensorflow.org/programmers_guide/
● Tutorials: https://www.tensorflow.org/tutorials/

https://www.tensorflow.org/get_started/
https://www.tensorflow.org/programmers_guide/
https://www.tensorflow.org/tutorials/

Keras

CUG 2018 Copyright 2018 Cray Inc.

● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

42

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
43

Construct Model

● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
44

Configure Model for Training

● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
45

Train Model

● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
46

Evaluate Model

Demo: Keras MNIST

CUG 2018 Copyright 2018 Cray Inc.
47

Legal Disclaimer

CUG 2018 Copyright 2018 Cray Inc.
48

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

Q&A

Michael Ringenburg
mikeri@cray.com

Scalable Deep Learning with the Cray PE
Machine Learning Plugin
CUG 2018
Kristi Maschhoff, Cray Inc.

Don’t miss Pete Mendygral’s talk on Thursday!

High Performance Scalable Deep Learning with the Cray Programming
Environments Machine Learning Plugin

Technical Session 29A

1:00-2:30PM

Peter Mendygral, Nick Hill, Krishna Kandalla, Diana Moise, and Jacob
Balma (Cray Inc.) and Marcel Schongens (Swiss National

Supercomputing Centre)

HPC Attributes of Deep Learning

HPC Attributes

● DL training is a classic high-performance computing
problem which demands:

● Large compute capacity in terms of FLOPs, memory capacity and
bandwidth

● A performant interconnect for fast communication of gradients and
model parameters

● Parallel I/O and storage with sufficient bandwidth to keep the
compute fed at scale

CUG 2018 Copyright 2018 Cray Inc.
53

Data Parallelism - Collective-based Synchronous SGD

● Data parallel training divides a global mini-batch of examples across processes
● Each process computes gradients from their local mini-batch
● Average gradients across processes
● All processes update their local model with averaged gradients (all processes have the

same model)

● Not shown is the I/O activity of reading training samples (and possible augmentation)

Compute
intensive

Communication
intensive

Typically not
much compute

CUG 2018 Copyright 2018 Cray Inc.
54

Why do we want to scale?

● Deep Network Training
● We can strong scale training time-to-accuracy provided

● Number of workers (e.g., # nodes) << number of training examples
● Learning rate for particular batch size / scale is known

● Hyper-Parameter Optimization
● For problems and datasets where baseline accuracy is not known

● learning rate schedule
● momentum
● batch size

● Evolve topologies if good architecture is unknown (common with novel
datasets / mappings)
● Layer types, width, number filters
● Activation functions, drop-out rates

CUG 2018 Copyright 2018 Cray Inc.
55

Parallelization Methods for DL

Parallelization Techniques

● Data Parallelism
● As described earlier, divides global mini-batch among processes
● Two methods for this:

● Synchronous: single model (possibly replicated across all processes) updated with
globally averaged gradients every iteration

● Asynchronous: processes provide gradients every iteration but are allowed to fall out
of sync from one another. Processes each have their own model that may or may
not be the same as any other process

● Model Parallelism
● Single model with layers decomposed across processes
● Activations communicated between processes

● Examples will focus on synchronous data parallel approach

CUG 2018 Copyright 2018 Cray Inc.
57

Distributed TensorFlow

● TensorFlow has a native method for parallelism across nodes
● ClusterSpec API
● Uses gRPC layer in TensorFlow based on sockets

● Can be difficult to use and optimize

● User must specify
● hostnames and ports for all worker processes
● hostnames and ports for all parameter server processes (see next slide)
● # of workers
● # of parameter server processes
● Chief process of workers

CUG 2018 Copyright 2018 Cray Inc.
58

Distributed TensorFlow

● Number of parameter
servers (PS) processes to
use is not clear
● Too few PS results in many-to-

few communication pattern
(very bad) and stalls delivering
updated parameters

● Too many PS results in many-
to-many communication
pattern (also bad)

● Users typically have to pick
a scale and experiment for
best performance

CUG 2018 Copyright 2018 Cray Inc.
59

Distributed TensorFlow Scaling on Cray XC40 - KNL

0%

20%

40%

60%

80%

100%

120%

1 4 16 64

E
ff
ic

ie
n

c
y

Workers

ResNet-50 with 1

PS

From Mathuriya et al. @ NIPS 2017

CUG 2018 Copyright 2018 Cray Inc.
60

MPI-based Data Parallel TensorFlow

● The performance and usability issues with distributed TensorFlow
can be addressed by adopting an MPI communication model

● TensorFlow does have an MPI option, but it only replaces point to
point operations in gRPC with MPI
● Collective algorithm optimization in MPI not used

● Other frameworks, such as Caffe and CNTK, include MPI
collectives

● An MPI collective based approach would eliminate the need for PS
processes and likely be optimized without intervention from the
user

CUG 2018 Copyright 2018 Cray Inc.
61

Scalable Synchronous Data Parallelism

● Note there are no PS processes in this model
● Resources dedicated to gradient calculation

input

model

input

model

input

model

Update Update Update

add add addScalable Global Add

.

.

Device 1 Device 2 Device n

P P P

ΔP
Client Client Client

CUG 2018 Copyright 2018 Cray Inc.
62

Uber Horovod

● Uber open source addon for TensorFlow only
that replaces native optimizer class with a new
class
● Horovod adds an allreduce between gradient computation

and model update in this class

● New Python class includes NCCL and MPI
collective reductions for gradient aggregation

● https://github.com/uber/horovod

● No modifications to TensorFlow source required
● User modifies Python training script instead

CUG 2018 Copyright 2018 Cray Inc.
63

https://github.com/uber/horovod

Cray Programming Environment Machine Learning
Plugin (CPE ML Plugin)

● DL communication plugin with Python and C APIs

● Optimized for TensorFlow but also portable to other frameworks
● Callable from C/C++ source

● Called from Python if data stored in NumPy arrays or Tensors

● Like Horovod does not require modification to TensorFlow source
● User modifies training script

● Uses custom allreduce specifically optimized for DL workloads
● Optimized for Cray Aries interconnect and IB for Cray clusters

● Tunable through API and environment variables

● Supports multiple gradient aggregations at once with thread teams
● Useful for Generative Adversarial Networks (GAN), for example

CUG 2018 Copyright 2018 Cray Inc.
64

CPE ML Plugin Example

Tensorflow Training Script Modifications

● Both Horovod and CPE ML Plugin require some modifications to a
serial training script

● For the CPE ML Plugin the changes are
● Importing the Python module (ml_comm)

● Initialize the module

● Possibly configure the thread team(s) for specific uses

● Broadcast initial model parameters

● Possible modifications to learning rate decay schedules and other mini-batch

size dependent parameters to account for the effective mini-batch size across

all processes

● Incorporate gradient aggregation between gradient computation and model

update

● Finalize the Python module

CUG 2018 Copyright 2018 Cray Inc.
66

MNIST Example

● Dataset of handwritten digits from 0-9
● Simple CNN can be used to identify handwritten digits

● This example is adapted from the TensorFlow official MNIST
example

● https://github.com/tensorflow/models/tree/master/official/mnist
● Modified script included with CPE ML Plugin

● module load craype-ml-plugin-py2/1.1.0
● less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py

CUG 2018 Copyright 2018 Cray Inc.
67

https://github.com/tensorflow/models/tree/master/official/mnist

CPE ML Plugin - Import

● Access the Python API by importing the module

CUG 2018 Copyright 2018 Cray Inc.
68

CPE ML Plugin - Initialization

● Compute the number of trainable variables in the model
● Required for the CPE ML Plugin to pre-allocate needed communication

buffers
● Example for init sets up a single thread team with one local thread

per team, per MPI rank
● For GANs, may want to use 2 teams, to have 2 reductions in flight
● Number of threads per team, tunable parameter, biggest gain (1 to 2)

CUG 2018 Copyright 2018 Cray Inc.
69

CPE ML Plugin – Team Configuration

● Set the maximum number of steps (mini batches) to
train for
● Verbose output every 200 steps

● Also set output path to rank-specific location

CUG 2018 Copyright 2018 Cray Inc.
70

CPE ML Plugin – Broadcast Initial Model

● Broadcast initial model parameter values from rank 0
to all other ranks

● Then assign broadcasted values locally

CUG 2018 Copyright 2018 Cray Inc.
71

CPE ML Plugin – Gradient Aggregation

● Perform gradient averaging across all ranks between
local gradient calculation and model update

CUG 2018 Copyright 2018 Cray Inc.
72

CPE ML Plugin – Finalize

● After all training steps are complete clean up data
structures and MPI

CUG 2018 Copyright 2018 Cray Inc.
73

CPE ML Plugin – More information

● module avail craype-ml-plugin
● craype-ml-plugin-py2/1.0.1(TF 1.3)
● craype-ml-plugin-py3/1.0.1(TF 1.3)

● Load modules in order:
● module load cray-python
● module load craype-ml-plugin-py3

● Please refer to CPE ML Plugin manpage for more details on usage
● man intro_ml_plugin
● Or from python shell

● Examples directory
● $CRAYPE_ML_PLUGIN_BASEDIR/examples

$ python3
>>> import ml_comm as mc
>>> help(mc)
>>> help(mc.init)

CUG 2018 Copyright 2018 Cray Inc.
74

CPE ML Plugin – Execution using Urika-XC

Procedure:
1. Load the analytics module

2. Allocate interactive nodes via SLURM or PBS

3. Execute the modified Tensorflow training script

$ module load analytics

$ salloc --nodes=2 --exclusive --gres=gpu -C P100

$ run_training –n 2 --ppn 1 --cudnn-libs /path/to/cudnn-8.0-v51/cuda/lib64
--no-node-list “python mnist.py --enable_ml_comm
--data_dir=[mnist data pth] --model_dir=[train dir]”

$ qsub –I –q p100 –lnodes=2

CUG 2018 Copyright 2018 Cray Inc.
75

CPE ML Plugin Execution – Native XC

Procedure:
1. Locate/Install Tensorflow and set PYTHONPATH

2. Load the module cray-python and the craype-ml-plugin modules

3. Allocate interactive nodes (examples uses SLURM)

4. Execute the modified Tensorflow training script using srun

$ module load cray-python
$ module load craype-ml-plugin.py3

$ salloc --nodes=2 --exclusive --gres=gpu -C P100

$ srun --ntasks=2 --ntasks-per-node=1 --cpu_bind=none python3 mnist.py
--enable_ml_comm --data_dir=[mnist data pth] --model_dir=[train dir]

CUG 2018 Copyright 2018 Cray Inc.
76

Instructions for Running Tensorflow on Piz Daint

% module load daint-gpu
% module avail Tensorflow

TensorFlow/1.2.1-CrayGNU-17.08-cuda-8.0-python3(default)
TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
TensorFlow/1.4.1-CrayGNU-17.08-cuda-8.0-python3
TensorFlow/1.4.1-CrayGNU-17.12-cuda-8.0-python3
TensorFlow/1.7.0-CrayGNU-17.12-cuda-8.0-python3

% module load TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
Loads cray-python, cuDNN, etc

% module load craype-ml-plugin-py3/1.0.1

Note: SLURM option --constraint=gpu on Piz Daint allocates the XC50 Intel Haswell 12-core nodes with
GPU devices and automatically sets the SLURM option --gres=gpu

$ salloc --nodes=2 --exclusive --constraint=gpu

CUG 2018 Copyright 2018 Cray Inc.
77

Class Exercise: Tensorflow + CPE ML Plugin

● Run MNIST model using CPE ML Plugin on Piz Daint
● Step-by-Step Instructions:

● /scratch/snx3000/kristyn/CUG2018/Tensorflow/README

● Script provided to convert raw MNIST data to TFRecords file
format, but can also use

● --data_dir=/scratch/snx3000/kristyn/datasets/mnist_data

CUG 2018 Copyright 2018 Cray Inc.
78

Using CPE ML Plugin with Keras

● Instructions for installing Keras
● Note: need to make sure Tensorflow and Keras versions are

compatible
● For Tensorflow 1.3.0 need to use Keras 2.1.5

● git clone https://github.com/keras-team/keras.git
● cd keras
● git checkout tags/2.1.5

● Note:
● Also make sure to use the Keras examples from the 2.1.5 branch

CUG 2018 Copyright 2018 Cray Inc.
79

https://github.com/keras-team/keras.git

Using CPE ML Plugin with Keras

● Modifications:
● Leverage the existing Tensorflow backend to keras

● Modify backend file to include CPE ML modifications
● keras-2.1.5/keras/keras/backend/tensorflow_backend.py

● Recompile
● Small modifications to user-level scripts

● Passing information to the backend for initialization, team configuration,
and finalize

● Thanks to Diana Moise!

CUG 2018 Copyright 2018 Cray Inc.
80

Instructions for installing Keras (cont)

● Native XC
% module load cray-python
% module load TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
% python3 setup.py install --user

● Inside Urika-XC container
● Install into root: cd to keras directory, run install

% python setup.py install --user

● Install into conda environment
% conda create --clone py36_tf_cpu --name py36_keras_cray_ml
% python setup.py install –user
% export PYTHONPATH=/opt/tensorflow_cpu:$PYTHONPATH

CUG 2018 Copyright 2018 Cray Inc.
81

Keras + CPE ML Plugin: Modifications to backend

● Added to tensorflow_backend.py
● Import ml_comm library and add new functions

CRAY ADDED
import ml_comm as mc

threads per team, number of teams, algorithm to use, grads len, total steps, ksteps, v, freq
def mc_init(th_team, n_teams, alg, grads_len, total_steps, ksteps, v, freq):

mc.init(th_team, n_teams, grads_len, "tensorflow")
for team in range(n_teams):

mc.config_team(team, alg, ksteps, total_steps, v, freq)

def mc_get_rank():
return mc.get_rank()

def mc_finalize():
mc.finalize()

END CRAY ADDED

CUG 2018 Copyright 2018 Cray Inc.
82

Keras + CPE ML Plugin: Modifications to backend

● Broadcast Initial Model
● A bit complicated for a slide

● See source example:

● /scratch/snx3000/kristyn/CUG2018/keras/ tensorflow_backend_ml_comm.py

● Gradient Aggregation
CRAY MOD

grads =tf.gradients(loss,variables,colocate_gradients_with_ops=True)

grads_mc = mc.gradients(grads, 0)

return grads_mc

return tf.gradients(loss, variables, colocate_gradients_with_ops=True)

END CRAY MOD

CUG 2018 Copyright 2018 Cray Inc.
83

Keras + CPE ML Plugin: Changes to user script

● Starting point was keras/examples/mnist_cnn.py
● Import some extra libraries at the beginning

● No other changes to user script until after we compile model

CRAY ADDED
import numpy as np
import os
import math
nnodes = int(os.environ['SLURM_NNODES'])
END CRAY ADDED

model.compile(...)
#CRAY ADDED
calculate input parameters to pass through to backend
K.mc_init(…)
#END CRAY ADDED
model.fit(…)

CUG 2018 Copyright 2018 Cray Inc.
84

Keras + CPE ML Plugin: Changes to user script

● Need to determine number of trainable parameters, adjust number
of epochs, calculate max_steps, then call backend to perform init

CRAY ADDED

Determine number of trainable variables
trainable_count = int(np.sum([K.count_params(p) for p in set(model.trainable_weights)]))

Adjust epochs based on parallel throughput
epochs = int(epochs/nnodes)

Compute max_steps
ntrain_samples = x_train.shape[0]
ntest_samples = x_test.shape[0]
total_steps = int(math.ceil(epochs * (ntrain_samples + ntest_samples)/batch_size))

threads per team, number of teams, algorithm to use, grads len, total steps, ksteps, v, freq
K.mc_init(1, 1, 0, trainable_count, total_steps, 2000, 2, 1000)

END CRAY ADDED

CUG 2018 Copyright 2018 Cray Inc.
85

Running Keras + CPE ML Plugin on Piz Daint

Load modules

Allocate GPU nodes from SLURM

Run

$ salloc --nodes=2 --exclusive --constraint=gpu

$ module load daint-gpu
$ module load TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
$ module load craype-ml-plugin-py3/1.0.1

srun -n 2 python3 keras-2.1.5/keras/examples/mnist_cnn_ml.py

CUG 2018 Copyright 2018 Cray Inc.
86

Class Exercise: Keras + CPE ML Plugin

● Install keras

● Run keras mnist_cnn model (or other examples)

● Modify keras tensorflow_backend.py and mnist_cnn

model to use CPE ML Plugin

● Apply CPE ML Plugin to other keras example models

● acgan_mnist model
● Step-by-Step Instructions:

● /scratch/snx3000/kristyn/CUG2018/Keras/README

CUG 2018 Copyright 2018 Cray Inc.
87

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

CUG 2018 Copyright 2018 Cray Inc.
88

Q&A

Kristi Maschhoff
kristyn@cray.com

Analytics and AI on XC Tutorial
Setting up an R Environment
CUG 2018
Kristi Maschhoff, Cray Inc.

What is R?

● R project for Statistical Computing
● https://www.r-project.org
● Environment for statistical computing and graphics
● “GNU S”
● Freely available – but note most R packages have licenses

● (GPL-2, GPL-3, MIT, Apache, etc.)
● Latest Version R 3.5.0 (Joy in Playing)

● R version 3.5.0 (2018-04-23) -- "Joy in Playing"
● CRAN - The Comprehensive R Archive Network

● https://cran.r-project.org
● Network of ftp and web servers that store identical, up-to-date, versions of

code and documentation for R
● R manuals

● https://cran.r-project.org/doc/manuals/

CUG 2018 Copyright 2018 Cray Inc.
91

https://www.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/doc/manuals/

Interactivity and R

● R community was developed with the goal of
interactive exploration of data
● Basic R interactive console – provided with standard distribution
● Many R users work use R using an IDE

● RStudio is by far the most popular IDE for R
● R Markdown files and R Notebooks
● Files have extension .Rmd

● R can also be run using Jupyter Notebooks
● Install IRKernel

CUG 2018 Copyright 2018 Cray Inc.
92

What we plan to cover in the tutorial

● Setting up an R environment on XC

● R provided with Urika-XC

● Urika-1.1 release pulls R from the EPEL repository
● For Urika-1.2 release, the plan is to provide optimized R using Cray libsci inside the container

● Update on R support on XC built with Cray libsci

● module load cray-R
● Currently support R-3.3.3

● Build Instructions - for those needing additional customization

● Build R using gcc/gfortran
● Build R using gcc/gfortran + Cray libsci
● Build R using gcc/gfortran + Cray libsci_acc (GPUs)
● Build R using Intel C++ and Fortran Compilers + MKL
● Build R using gcc/gfortran + MKL

● Installing R packages

● Using R from Jupyter Notebooks

● Using Anaconda to manage R packages and multiple R versions (environments)

● Setting up a R cluster using “parallel” package

● Setting up a pdbR environment (pdbMPI)

CUG 2018 Copyright 2018 Cray Inc.
93

Setting up an R environment on XC

● Base R Install
● Why build from source?

● Allows one to build optimized versions which use optimized math

libraries (Cray libsci, Intel MKL)

● Download most recent version from CRAN

● R-3.5.0.tar.gz

● wget https://cran.r-project.org/src/base/R-3/R-3.0.0.tar.gz

● Enable additional non-default capabilities

● Memory profiling

● CRAN repository also provides precompiled binaries

● Linux, OS X, Windows

CUG 2018 Copyright 2018 Cray Inc.
94

https://cran.r-project.org/src/base/R-3/R-3.0.0.tar.gz

Be prepared to fight with the configure script!

● R build uses a configure script to build Makefile
● Be prepared to fight!

● This is especially true when trying to customize R
● Linking to vendor BLAS/LAPACK
● Enabling additional capabilities
● Carefully review config.log

CUG 2018 Copyright 2018 Cray Inc.
95

Simple R build from source using gcc/gfortran

> module swap PrgEnv-cray PrgEnv-gnu
> wget https://cran.r-project.org/src/base/R-3/R-3.5.0.tar.gz
> (Note: other mirror sites work as well, for example
> wget http://cran.rstudio.com/src/base/R-3/R-3.5.0.tar.gz
> tar -xzf R-3.5.0.tar.gz
> cd R-3.5.0/

> ./configure --prefix=/tmp/CUG2018/R/sandbox/install/R-3.5.0
> make
> make check; make install
> cd /tmp/CUG2018/R/sandbox/install/R-3.5.0/bin

> ./R
> file R

> (R: POSIX shell script, ASCII text executable)
> file exec/R

> exec/R: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 3.0.0, not
stripped

CUG 2018 Copyright 2018 Cray Inc.
96

https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
http://cran.rstudio.com/src/base/R-3/R-3.1.1.tar.gz

Example summary output from configure script

Fortran 90/95 compiler: gfortran -g -O2
Obj-C compiler:
Interfaces supported: X11, tcltk
External libraries: readline, BLAS(generic),

LAPACK(generic), curl
Additional capabilities: PNG, JPEG, TIFF, NLS, cairo, ICU
Options enabled: R profiling

Capabilities skipped:
Options not enabled: shared BLAS, memory profiling

Recommended packages: yes

R is now configured for x86_64-suse-linux-gnu

Source directory: .
Installation directory:
/tmp/CUG2018/R/sandbox/install/cray-R-3.5.0

C compiler: gcc -g -O2
Fortran 77 compiler: gfortran -g -O2

Default C++ compiler: g++ -g -O2
C++98 compiler: g++ -std=gnu++98 -g -O2
C++11 compiler: g++ -std=gnu++11 -g -O2
C++14 compiler: g++ -std=gnu++14 -g -O2
C++17 compiler: g++ -std=gnu++17 -g -O2

CUG 2018 Copyright 2018 Cray Inc.
97

Installed Packages – Base Install
> installed.packages()[,c("Version","License")]

Version License

methods "3.5.0" "Part of R 3.5.0"

mgcv "1.8-23" "GPL (>= 2)"

nlme "3.1-137" "GPL (>= 2) | file LICENCE"

nnet "7.3-12" "GPL-2 | GPL-3"

parallel "3.5.0" "Part of R 3.5.0"

rpart "4.1-13" "GPL-2 | GPL-3"

spatial "7.3-11" "GPL-2 | GPL-3"

splines "3.5.0" "Part of R 3.5.0"

stats "3.5.0" "Part of R 3.5.0"

stats4 "3.5.0" "Part of R 3.5.0"

survival "2.41-3" "LGPL (>= 2)"

tcltk "3.5.0" "Part of R 3.5.0"

tools "3.5.0" "Part of R 3.5.0"

utils "3.5.0" "Part of R 3.5.0"

Version License

base "3.5.0" "Part of R 3.5.0"

boot "1.3-20" "Unlimited"

class "7.3-14" "GPL-2 | GPL-3"

cluster "2.0.7-1" "GPL (>= 2)"

codetools "0.2-15" "GPL"

compiler "3.5.0" "Part of R 3.5.0"

datasets "3.5.0" "Part of R 3.5.0"

foreign "0.8-70" "GPL (>= 2)"

graphics "3.5.0" "Part of R 3.5.0"

grDevices "3.5.0" "Part of R 3.5.0"

grid "3.5.0" "Part of R 3.5.0"

KernSmooth "2.23-15" "Unlimited"

lattice "0.20-35" "GPL (>= 2)"

MASS "7.3-49" "GPL-2 | GPL-3"

Matrix "1.2-14" "GPL (>= 2) | file LICENCE"

CUG 2018 Copyright 2018 Cray Inc.
98

>capabilities()

● Description
● Report on the optional features which have been compiled into

this build of R

CUG 2018 Copyright 2018 Cray Inc.
99

Prebuilt versions of R provided on XC

● Cray PE provides R prebuilt with Cray libsci using the GNU compiler
● module load cray-R
● Currently supported version is 3.3.3

● R is also provided with Urika-XC
● Urika-XC 1.1 release

● Uses prebuilt R from EPEL repository (R version 3.4.2)
● Installed in /usr/lib64/R in the Urika-XC container
● Provides R built as a shared/dynamic library

● Can use R helper routines such a ”littler”
● Flag --enable-R-shlib causes the make process to build R as a dynamic (shared) library, typically called libR.so, and

link the main R executable against that library
● Possible performance penalty (10%) mentioned in R install notes – have not verified on XC

● Primarily included to support sparkR
● Planned for Urika-XC 1.2 release

● R version 3.5.0 (or most recent release)
● Plan to provide R prebuilt with Cray libsci + GNU compiler
● R built as a shared/dynamic library
● pbdR Ecosytem pre-installed using Cray MPI (initial base set of packages)
● Support for using Jupyter notebooks via IRKernel

CUG 2018 Copyright 2018 Cray Inc.
100

Build of R using gcc/gfortran + Cray libsci

Example build recipe: (for those needing additional customization)
> module swap PrgEnv-cray PrgEnv-gnu
> wget https://cran.r-project.org/src/base/R-3/R-3.5.0.tar.gz
> tar -xzf R-3.5.0.tar.gz
> cd R-3.5.0/

Cray provides an environment variable with the path to the libsci directory
echo $CRAY_LIBSCI_PREFIX_DIR

> ./configure --build=x86_64-suse-linux --prefix=${install_dir} --with-blas="-fopenmp -
L${CRAY_LIBSCI_PREFIX_DIR}/lib -lsci_gnu_61_mp" --with-lapack"-Wl,-ydgetrf”

Note: additional arguments provided with the --with-lapack option to configure is really a workaround
to a bug in the configure script (Thanks to Faisal Hadi - Cray libsci manager for the fix). This allows the
configure script to find the LAPACK routine in libsci

> make
> make install

CUG 2018 Copyright 2018 Cray Inc.
101

https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz

Build R using Intel C++ and Fortran Compilers + MKL

> module swap PrgEnv-cray PrgEnv-intel
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz

> setenv CC icc
> setenv CXX icpc
> setenv AR xiar
> setenv LD xild

> setenv CFLAGS “-03 –ipo –qopenmp –xHost”
> setenv CXXFLAGS “-03 –ipo –qopenmp –xHost”
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 CC="icc -mkl" CXX="icpc -mkl" FC="ifort -mkl" F77="ifort -mkl" FPICFLAGS="-
fPIC" AR=xiar LD=xild --with-x=no --with-blas=-lmkl --with-lapack=-lmkl

> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin

https://software.intel.com/en-us/articles/build-r-301-with-intel-c-compiler-and-intel-mkl-on-linux

CUG 2018 Copyright 2018 Cray Inc.
102

https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
https://software.intel.com/en-us/articles/build-r-301-with-intel-c-compiler-and-intel-mkl-on-linux

Simple build using gcc/gfortran + MKL

> module load PrgEnv-intel
> module load gcc

> setenv CC gcc
> setenv F77 gfortran
> setenv AR xiar
> setenv LD xild
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 --with-blas="$MKL" --with-lapack
> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin
> ./R

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#MKL

CUG 2018 Copyright 2018 Cray Inc.
103

https://cran.r-project.org/doc/manuals/r-release/R-admin.html

Build R + MKL build notes

Default is to build shared libraries:
Useful to print out shared library dependencies to verify MKL is being used

> ldd exec/R
linux-vdso.so.1 (0x00007ffc247ed000)
libmkl_gf_lp64.so =>
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so
(0x00007f47f09da000)
libmkl_intel_thread.so =>
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_intel_thread.so
(0x00007f47eefcc000)
libmkl_core.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_core.so
(0x00007f47ed525000)
libiomp5.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/compiler/lib/intel64/libiomp5.so
(0x00007f47ed182000)

Can also specify to build static binary by using --enable-static when running ./configure

CUG 2018 Copyright 2018 Cray Inc.
104

Set up simple modulefile

● Create a modulefiles directory
● /lus/scratch/kristyn/modulefiles/R

● module use /lus/scratch/kristyn/modulefiles
● module load R/R-3.4.0

where the file R-3.4.0 contains

#%Module2.0
##
module load java
module load gcc

set R_VERSION R-3.4.0
set R_PATH /lus/scratch/kristyn/R/$R_VERSION/

prepend-path PATH $R_PATH/bin
prepend-path LD_LIBRARY_PATH $R_PATH/lib64/R/library
prepend-path MANPATH $R_PATH/share/man

CUG 2018 Copyright 2018 Cray Inc.
105

Installing R Packages from CRAN

● Bring up R on login node and install needed packages
● Need external access to download packages
● In general, most tested, and most reliable compiler for R packages are the

GNU compilers (gcc, gfortran)
● Note, if using a site-installed version, any additional installed packages will be

saved to a location in your home directory
● ~/R/x86_64-suse-linux-gnu-library/3.3

> R packages we will be using for the tutorial
> install.packages(“foreach”)
> install.packages(“doParallel”)
> install.packages(“rlecuyer”)
> install.packages(“randomForest”)
> install.packages(“SPARQL”)

CUG 2018 Copyright 2018 Cray Inc.
106

Installing R packages within Urika-XC

● Use start_analytics
● Specify interactive node to run on login node
● Better connectivity than from XC compute node

● For Urika-XC 1.1
● R version 3.4.2 (2017-09-28) -- "Short Summer"
● User packages installed to

● ~/R/x86_64-redhat-linux-gnu-library/3.4

CUG 2018 Copyright 2018 Cray Inc.
107

Using R on Piz Daint using Urika-XC

kristyn@daint101:~> module load analytics
kristyn@daint101:~> start_analytics –d

Once inside the container, bring up R
interactive shell to install packages

bash-4.2$ R

Inside R interactive shell

> install.packages("foreach")

Installing package into ‘/usr/lib64/R/library’
(as ‘lib’ is unspecified)
Warning in install.packages("foreach") :
'lib = "/usr/lib64/R/library"' is not writable

Would you like to use a personal library
instead? (y/n) y
Would you like to create a personal library
~/R/x86_64-redhat-linux-gnu-library/3.4
to install packages into? (y/n) y

CUG 2018 Copyright 2018 Cray Inc.
108

Running R in Jupyter With The R Kernel

● Install R packages

● Need to make R kernel visable for Jupyter
● Install IRKernel for the current user

● Start up Jupyter Notebook
● R should now be one of the kernels in the upper right corner in the

“New” drop-down menu

> install.packages(c('repr','IRdisplay','evaluate','crayon','pbdZMQ','devtools’, 'uuid', 'digest’))
> devtools::install_github('IRkernel/Irkernel')

> IRkernel::installspec()

CUG 2018 Copyright 2018 Cray Inc.
109

Running R in Jupyter using Urika-XC

Since Piz Daint is only accessible via ssh from the front end ela.cscs.ch, we need to create a tunnel
through the front end to daint to use Web Uis (Jupyter, also for CGE)

Example:
Create tunnel from laptop to internal daint node through ela.cscs.ch

$ ssh -L localhost:8022:daint:22 ela.cscs.ch
Then in a second terminal, log directly into the daint node

$ ssh -p 8022 -L localhost:15000:localhost:15000 localhost

Bring up Urika-XC
$ start_analytics -d --login-port 8022 --ui-port 15000

Then inside container, start Jupyter Notebook
bash-4.2$ jupyter notebook --port 15000

CUG 2018 Copyright 2018 Cray Inc.
110

Managing R using Anaconda

● Anaconda R
● Quite useful for managing R packages and multiple R environments on XC
● List of R language packages available for install from conda is located at http://repo.continuum.io/pkgs/r/
● R Essentials bundle includes about 100 of the most popular packages for R

> conda create --name myR -c r r-essentials
> source activate myR

● Also can specify specific versions of R

> conda create --name myR_3.2.2 -c r r=3.2.2

● When using an older version of R I found it works better to create the conda environment first, activate
this, then install the allowing packages, allowing conda to manage the package version dependencies

> source activate myR_3.2.2
> conda install -c r r-essentails r-xml

CUG 2018 Copyright 2018 Cray Inc.
111

http://repo.continuum.io/pkgs/r/

Running R using CCM

� salloc -N 4 --partition=ccm_queue

� # Determine nid allocations
� echo “$SLURM_NODELIST” or env | grep SLURM

� SLURM_NODELIST=nid0000[4-7]

� # load R module
� module use /lus/scratch/R/modulefiles
� module load R/R-3.4.0

� # Log into head node and propagate environment
� module load ccm
� ccmlogin –V

� # Start up R on head node
� R

Note: CCM may not be available on all XC systems. This is a site-configuration.
Piz Daint does not have CCM running, but is set up so one can use ssh between nodes within a job.

See /scratch/snx3000/kristyn/CUG2018/R/README for additional details.

CUG 2018 Copyright 2018 Cray Inc.
112

R using “parallel” package using CCM mode
Setting up a simple parallel socket cluster
“parallel” package

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

> library(parallel)
> machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

> machineVec
> [1] "nid00004" "nid00004" "nid00004" "nid00004" "nid00005" "nid00005"
> [7] "nid00005" "nid00005" "nid00006" "nid00006" "nid00006" "nid00006"
> [13] "nid00007" "nid00007" "nid00007" "nid00007"
> cl <- makeCluster(machineVec)
> cl
> socket cluster with 16 nodes on hosts 'nid00004', 'nid00005', 'nid00006', 'nid00007’

> help(makeCluster)

> stopCluster(cl)

CUG 2018 Copyright 2018 Cray Inc.
113

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

Running parallel R package on Piz Daint

● Note: CCM may not be available on all XC systems. This is a site-configuration.
● Piz Daint does not have CCM running, but is set up so one can use ssh between nodes within a job.

● Allocate nodes
� salloc -N 4 -C mc

� # Determine nid allocations
� echo “$SLURM_NODELIST” or env | grep SLURM

� SLURM_NODELIST=nid0000[4-7]

� # load R module
� module load cray-R

� # Start up R on login node
� R

� # Set up socket-based cluster (follow same instructions as previous slide)

See /scratch/snx3000/kristyn/CUG2018/R/README for additional details.

CUG 2018 Copyright 2018 Cray Inc.
114

Enabling ssh between nodes using start_analytics

● On SLURM-based systems
● salloc -N 4 -C mc --image=custom:analytics-

1.01.0000.201712122205_0082-latest start_analytics –ssh

● On interactive node
� # Determine nid allocations

� echo “$SLURM_NODELIST” or env | grep SLURM

� SLURM_NODELIST=nid0000[4-7]

� # Start up R

� R

CUG 2018 Copyright 2018 Cray Inc.
115

Simple Parallel Socket Cluster

● Basic functionality
● Runs 'Rscript' on the specified host(s) to set up a worker process

which listens on a socket for expressions to evaluate, and returns the
results (as serialized objects).

● Commonly used R packages which then build upon the
“parallel” package
● “foreach” package

● Provides looping construct
● “doParallel” package

● Provides mechanism needed to execute foreach loops in parallel
● https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

CUG 2018 Copyright 2018 Cray Inc.
116

https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

Example datasets

> # Base install of R already includes several datasets
> # To look at the datasets available in loaded packages

> data()

> # load the iris dataset

> data(iris)

> head(iris)

> # Many R packages also contain additional datasets

> install.package(‘rattle’)
> data(wine, package='rattle')

> # Also can import data directly
> # Here read.table reads a file in table format and creates a dataframe from it

> url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv'

> whitewine <- read.table(url,header=TRUE,sep=“;”)
> head(whitewine)

CUG 2018 Copyright 2018 Cray Inc.
117

Example Code: using foreach and doParallel

� library(parallel)
� library(foreach)
� library(doParallel)
� machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

� cl <- makeCluster(machineVec)
� # To use the "foreach", we need to register the cluster with
� registerDoParallel(cl)
� getDoParWorkers()

� # sequential execution
� system.time(foreach(i=1:100000) %do% sum(tanh(1:i)))
� # parallel execution
� system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

� mcoptions <- list(preschedule=FALSE, set.seed=FALSE, cores=4)
� system.time(foreach(i=1:100000,.options.multicore=mcoptions) %dopar% sum(tanh(1:i)))

CUG 2018 Copyright 2018 Cray Inc.
118

Example Code: randomForest

� # Parallel execution of randomForest
> x <- matrix(runif(500), 100)
> y <- gl(2, 50)
>
> library(randomForest)
>
> rf <- foreach(ntree=rep(25000, 6), .combine=combine,

.multicombine=TRUE, .packages='randomForest')
%dopar% { randomForest(x, y, ntree=ntree)}

CUG 2018 Copyright 2018 Cray Inc.
119

R profiling

● Standard approach – use Rprof
● Profile R code is to use the Rprof function to profile and

the summaryRprof function to summarize the result
� help(Rprof)

�Rprof(tmp <- tempfile())
� example(glm)
�Rprof()
� summaryRprof(tmp)

CUG 2018 Copyright 2018 Cray Inc.
120

Programming with Big Data in R (pbdR)

● Set of highly scalable R packages for
distributed computing in data science
● http://r-pbd.org/

● George Ostrouchov, Wei-Chen Chen, Drew
Schmidt, Pragneshkumar Patel

● Winner of the Oak Ridge National
Laboratory 2016 Significant Event Award
for "Harnessing HPC Capability at OLCF
with the R Language for Deep Data Science

CUG 2018 Copyright 2018 Cray Inc.
121

http://r-pbd.org/

Installing pdbMPI package

● If not already installed, install rlecuyer package
● wget https://cran.r-project.org/src/contrib/rlecuyer_0.3-4.tar.gz
● R CMD INSTALL --no-test-load rlecuyer_0.3-4.tar.gz

● Install pdbMPI package
● wget https://cran.r-project.org/src/contrib/pbdMPI_0.3-3.tar.gz
● R CMD INSTALL pbdMPI_0.3-3.tar.gz --configure-args="--with-

mpi=/opt/cray/pe/mpt/default/gni/mpich-gnu/51/ --disable-opa --
with-mpi-type=MPICH2" --no-test-load

● https://cran.r-project.org/web/packages/pbdMPI/pbdMPI.pdf

CUG 2018 Copyright 2018 Cray Inc.
122

pdbMPI: run “Hello World”

Create file mpi_hello_world.r

load the package

suppressMessages(library(pbdMPI, quietly = TRUE))

initialize the MPI communicators

init()

Hello world

message <- paste("Hello from rank", comm.rank(), "of", comm.size())

comm.print(message, all.rank=TRUE, quiet=TRUE)

shut down the communicators and exit

finalize()

> srun -N 4 Rscript mpi_hello_world.r

CUG 2018 Copyright 2018 Cray Inc.
123

pbdMPi – beyond “Hello World”

● HPSC Cookbook – Wei-Chen Chen
● https://snoweye.github.io/hpsc/cookbook.html

● In addition there are several tutorials available with
source code available for download

● Tutorials 1 and 2 both use the Iris dataset already
available with base R install

CUG 2018 Copyright 2018 Cray Inc.
124

https://snoweye.github.io/hpsc/cookbook.html

Parallel (SPMD) pi Example (from HPSC)

File name: ex_pi_spmd.r
Run: srun -N 2 Rscript --vanilla ex_pi_spmd.r

Load pbdMPI and initial the communicator.
library(pbdMPI, quiet = TRUE)
init()
.comm.size <- comm.size()
.comm.rank <- comm.rank()

Compute pi.
n <- 1000
totalcpu <- .comm.size
id <- .comm.rank + 1
mypi <- 4*sum(1/(1+((seq(id,n,totalcpu)-.5)/n)^2))/n # The example from Rmpi.
mypi <- reduce(mypi, op = "sum")

Output from RANK 0 since mpi.reduce(...) will dump only to 0 by default.
comm.print(mypi)
finalize()

CUG 2018 Copyright 2018 Cray Inc.
125

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

CUG 2018 Copyright 2018 Cray Inc.
126

Q&A

Kristi Maschhoff
kristyn@cray.com

Spark on Cray Systems
CUG 2018
Michael Ringenburg, Cray Inc
mikeri@cray.com

mailto:mikeri@cray.com

Agenda

● Introduction to Spark
● History and Background
● Computation and Communication Model

● Spark on the XC40
● Installation and Configuration
● Local storage

● Alchemist: MPI and Spark
● BigDL: Deep Learning in Spark

CUG 2018 Copyright 2018 Cray Inc.
129

In the beginning, there was Hadoop MapReduce…

● MapReduce: simplified parallel programming model
● All computations broken into two parts

● Embarassingly parallel map phase: apply single operation to every key,value-pair,
produce new set of key,value-pairs

● Combining reduce phase: Group all values with identical key, performing combining
operation to get final value for key

● Can perform multiple iterations for computations that require
● I/O intensive

● Map writes to local storage. Data shuffled to reducer’s local storage, reduce reads.
● Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS,

reduce writes to HDFS)
● Effective model for many data analytics tasks

● HDFS distributed file system (locality aware – move compute to
data)

● YARN cluster resource manager

CUG 2018 Copyright 2018 Cray Inc.
130

Example: K-Means Clustering with MapReduce

● Initially: Write out random cluster
centers

● Map:
● Read in cluster centers
● For each data point, compute nearest cluster

center and write <key: nearest cluster, value:
data point>

● Reduce:
● For each cluster center (key) compute

average of datapoints
● Write out this value as new cluster center

● Repeat until convergence (clusters
don’t change)

Assign
points to
clusters

Recompute
centers

Disk Disk

Repeat

CUG 2018 Copyright 2018 Cray Inc.
131

MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
● Must write and read between map and reduce phases
● Multiple iterations must write results in next time (e.g., new cluster

centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce

(rinse and repeat?)

CUG 2018 Copyright 2018 Cray Inc.
132

What is Spark?

● Newer (2014) analytics framework
● Originally from Berkeley AMPLab/BDAS stack, now Apache project

● Native APIs in Scala. Java, Python, and R APIs available as well.

● Many view as successor to Hadoop MapReduce. Compatible with
much of Hadoop Ecosystem.

● Aims to address some shortcomings of Hadoop
MapReduce
● More programming flexibility – not constrained to one map, one

reduce, write, repeat.

● Many operations can be pipelined into a single in-memory task

● Can "persist" intermediate data rather than regenerating every
stage

CUG 2018 Copyright 2018 Cray Inc.
133

Spark Execution Model

● Master-slave parallelism
● Driver (master)

● Executes main

● Distributes work to executors

● Executors (slaves)
● Lazily execute tasks (local operations on

partitions of the RDD)

● Rely on local disks for spilling data that's too

large, and storing shuffle data

● Resilient Distributed Dataset (RDD)
● Spark's original data abstraction

● Partitioned amongst executors

● Fault-tolerant via lineage

● Dataframes/Datasets extend this abstraction

Driver

main()

…

Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)

CUG 2018 Copyright 2018 Cray Inc.
134

RDDs (and DataFrames/DataSets)

● RDDs are original data abstraction of Spark
● DataFrames add structure to RDDs: named columns
● DataSets add strong typing to columns of DataFrames (Scala and

Java only)
● Both build on the basic idea of RDDs

● DataFrames were originally called SchemaRDDs

● RDD data structure contains a description of the data,
partitioning, and computation, but not the actual data
… why?
● Lazy evaluation

CUG 2018 Copyright 2018 Cray Inc.
135

Lazy Evaluation and DAGs

● Spark is lazily evaluated
● Spark operations are only executed when and if needed
● Needed operations: produce a result for driver, or produce a

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

● Calls to transformation APIs (operations that produce a new
RDD/DataFrame from one or more parents) just add a new node
to the DAG, indicating data dependencies (parents) and
transformation operation

● Action APIs (operations that return data) trigger execution of
necessary DAG elements

● Example shortly…

CUG 2018 Copyright 2018 Cray Inc.
136

Pipelining in Spark

● If an RDD partition's dependencies are on a single
other RDD partition (or on co-partitioned data), the
operations can be pipelined into a single task

● Spark stage: Execution of same task on all partitions
● Every stage ends with a shuffle (all-to-all communication), an

output, or returning data back to the driver.
● Global barrier between stages. All senders complete shuffle write

before receivers request data (shuffle read)

CUG 2018 Copyright 2018 Cray Inc.
137

Spark Communication
Model (Shuffles)

● All data exchanges
between executors
implemented via shuffle
● Senders (“mappers”) send

data to block managers; block
managers write to disks, tell
scheduler how much destined
for each reducer

● Barrier until all mappers
complete shuffle writes

● Receivers (“reducers”)
request data from block
managers that have data for
them; block managers read
and send

Map task

thread

Block

manager

Disk

Reduce

task

threadRequest

TCP

Spark

Scheduler

Shuffle write

Shuffle read

Meta data

CUG 2018 Copyright 2018 Cray Inc.
138

Spark Programming Model: Example

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 40)
val evens = rdd1M.filter(

a => (a%2) == 0
)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8, 10)

Create array of
{1, 2, …, 1,000,000}

Partition array into a 40-
partition RDD (can also

create from file). Executors
will execute tasks on

parititions, so this is also
the maximum parallelism.

Spark transformation
(Create new RDD from old

RDD/RDDs)

Spark action
(return result to driver)

Lazy Evaluation: No computation until result requested

com
pute

CUG 2018 Copyright 2018 Cray Inc.
139

Example: Line-by-line

val arr1M = Array.range(1,1000001)

Driver:
{1, …, 1,000,000}

Executor 0: Executor 1: Executor 2: Executor 3:

Conceptually …

CUG 2018 Copyright 2018 Cray Inc.
140

Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Driver:
{1, …, 1,000,000}

Executor 0:
{1 … 125000}

{500001 … 625000}

Executor 1:
{125001 … 250000}
{625001 … 750000}

Executor 2:
{250001 … 375000}
(750001 … 875000}

Executor 3:
{375001 … 500000}
(875001…1000000}

Conceptually …

CUG 2018 Copyright 2018 Cray Inc.
141

Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Driver:
{1, …, 1,000,000}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …

CUG 2018 Copyright 2018 Cray Inc.
142

Example: Line-by-line

evens.take(5)

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …

CUG 2018 Copyright 2018 Cray Inc.
143

Example: Line-by-line

val arr1M = Array.range(1,1000001)

Executor 0: Executor 1: Executor 2: Executor 3:

Reality: Lazy Evaluation
Driver:

{1, …, 1,000,000}

CUG 2018 Copyright 2018 Cray Inc.
144

Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M

RDD Partition 0

RDD Partition 7
DAG (Directed
Acyclic Graph)
schedule

…

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation

CUG 2018 Copyright 2018 Cray Inc.
145

Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed
Acyclic Graph)
schedule

… …

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation

CUG 2018 Copyright 2018 Cray Inc.
146

Example: Line-by-line

evens.take(5)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed
Acyclic Graph)
schedule

… … Take Result:
RETURNS DATA

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation

CUG 2018 Copyright 2018 Cray Inc.
147

Example: Line-by-line

evens.take(5)

Executor 0:
{1 … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Start computing!

DAG (Directed
Acyclic Graph)
schedule

… … Take Result:
RETURNS DATA

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation

CUG 2018 Copyright 2018 Cray Inc.
148

Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

… FilteredRDD 0

FilteredRDD 7

… Take Result:
RETURNS DATA

DAG (Directed
Acyclic Graph)
schedule

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation

CUG 2018 Copyright 2018 Cray Inc.
149

Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

DAG (Directed
Acyclic Graph)
schedule

… … Take Result:
RETURNS DATA

Reality: Lazy Evaluation

CUG 2018 Copyright 2018 Cray Inc.
150

Wait a second …

● How did Spark know that take() would only require data
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

CUG 2018 Copyright 2018 Cray Inc.
151

Wait a second …

● How did Spark know that take() would only require data
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

● Answer … It didn't.
● Take is typically used to fetch a small initial piece of the data
● Spark guesses that it will all be available in the first partition
● If not, tries the first four partitions …
● Then the first 16 …
● Etc…

CUG 2018 Copyright 2018 Cray Inc.
152

Modified example

● Imagine we want to perform a number of actions on (i.e.,
return different data about) our filtered RDD.

● For each action, Spark computes all the DAG steps…

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the
total size of an RDD

Reduce performs a
reduction over the
dataset, combining
elements with the
argument function.

CUG 2018 Copyright 2018 Cray Inc.
153

Modified example

● Problem: This means recomputing the filtered "evens" RDD
three times – inefficient.

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the
total size of an RDD

Reduce performs a
reduction over the
dataset, combining
elements with the
argument function.

CUG 2018 Copyright 2018 Cray Inc.
154

Modified example

● Problem: This means recomputing the filtered "evens" RDD
three times – inefficient.

● Solution: Persist the RDD!*

val arr1M = Array.range(1,1000001)
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
evens.persist() // or cache()
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Persist tells Spark to keep
the data in memory even
after it is done with the

action. Allows future actions
to reuse without recomputing.
Cache is synonym for default
storage level (memory). Can

also persist on disk, etc.

*Relies on immutability of val

CUG 2018 Copyright 2018 Cray Inc.
155

Multi-stage Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one
value to (possibly)

many, instead of one-
to-one like map

groupByKey combines all
key-value pairs with the

same key (k, v1), …,
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all
elements to the driver

Load file

• Let's like at a simple example: computing the number of
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word

More efficient: replace
group and sum with

reduceByKey
CUG 2018 Copyright 2018 Cray Inc.

156

val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

Execute!

CUG 2018 Copyright 2018 Cray Inc.
157

Execution

"fox jumps
over"

"the brown
dog"

"the quick
brown"

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2018 Copyright 2018 Cray Inc.
158

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

No cr
oss-

node

dependencie
s:

operations p
ipelined into

sin
gle ta

sk

CUG 2018 Copyright 2018 Cray Inc.
159

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Write shuffle data to local file system

Barrier
HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2018 Copyright 2018 Cray Inc.
160

Execution

"the quick

brown"

"fox jumps

over"

"the brown

dog"

(quick, (1))

(brown, (1, 1))

(fox, (1))

(jumps, (1))

(over, (1))

(the, (1, 1))

(dog, (1))

(the, 1), (quick,

1), (brown, 1)

(fox, 1), (jumps,

1), (over, 1)

(the, 1), (brown,

1), (dog, 1)

Fetch shuffle data from remote file systems

HDFS Block 1

…

HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2018 Copyright 2018 Cray Inc.
161

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

These are also
 pipelined

into a sin
gle ta

sk
per

node

CUG 2018 Copyright 2018 Cray Inc.
162

Execution

"the quick

brown"

"fox jumps

over"

"the brown

dog"

(quick, 1)

(brown, 2)

(fox, 1)

(jumps, 1)

(over, 1)

(the, 2)

(dog, 1)

(the, 1), (quick,

1), (brown, 1)

(fox, 1), (jumps,

1), (over, 1)

(the, 1), (brown,

1), (dog, 1)

HDFS Block 1

…

HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

CUG 2018 Copyright 2018 Cray Inc.
163

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Take(5)

CUG 2018 Copyright 2018 Cray Inc.
164

Spark on Cray XC

CUG 2018 Copyright 2018 Cray Inc.
165

Spark on XC: Typical Setup Options

● Cluster Compatibility Mode (CCM) option
● Set up and launch standalone Spark cluster in CCM mode; run

interactively from Mom node or submit batch script
● An example recipe can be found in:

“Experiences Running and Optimizing the Berkeley Data Analytics Stack on
Cray Platforms”, Maschhoff and Ringenburg, CUG 2015

● Container option
● Shifter container runtime (think “Docker for XC”) developed at

NERSC
● Acquire node allocation: run master image on one node, interactive

image on another, worker images on rest
● Cray’s Urika-XC analytics suite uses this approach

● Challenge: Lack of local storage for Spark shuffles and
spills.

Reminder: Spark Shuffle –
Standard Implementation

● Senders (“mappers”) send data
to block managers; block
managers write to local disks,
tell driver how much destined for
each reducer

● Barrier until all mappers
complete shuffle writes

● Receivers (“reducers”) request
data from block managers that
have data for them; block
managers read from local disk
and send

● Key assumption: large, fast local
block storage device(s) available
on executor nodes

Map task
thread

Block
manager

Disk

Reduce
task

threadRequest

Driver
(scheduler,
block and

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node

CUG 2018 Copyright 2018 Cray Inc.
167

Shuffle on XC – Version 1

● Problems: No local disk on standard XC40
● First try: Write to Lustre instead

● Biggest Issue: Poor file access pattern for lustre (lots of small files, constant
opens/closes). Creates a major bottleneck on Lustre Metadata Server (MDS).

● Issue 2: Unnecessary extra traffic through network

Map task
thread

Block
managerLustre

Reduce
task

threadRequest

CUG 2018 Copyright 2018 Cray Inc.
168

Shuffle on XC – Version 2

● Second try: Write to RAMDisk
● Much faster, but …
● Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up

quickly; takes away memory that could otherwise be allocated to Spark
● Spark behaves unpredictably when it's local scratch space fills up (failures not

always simple to diagnose)

Map task
thread

Block
managerRAMDisk

Reduce
task

threadRequest

CUG 2018 Copyright 2018 Cray Inc.
169

Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias

towards faster RAM)

Map task
thread

Block
managerRAMDisk

Reduce
task

threadRequest

TCP

Lustre

CUG 2018 Copyright 2018 Cray Inc.
170

Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)

● Initially fast and keeps working when RAMDisk full

● Issues: Slow once RAMDisk fills; Round robin between directories (no bias
towards faster RAM), but can specify multiple RAM directories

Map task

thread

Block

managerRAMDisk

Reduce

task

threadRequest

TCP

Lustre

CUG 2018 Copyright 2018 Cray Inc.
171

Shuffle on XC – with Shifter PerNodeCache

● Shifter implementation: Per-node loopback file system
● NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary

filesystem

● Local to each node – fully cacheable

● Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space

● Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

● Urika-XC ships as a Shifter image and uses this approach

Map task
thread

Block
manager

Sparse,
cacheable

“local”
filesystem

Reduce
task

threadRequest

TCP

Lustre

File

CUG 2018 Copyright 2018 Cray Inc.
172

Other Spark Configurations

● Many config parameters … some of the more relevant:
● spark.shuffle.compress: Defaults to true. Controls whether

shuffle data is compressed. In many cases with fast interconnect,
compression and decompression overhead can cost more than
the transmission time savings. However, can still be helpful if
limited shuffle scratch space.

● spark.locality.wait: Defaults to 3 (seconds). How long to wait for
available resources on a node with data locality before trying to
execute tasks on another node. Worth playing around with -
decrease if seeing a lot of idle executors. Increase if seeing poor
locality. (Can check both in history server.) Do not set to 0!

CUG 2018 Copyright 2018 Cray Inc.
173

Spark Performance on XC: HiBench

0	
20	
40	
60	
80	
100	
120	

Sca
laK
me
an
s	

Sca
laP
ag
era
nk
	

Sca
laS
lee
p	

Sca
laS
ort
	

Sca
laT
era
so
rt	

Sca
laW

ord
co
un

Sca
laB
ay
es	

El
ap

se
d	
?m

e	
(s
)	

Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

● Intel HiBench
● Originally MapReduce, Spark

added in version 4
● Compared performance

with Urika XA system
● XA: FDR Infiniband, XC40:

Aries
● Both: 32 core Haswell nodes
● XA: 128 GB/node, XC40: 256

GB/node (problems fit in
memory on both)

● Similar performace on
Kmeans, PageRank, Sleep

● XC40 faster for Sort,
TeraSort, Wordcount,
Bayes

CUG 2018 Copyright 2018 Cray Inc.
174

Spark Performance on XC: GraphX

● GraphX PageRank
● 20 iterations on

Twitter dataset
● Interconnect

sensitive
● GX has slightly

higher latency and
lower peak TCP
bandwidth than XC
due to buffer chip

693

391

183
137

0

100

200

300

400

500

600

700

800

Amazon EC2 (10 GbE) Urika XA (FDR IB) Urika GX (Aries +
Buffer)

XC 30 (Aries)

Se
co

nd
s

Spark GraphX PageRank

CUG 2018 Copyright 2018 Cray Inc.
175

Demo: PySpark in Jupyter

CUG 2018 Copyright 2018 Cray Inc.
176

Alchemist
An Apache Spark ó MPI Interface

A Collaboration of Cray and the UC Berkeley RiseLab (Alex Gittens, Kai Rothauge,
Michael W. Mahoney, Shusen Wang, Jey Kottalam)

Slides courtesy Kai Rothauge

Ground
(context metadata

service)

WAVE
(decentralized

authorization service)
Confluo

(formerly DiaLog)

Py
W

re
n

Ray

RLlib Ray Tune
Spark

HDFS, Kafka,
Cassandra,
DBMSes, …

O
pa

qu
e

D
riz

zl
e

Al
ch

em
is

t

Clipper

Mixed-autonomy
Traffic

Pylot
(self-driving

platform)
Cloud robotics Smart Buildings

Jarvis

TensorFlow,
PyTorch,
MXNet,

Caffe2, …

FireSim AWS, Azure, GCE, Kubernetes, Mesos, …

Applications

Processing

Infrastructure
(cluster management,
storage, authorization &
authentication,
metadata management, …)

RISE Stack

Te
gr

a

Slides courtesy Kai Rothauge, UC Berkeley

MPI vs Spark
• Cray and AMPLab performed case study for numerical linear algebra on Spark vs. MPI

• Why do linear algebra in Spark?

• Pros:
• Faster development, easier reuse
• One abstract uniform interface (RDD)
• An entire ecosystem that can be used before and after the NLA computations
• Spark can take advantage of available local linear algebra codes
• Automatic fault-tolerance, out-of-core support

• Con:
• Classical MPI-based linear algebra implementations will be faster and more efficient

Slides courtesy Kai Rothauge, UC Berkeley

Rank 20 PCA of 2.2TB oceanic data
MPI vs Spark

A. Gittens et al. “Matrix factorizations at scale: A comparison

of scientific data analytics in Spark and C+MPI using three

case studies”, 2016 IEEE International Conference on Big Data

(Big Data), pages 204–213, Dec 2016.

• Performed a case study for
numerical linear algebra on
Spark vs. MPI:
• Matrix factorizations

considered include Principal
Component Analysis (PCA)

• Data sets include
• Oceanic data: 2.2 TB
• Atmospheric data:

16 TB

Slides courtesy Kai Rothauge, UC Berkeley

MPI vs Spark: Lessons learned

• With favorable data (tall and skinny) and well-adapted algorithms, linear

algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads are orders of magnitude higher than the actual

computations

• Overheads include time until stage end, scheduler delay, task start delay, executor

deserialize time, inefficiencies related to running code via JVM

• The gaps in performance suggest it may be better to interface with

MPI-based codes from Spark

Slides courtesy Kai Rothauge, UC Berkeley

Alchemist
• Interface between Apache Spark and existing MPI-based libraries for NLA, ML, etc.
• Design goals include making the system easy to use, efficient, and scalable
• Two main tasks:

• Send distributed input matrices from Spark to MPI-based libraries (Spark => MPI)
• Send distributed output matrices back to Spark (Spark <= MPI)

• Want as little overhead as possible when transferring data between Spark and a library
• Three possible approaches:

• File I/O (e.g. HDFS)
• Use shared memory buffers, Apache Ignite, Alluxio, etc.
• Use in-memory transfer, send data between processes using sockets

too slow!
extra copy in memory

Slides courtesy Kai Rothauge, UC Berkeley

Truncated SVD Alchemist vs Pure Spark

176 211 295
495

1272

1527

DNF DNF

25 GB 50 GB 100 GB 200 GB

Alchemist Pure Spark

• Use Alchemist and MLlib to get

rank 20 truncated SVD

• Setup:

• 30 KNL nodes, 96GB DDR4,

16GB MCDRAM

• Spark: 22 nodes; Alchemist: 8

nodes

• A: m-by-10K, where m = 5M,

2.5M, 1.25M, 625K, 312.5K

• Ran jobs for at most 60 minutes

(3600 s)

• Alchemist times include data

transfer

Slides courtesy Kai Rothauge, UC Berkeley

Don’t miss Alex Gitten’s talk on Tuesday!

Alchemist: An Apache Spark <=> MPI Interface
Technical Session 9C
Tuesday, 4:00-4:30PM

Right after Alex Heye’s talk

Deep Learning in Spark with BigDL

CUG 2018 Copyright 2018 Cray Inc.
185

Motivating Example: Precipitation Nowcasting

● Problem: Predict precipitation locations and rates at a
regional level over a short timeframe
● Neighborhood level predictions
● T+0 – T+6 hours

● Standard Approach: Numerical Weather Prediction
● Physics based simulations
● High computational cost limits performance and accessibility

● Cutting edge approach: Deep Learning
● Predict rainfall by learning from historical data
● Heavy computation occurs ahead of time
● Pre-Trained models can be deployed as soon as data is available

CUG 2018 Copyright 2018 Cray Inc.
186

Data Processing Pipeline

Data Collection
• Historical Radar Data

(NETCDF)
• Geographical Region

(Eg:- Seattle)
• Days with over 0.1 inches

of precipitation, info from
NOAA – NCDC

• Radar scans every 5-10
minutes throughout the
day

Transformation
• Raw radial data structure

converted to evenly
spaced Cartesian grid
(Tensors with float 32)

• Resolution scaling and
clipping

• Configure dimensionality
• Sequencing
• 2 channels –

Reflectivity, Velocity
• Uses Py-ART package

Sampling
• Time-series
• Inputs and

Labels
• Random

sampling
BigDL

CUG 2018 Copyright 2018 Cray Inc.
187

Initial Implementation: Tensorflow + Spark

● Separate workflows – no integration
● Forced overhead – data movement
● Distinct data pipelines

● Data processing – highly distributed analytics platform
● DL Training implementation – dense compute platform

● Pro:
● Specialized hardware
● good individual performance

● Con:
● Productivity loss
● Fragmented workflow

Raw Data

P
rocessed D

ata

Trained Model

CUG 2018 Copyright 2018 Cray Inc.
188

New Implementation: Intel BigDL

● Distributed Deep Learning Library
● Natively integrated with Spark

● Single Spark Context
● Dataset stays in memory
● Effortless distributed training

● Optimized with MKL-DNN libraries
● Interface similar to Torch

● Stacked NN layers
● Define a very complex model in very few lines

● Quickly integrate Deep Learning and Machine Learning into
Spark-based data analytics workloads

BigDL

CUG 2018 Copyright 2018 Cray Inc.
189

BigDL Training Scaling

CUG 2018 Copyright 2018 Cray Inc.
190

Implementation: BigDL on Spark

● Singular workflow
● Data processing on spark flows directly into the training process with BigDL

● HPC scale with Urika-XC
● High performance compute nodes excel at data analytics
● MKL, MKL-DNN provide suitable optimization for DL workloads
● Suite of analytics tools to aid in development

● Pros:
● Single platform
● Highly productive development environment
● Effortless distribution

● Cons:
● Less flexible expressive Deep Learning tools
● Less flexible compute environment Raw Data

BigDL

Trained
Model

CUG 2018 Copyright 2018 Cray Inc.
191

Demo: BigDL MNIST

CUG 2018 Copyright 2018 Cray Inc.
192

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

CUG 2018 Copyright 2018 Cray Inc.
193

Q&A

Mike Ringenburg
mikeri@cray.com

Analytics and AI on XC Tutorial
Cray Graph Engine
CUG 2018
Kristi Maschhoff, Cray Inc.

Cray Graph Engine (CGE)

● Scalable parallel graph analytics framework
● Semantic in-memory graph database

● Basic graph pattern search
● Graph-theoretic algorithms (whole graph algorithms)

● W3C Standards Based
● Uses RDF Data representation
● Uses SPARQL as query language

● Built for “vertical scaling” based on parallel and distributed computing
principles — competitors are all horizontally scaled

● Brings interactivity to graph-based discovery
● Scaling and performance enables interactive analysis of very large

datasets

CUG 2018 Copyright 2018 Cray Inc.
196

Cray Graph Engine: Updates and Features

● Multi-Architecture Support
● CGE is available on the Urika-GX and the XC platforms.
● Strong scaling becomes a key differentiator

● Bigger datasets => more nodes => better performance
● Integration with Spark

● Interface to data sources - support for end-end analytic workflow realization
● Integration with Python/Jupyter Notebooks

● Connect to SPARQL endpoint using sparqlwrapper or sparql-client packages
● CGE Python API – utilizes the CGE Java API

● Start up server, run queries, updates, checkpoint, shut down
● Integration with R

● SPARQL package – connect to SPARQL endpoint, run queries, updates

● Don’t miss the talk on Thursday!
● Thursday, Technical Session 24C

● “Loading and Querying a Trillion RDF triples with Cray Graph Engine on the Cray XC”
● And you may also be interested in …

● BOF “Tools and Utilities for Data Science Workloads and Workflows,”

CUG 2018 Copyright 2018 Cray Inc.
197

What is RDF?

● Resource Description Framework (RDF)
● A standardized abstract data model centered around the notion of Triples
● A Triple expresses a directed relationship between two entities e.g.

● Components of a Triple are commonly known as Subject, Predicate and Object
● Subject – The thing I am making a statement about
● Predicate – The relationship being stated
● Object – The thing which is related

Rob Cray
WorksFor

http://www.cray.comhttp://www.dotnetrdf.org/people/RobVesse (URIs)

http://schema.org/worksFor

CUG 2018 Copyright 2018 Cray Inc.
198

Graph analysis workloads

● Two main workloads
● Pattern matching
● Whole graph analysis

● Typical systems only
good at one

● CGE excels at both

CUG 2018 Copyright 2018 Cray Inc.
199

What we plan to cover in the tutorial

● Background on CGE
● Pattern matching, whole-graph analysis

● Hands-on exercises
● Build and start up a database (cge-launcher)
● Run queries

● Using the cge-cli command line
● Using the CGE Web UI

● Integration with R and Python
● Connecting to the CGE SPARQL endpoint

● Using R SPARQL package
● Using Python SPARQLwrapper package

CUG 2018 Copyright 2018 Cray Inc.
200

A Graph-pattern matching workload

Given a pattern of interest
find all instances thereof…

CUG 2018 Copyright 2018 Cray Inc.
201

What SPARQL Can Do

● Subgraph isomorphism on specific, fixed patterns

“LUBM Query 9”
SELECT ?X, ?Y, ?Z
WHERE
{ ?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z}

● Plus lots of useful database features: filter, group, update…

faculty

course

advisor

teacherOf

takesCourse

student

CUG 2018 Copyright 2018 Cray Inc.
202

A Graph-theoretic Workload

What is the ranking of the targeted vertex?

What's the shortest route from A to B?

CUG 2018 Copyright 2018 Cray Inc.
203

Built-in Graph Functions (BGFs)

● RDF and SPARQL are graph-oriented, but SPARQL is limited
in its ability to express graph processing

● We augmented SPARQL with a capability of calling library
graph algorithms

● You can go from SPARQL to a graph algorithm and back to
SPARQL for further refinement

● The whole is greater than the sum of its parts

CUG 2018 Copyright 2018 Cray Inc.
204

CGE User Interface Model

● Database owner
launches the
database server

● Users interact via
their preferred
interface
● Commands Line
● Web Browser
● SPARQL Tools &

APIs
● CLI may be used

for scripted
workflows

CUG 2018 Copyright 2018 Cray Inc.
205

Building and launching

● cge-launch is used to build databases:

● cge-launch is a script that takes care of resource allocation for the user!

● After a successful build, the database directory will contain:

dataset.nt
rules.txt
dbQuads
string_table_chars
string_table_chars.index
graph.info

cge-launch –N 8 –I 16 –o /mnt/lustre/myresults –d
/mnt/lustre/mydata –l logfile

CUG 2018 Copyright 2018 Cray Inc.
206

The database port

● A TCP port used for communication with this server
instance:

cge-launch –N 8 –I 16 –p 3750 …

● The default is 3750

● Changing this port allows multiple versions

CUG 2018 Copyright 2018 Cray Inc.
207

The database directory

● The database directory, typically:

/mnt/lustre/user/datasets/lubm0

● Is the start of a directory tree containing all checkpoints,
and potentially authorized_keys

● It can be moved, archived and returned (!)

● Multiple users can access it, with permissions

CUG 2018 Copyright 2018 Cray Inc.
208

The Command Line Interface (CLI)

● The CLI is used for most interactions with the server, and has many
options…

● cge-cli help (or cge-cli help checkpoint) will give verbose
information on options

● Designed for scripted control, querying and updates with database
server

● Communications are secure SSH

cge-cli –db-port 3750 query myquery.rq

CUG 2018 Copyright 2018 Cray Inc.
209

CLI — most common options

query – submits SPARQL queries

update – submits SPARUL updates

sparql – submits both queries and updates

checkpoint – creates a database checkpoint

echo – check status of server

CUG 2018 Copyright 2018 Cray Inc.
210

Customization using NVPs and cge.properties file

● Retrieve the Default NVP Configurations

● For Piz Daint, need to modify internal memory allocator defaults
settings due to accommodate smaller 64GB nodes
● CGE uses a internal memory allocator to avoid issues with observed memory

fragmentation on XC systems
● cge.server.BuddyMemPercent 20 (current default 35)
● cge. server.PersistBuddyMemPercent 20 (current default 25)

● More information
● https://pubs.cray.com/content/S-3014/3.2.UP01/cray-graph-engine-user-guide

$ cge-cli nvp-info

CUG 2018 Copyright 2018 Cray Inc.
211

Hands on Exercises: Running CGE on Piz Daint

● See README for instructions and exercises
● /scratch/snx3000/kristyn/CUG2018/CGE/README

● Load CGE module
● module use /scratch/snx3000/kristyn/CUG2018/modulefiles

● module load cge

● To use CGE Web UI, need to set up ssh tunneling
● Piz Daint is only accessible via ssh from the front end

ela.cscs.ch,need to create a tunnel through the front end to Daint

● Use a random port number (8022) to connect to ssh port 22

● ssh -L localhost:8022:daint:22 ela.cscs.ch

● Then ssh directly into daint node, choosing another random port number

(15000) for CGE fe

● ssh –p 8022 –L localhost:15000:localhost:15000 localhost

CUG 2018 Copyright 2018 Cray Inc.

212

Hands on Exercises: Running CGE on Piz Daint (2)

● Create cge.properties file in ~/.cge/cge.properties
● Set up database directory on Lustre

● Make sure Lustre striping is set
● lfs setstripe –c 16 --stripe-size 16m .

● Needed files: dataset.nt, graph.info, rules.txt
● Set up query_results directory on Lustre

● Make sure Lustre striping is set
● Be sure to set passwordless ssh

● ssh-keygen
● cat id_rsa.pub >> authorized_keys

CUG 2018 Copyright 2018 Cray Inc.
213

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

CUG 2018 Copyright 2018 Cray Inc.
214

Q&A

Kristi Maschhoff
kristyn@cray.com

