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● Session I
● Introduction/Urika-XC/Accounts
● Python, Anaconda, and Dask
● Deep Learning with TensorFlow

● Session II
● Scaling Deep Learning with the Cray PE Machine Learning Plugin
● HPC, AI, and Analytics with R and pbdR

● Session III
● Spark and Alchemist
● BigDL

● Session IV
● Cray Graph Engine
● Wrap-up and questions

2



Cray Platforms – Urika-XC

● Urika-XC provides the unified stack to support Analytics, 
AI and HPC workloads at scale

● Urika-XC enables IT Director to leverage the existing 
investment in an XC system to support emerging 
Analytics and AI workloads, along with Simulations:
● Data Processing and General-purpose Big Data 

Analytics with Spark (Hadoop not supported)
● Predictive Analytics (ML)
● Pattern Matching (DL)
● Data discovery with Cray Graph Engine, with ability to 

scale to extremely large graphs
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At The Core Of Urika-XC:  Analytics At  
Supercomputer Scale

Cray
Aries™

Run a mix of workloads on a shared 
system, each able to scale to >256 
nodes leveraging the power of the 
Cray Aries network and Cray Linux 
Environment

Cray Graph Engine

Python distributed Dask
Apache Spark

HPC Simulation

CUG 2018 Copyright 2018 Cray Inc.
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Urika-XC includes two core components

§ A collection of scalable analytics frameworks 
and tools, enabling analytics, machine 
learning, and deep learning at scale

§ A unique in-memory Semantic Graph 
database, implemented using HPC 
technology, designed to handle the largest 
and most demanding use cases where graph 
discovery and pattern matching are required
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Urika-XC component packages

● Apache® Spark™ 
● Intel BigDL

● TensorFlow
● Cray PE Machine Learning 

Plugin
● Anaconda Python
● Dask Distributed
● Jupyter Notebook 
● Java 
● R 
● Scala
● Standard build tools

● Cray Graph Engine (CGE)

Runs inside a Container

CUG 2018 Copyright 2018 Cray Inc.
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Bringing Open Source Frameworks to 
Supercomputing

● Distributed in-memory processing for Big 
Data
● Extensive set of libraries and packages for the Spark 

environment

● Anaconda open data science platform and 
Dask for Python-based distributed parallel 
computing
● Well suited for large-scale data processing, predictive 

analytics, and scientific computing

● Jupyter Notebooks for interactive supercomputing 

● Integrated Deep Learning 

● TensorFlow popular deep learning framework

● Native deep learning in Spark
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Web UIs for Interactivity and Monitoring

● Jupyter Notebooks
● Interactive computing and 

visualization
● Works with TensorFlow, 

Dask, PySpark, or other 
Python-based workflows

● TensorBoard
● Visualize training
● Examine DNN layers
● Run live (monitor training) 

or after-the-fact
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Urika-XC Focus: Support the Entire AI Workflow

Deep Learning 
workflows are not 
limited to training  

Similar to other HPC and 
analytics workloads, 
significant portions of DL 
jobs are devoted to data 
collection, preparation and 
management.

Data
Acquisition

Data
Preparation

Model
Training

Model
Testing

• Cleansing
• Shaping
• Enrichment

Data Annotation 
(Ground Truth)

Test
Set

Validation
Set

Train 
Model

Evaluate Performance and 
optimize model

Cross-
Validation

Iterative

Training
Set
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Anaconda Python and Dask Distributed
CUG 2018
Michael Ringenburg, Cray Inc.
mikeri@cray.com

mailto:mikeri@cray.com


Training Accounts on Piz Daint
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● CSCS has generously provided temporary training accounts on Piz Daint

● Login through the front end, ela.cscs.ch, then can ssh daint

● Setup passwordless ssh. From daint:

● Add to local .ssh/config to go directly to daint (simplifies notebook setup):

● To run Urika-XC (please limit to at most 5 nodes each for now)
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user@daint102:~> ssh-keygen
user@daint102:~> ssh-copy-id -i .ssh/id_rsa.pub ela1

user@daint104:~> module use /apps/daint/system/cug
user@daint104:~> module load analytics
user@daint104:~> salloc -N 5 -C gpu --reservation=craycug start_analytics

Host daint
HostName daint.cscs.ch
User your-daint-username
ProxyCommand ssh -q -Y ela.cscs.ch -W %h:%p



Anaconda Distribution of Python

● Comes with large set of data science 
packages preinstalled
● 250+ Python and R packages preinstalled
● >1000 available in repositories
● Many optimized – e.g., work with Intel Python 

team
● Conda environment manager

● Linked to conda repos for more Python and R 
packages

● Ability to create, clone, share custom 
environments with your own python/package 
versions

● Handles all dependencies
● Allows sharing environments

● Anaconda and conda built in to Urika-XC

CUG 2018 Copyright 2018 Cray Inc.
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Using the Conda Environment Manager
● Create a new conda environment with conda create

● E.g., create an environment with Python 3.5 and biopython: 
conda create --name bio biopython python=3.5

● Activate your environment: 
source activate bio
(bio) mikeri:~>

● Python 3.5 with biopython will now be your default python:
(bio) mikeri:~> python
Python 3.5.3 | Anaconda, Inc.
>>> import Bio
>>> from Bio.Seq import Seq
>>> my_seq = Seq('CATGTAGACTAG')
>>> my_seq.translate()
Seq('HVD*', HasStopCodon(ExtendedIUPACProtein(), '*'))
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13



More Conda Commands

● Deactivate an environment: source deactivate
● Get rid of an environment: conda remove
● Clone an environment: conda clone
● List environments: conda info --envs
● Find available packages: conda search
● List packages: conda list
● Add package to current environment: conda install

● Can even install pip, and use that to install in a conda environment!
● More in docs: https://conda.io/docs/index.html

CUG 2018 Copyright 2018 Cray Inc.
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Using Conda Environments with PySpark

● Start up Spark cluster (will discuss in Session III)
● Activate your Conda environment

source activate bio

● Set PYSPARK_PYTHON to point to environment python
export PYSPARK_PYTHON=$(which python)

● Run pyspark
pyspark
>>> import Bio

CUG 2018 Copyright 2018 Cray Inc.
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Let’s try this now, in a notebook
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● Make sure your local .ssh/config is set up for daint
● Set up a tunnel from your laptop to daint:

● Launch Urika-XC, pointing to the tunneled port on daint

● Urika-XC will create a tunnel from ui-port on the compute 
node to login-port on daint

● Run your notebook, passing it ui-port

● Connect browser on laptop to localhost:local-port
16

% ssh -L <local-port>:localhost:<login-port> daint

% salloc -N 5 -C mc start_analytics --login-port <login-port> --ui-port <ui-port>

% export SHELL=$(which bash)
% jupyter notebook --port ui-port

Optional, for terminal access



Anaconda and PySpark on XC Demo

CUG 2018 Copyright 2018 Cray Inc.
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Dask and Dask Distributed
● Dask

● Set of parallel collections and operations for 
Python

● Integrated with most common packages, e.g., 
parallel version of numpy arrays

● Supports multiple task schedulers
● Threaded scheduler

● Backed by low-overhead thread pool
● Subject to Python Global Interpreter Lock (GIL)
● Best if application dominated by non-Python code

CUG 2018 Copyright 2018 Cray Inc.
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● Multiprocess scheduler
● Tasks shipped to separate local processes
● Not subject to Python GIL – allows true on-node parallelism
● Low overhead to launch/utilize pool, but overhead of moving data
● Best for mostly Python code (allows parallelism even with GIL)



Dask and Dask Distributed

● Distributed scheduler
● Dask scheduler for multi-node 

parallelism
● Runs a scheduler on one node, 

workers across allocated nodes
● Nanny processes for fault tolerance
● Supports distributed versions of all 

Dask data structures
● Allows asynchronous execution

(futures)

client scheduler

nanny

worker

nanny

worker

nanny

worker

CUG 2018 Copyright 2018 Cray Inc.
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Setting Up a dask.distributed Cluster

● Set up a dask distributed environment in anaconda
● conda create --name mydask dask distributed

● Get allocation
● salloc -N 4 -C mc

● Activate dask distributed 
● source activate mydask

● Start scheduler on one node, start workers on rest
● Urika-XC can do this automatically: 

● start_analytics --dask-env mydask
● Otherwise can use ssh or srun/aprun (details will vary based on your 

system)

CUG 2018 Copyright 2018 Cray Inc.
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Demo: dask.distributed on XC

CUG 2018 Copyright 2018 Cray Inc.
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Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third 
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. 
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and 
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, 
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the 
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.
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Q&A

Michael Ringenburg
mikeri@cray.com



Introduction to Deep Learning, 
TensorFlow, and Keras
CUG 2018
Michael Ringenburg, Cray Inc.



Outline

● Demystifying artificial intelligence / neural networks / 
deep learning 

● What does the computational problem that is deep 
learning look like?

● Parallel DL – Kristi will cover this in more depth
● What are TensorFlow and Keras?

CUG 2018 Copyright 2018 Cray Inc.
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A Specific Example

● An organic gardener is building a robot in his garage to recognize the 
10 insects found in his garden, and decide which ones to kill with a 
laser

● The robot will have a camera, and will capture JPEG files of the 
insects

● The robot needs a ‘program’ to classify each JPEG according to 
which of the 10 kinds of insect was photographed

JPEG ‘Program’
“That’s a 
Japanese 
beetle”!

CUG 2018 Copyright 2018 Cray Inc.
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Inputs & Outputs

● Our input is a JPEG
● 224x224 pixels, 3 colors à a 224x224x3 element vector of the 

pixel values
● Our output is a classification

● One of 10 categories à a 10 element vector with a “1” in the 
position representing the category to which the image belongs

How many “IF” statements will we need to 
figure out that a bunch of pixel values is a 
Japanese beetle?

CUG 2018 Copyright 2018 Cray Inc.
27



This is an Artificial Intelligence Problem

● If you can’t get the output from the input with a bunch 
of loops and conditionals, it’s AI

● But, if that won’t work, how can we do it?

● Hint #1: Any mapping of inputs to outputs is a function
● Hint #2: A function can be approximated using a (good) 

approximating function

CUG 2018 Copyright 2018 Cray Inc.
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An Approximating Function

● How can we determine a good approximating function?
● Choose its form (linear, polynomial, …)
● Minimize the overall error at a finite number of inputs with known 

outputs  - - fit the curve
● We have to find the values of the free parameters of the function that 

minimize the error – it doesn’t matter how we do it

Fitting the curve is a lot like training the function 
to know the answer for arbitrary inputs

CUG 2018 Copyright 2018 Cray Inc.
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Training via Gradient Descent

● We want to approximate y=f(x)
● Really, we want to find a function that maps a set of inputs to a set of 

outputs, to some level of accuracy
● We know yi=f(xi), for i=1,N
● Iterate:

● First iteration only: initialize the free parameters of f
● Calculate error (over our N known points)
● Calculate gradient of error, as a function of the free parameters of 

function f
● Adjust the free parameters of function f a ‘small’ distance in the 

direction of the negative of the error gradient
● Assess convergence & stop when ‘good enough’

CUG 2018 Copyright 2018 Cray Inc.
30



Training Error and Validation Error

● Here, we chose the 
function y=ax+b, with “a” 
and “b” as the free 
parameters

● “a” and “b” were chosen 
to minimize the training 
error, using the 5 points 
shown

● If we test this function 
against a distinct set of 
known data points, we 
could determine the 
validation error

y = 0.8889x + 0.8156

0

2

4

6

8

10

12

0 2 4 6 8 10 12

y
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A Really Useful Kind of Function
● This image shows a 

deep neural network
● An approximating 

function, with free 
parameters called 
weights and biases

● Deep networks have 
been found to be 
especially powerful

● Neural networks can 
approximate any 
continuous function 
arbitrarily wellX

f(X)

CUG 2018 Copyright 2018 Cray Inc.
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The Big Picture

● Training a “sufficiently complex” neural network on a 
“large” and “representative” data set should allow it to 
“know” about novel data
● If we show the neural network 1,000,000 pictures of cats, it should 

recognize new pictures of cats
● If we only show the network pictures of black cats, it might not 

recognize white cats
● If the network only has 4 “neurons”, it probably can’t learn to 

recognize cats

CUG 2018 Copyright 2018 Cray Inc.
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Some Terminology

● The training data consists of training examples
● Each example is an input with a known correct output, called a 
label

● Having labeled examples is a special but common case, and we 
won’t go deeper on this topic today

● A subset of the training data is often called a minibatch
● One ‘trip’ through the whole training set is called an 
epoch
● Often, bookkeeping, convergence testing, checkpointing, etc. are 

done after each epoch

CUG 2018 Copyright 2018 Cray Inc.
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Gradient Descent Algorithm

Calculate 
gradient, using 

the entire 
training set

Use gradient to 
update the 

model

Converged
? Done

Yes

No
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Training Schematic

Weights

Weights

Weights

Error

dW

dW

dW

Weights

Weights

Weights

dW

dW

dW

One or more training examples 
feedforward through the layers 
of weights, producing an output

The error, which is the 
difference between the 
label and the output, is 
backpropagated through 
the layers, producing the 
gradients

The weights are 
updated by adding 
the gradients (scaled 
by a multiplier) to 
them

Weights

Weights

Weights

Example

Output

+ Label

Feedforward
Backpropagate Update

Feedforward and 
backpropagate are 
much more 
expensive than 
update (>100X)
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Variations on the Gradient Descent Algorithm

● Stochastic Gradient Descent
● A gradient is calculated, and the model is updated, for each training 

example
● Batch Gradient Descent

● The training examples are divided into minibatches
● A gradient is calculated and the model is updated for each minibatch

● Strict Gradient Descent is seldom if ever used
● Strict Stochastic Descent is seldom if ever used
● Batch Gradient Descent is almost always used

● And, everyone calls it Stochastic Gradient Descent (SGD)

CUG 2018 Copyright 2018 Cray Inc.
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Parallelizing SGD

● Data parallel methods
● “Minibatch Parallel”
● Every worker independently calculates a “local gradient” using a 

“local minibatch”
● All workers participate in an allreduce, or communicate with a 

parameter server, to average all the gradients and synchronize 
with other workers

● Model parallel methods
● Break the neural network up – different layers on different nodes
● Useful if the model is too large for a single node
● But often more communication that data parallel methods

CUG 2018 Copyright 2018 Cray Inc.
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For More Information…

A good overview:

Efficient Processing of Deep Neural Networks: A Tutorial and 
Survey

https://arxiv.org/abs/1703.09039

CUG 2018 Copyright 2018 Cray Inc.
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Don’t miss Alex Heye’s talk on Tuesday!

Scaling Deep Learning without Impacting Batchsize

Technical Session 9C
Tuesday, 3:30-4:00PM



TensorFlow

CUG 2018 Copyright 2018 Cray Inc.
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● Developed by Google
● Most popular DL framework
● Large open source community
● APIs for

● Python
● C++
● Go
● Java

● Optimized for CPU and GPU architectures
● Ships with Urika-XC
● Learn TensorFlow

● Docs: https://www.tensorflow.org/get_started/
● Programmer’s Guide: https://www.tensorflow.org/programmers_guide/
● Tutorials: https://www.tensorflow.org/tutorials/

https://www.tensorflow.org/get_started/
https://www.tensorflow.org/programmers_guide/
https://www.tensorflow.org/tutorials/


Keras
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● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)
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model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, 

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)



● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, 

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
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● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, 

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
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● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, 

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
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● High-level neural networks API – just add layers!
● Compatible with TensorFlow, Theano, CNTK (and others)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, 

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

CUG 2018 Copyright 2018 Cray Inc.
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Demo: Keras MNIST
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Scalable Deep Learning with the Cray PE 
Machine Learning Plugin
CUG 2018
Kristi Maschhoff, Cray Inc.



Don’t miss Pete Mendygral’s talk on Thursday!

High Performance Scalable Deep Learning with the Cray Programming 
Environments Machine Learning Plugin

Technical Session 29A

1:00-2:30PM

Peter Mendygral, Nick Hill, Krishna Kandalla, Diana Moise, and Jacob 
Balma (Cray Inc.) and Marcel Schongens (Swiss National 

Supercomputing Centre)



HPC Attributes of Deep Learning



HPC Attributes

● DL training is a classic high-performance computing 
problem which demands:

● Large compute capacity in terms of FLOPs, memory capacity and 
bandwidth

● A performant interconnect for fast communication of gradients and 
model parameters

● Parallel I/O and storage with sufficient bandwidth to keep the 
compute fed at scale

CUG 2018 Copyright 2018 Cray Inc.
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Data Parallelism - Collective-based Synchronous SGD

● Data parallel training divides a global mini-batch of examples across processes
● Each process computes gradients from their local mini-batch
● Average gradients across processes
● All processes update their local model with averaged gradients (all processes have the 

same model)

● Not shown is the I/O activity of reading training samples (and possible augmentation)

Compute 
intensive

Communication 
intensive

Typically not 
much compute

CUG 2018 Copyright 2018 Cray Inc.
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Why do we want to scale?

● Deep Network Training
● We can strong scale training time-to-accuracy provided

● Number of workers (e.g., # nodes) << number of training examples
● Learning rate for particular batch size / scale is known

● Hyper-Parameter Optimization
● For problems and datasets where baseline accuracy is not known

● learning rate schedule
● momentum
● batch size

● Evolve topologies if good architecture is unknown (common with novel 
datasets / mappings) 
● Layer types, width, number filters
● Activation functions, drop-out rates

CUG 2018 Copyright 2018 Cray Inc.
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Parallelization Methods for DL 



Parallelization Techniques 

● Data Parallelism
● As described earlier, divides global mini-batch among processes
● Two methods for this:

● Synchronous: single model (possibly replicated across all processes) updated with 
globally averaged gradients every iteration

● Asynchronous: processes provide gradients every iteration but are allowed to fall out 
of sync from one another.  Processes each have their own model that may or may 
not be the same as any other process

● Model Parallelism
● Single model with layers decomposed across processes
● Activations communicated between processes

● Examples will focus on synchronous data parallel approach 

CUG 2018 Copyright 2018 Cray Inc.
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Distributed TensorFlow

● TensorFlow has a native method for parallelism across nodes
● ClusterSpec API
● Uses gRPC layer in TensorFlow based on sockets

● Can be difficult to use and optimize

● User must specify
● hostnames and ports for all worker processes
● hostnames and ports for all parameter server processes (see next slide)
● # of workers
● # of parameter server processes
● Chief process of workers

CUG 2018 Copyright 2018 Cray Inc.
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Distributed TensorFlow

● Number of parameter 
servers (PS) processes to 
use is not clear
● Too few PS results in many-to-

few communication pattern 
(very bad) and stalls delivering 
updated parameters

● Too many PS results in many-
to-many communication 
pattern (also bad)

● Users typically have to pick 
a scale and experiment for 
best performance
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Distributed TensorFlow Scaling on Cray XC40 - KNL
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MPI-based Data Parallel TensorFlow

● The performance and usability issues with distributed TensorFlow
can be addressed by adopting an MPI communication model

● TensorFlow does have an MPI option, but it only replaces point to 
point operations in gRPC with MPI
● Collective algorithm optimization in MPI not used

● Other frameworks, such as Caffe and CNTK, include MPI 
collectives

● An MPI collective based approach would eliminate the need for PS 
processes and likely be optimized without intervention from the 
user
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Scalable Synchronous Data Parallelism

● Note there are no PS processes in this model
● Resources dedicated to gradient calculation

input

model

input

model
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Uber Horovod

● Uber open source addon for TensorFlow only
that replaces native optimizer class with a new 
class
● Horovod adds an allreduce between gradient computation 

and model update in this class

● New Python class includes NCCL and MPI 
collective reductions for gradient aggregation

● https://github.com/uber/horovod

● No modifications to TensorFlow source required
● User modifies Python training script instead
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Cray Programming Environment Machine Learning 
Plugin (CPE ML Plugin)

● DL communication plugin with Python and C APIs

● Optimized for TensorFlow but also portable to other frameworks
● Callable from C/C++ source

● Called from Python if data stored in NumPy arrays or Tensors

● Like Horovod does not require modification to TensorFlow source
● User modifies training script

● Uses custom allreduce specifically optimized for DL workloads
● Optimized for Cray Aries interconnect and IB for Cray clusters

● Tunable through API and environment variables

● Supports multiple gradient aggregations at once with thread teams
● Useful for Generative Adversarial Networks (GAN), for example
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CPE ML Plugin Example



Tensorflow Training Script Modifications

● Both Horovod and CPE ML Plugin require some modifications to a 
serial training script

● For the CPE ML Plugin the changes are
● Importing the Python module (ml_comm)

● Initialize the module

● Possibly configure the thread team(s) for specific uses

● Broadcast initial model parameters

● Possible modifications to learning rate decay schedules and other mini-batch 

size dependent parameters to account for the effective mini-batch size across 

all processes

● Incorporate gradient aggregation between gradient computation and model 

update

● Finalize the Python module
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MNIST Example

● Dataset of handwritten digits from 0-9
● Simple CNN can be used to identify handwritten digits

● This example is adapted from the TensorFlow official MNIST 
example

● https://github.com/tensorflow/models/tree/master/official/mnist
● Modified script included with CPE ML Plugin

● module load craype-ml-plugin-py2/1.1.0
● less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py
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CPE ML Plugin - Import

● Access the Python API by importing the module
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CPE ML Plugin - Initialization

● Compute the number of trainable variables in the model
● Required for the CPE ML Plugin to pre-allocate needed communication 

buffers
● Example for init sets up a single thread team with one local thread 

per team, per MPI rank
● For GANs, may want to use 2 teams, to have 2 reductions in flight
● Number of threads per team, tunable parameter, biggest gain (1 to 2)
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CPE ML Plugin – Team Configuration

● Set the maximum number of steps (mini batches) to 
train for
● Verbose output every 200 steps

● Also set output path to rank-specific location
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CPE ML Plugin – Broadcast Initial Model

● Broadcast initial model parameter values from rank 0 
to all other ranks

● Then assign broadcasted values locally

CUG 2018 Copyright 2018 Cray Inc.
71



CPE ML Plugin – Gradient Aggregation

● Perform gradient averaging across all ranks between 
local gradient calculation and model update
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CPE ML Plugin – Finalize

● After all training steps are complete clean up data 
structures and MPI
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CPE ML Plugin – More information

● module avail craype-ml-plugin
● craype-ml-plugin-py2/1.0.1(TF 1.3) 
● craype-ml-plugin-py3/1.0.1(TF 1.3)

● Load modules in order:
● module load cray-python
● module load craype-ml-plugin-py3

● Please refer to CPE ML Plugin manpage for more details on usage
● man intro_ml_plugin
● Or from python shell

● Examples directory
● $CRAYPE_ML_PLUGIN_BASEDIR/examples

$ python3
>>> import ml_comm as mc
>>> help(mc)
>>> help(mc.init)
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CPE ML Plugin – Execution using Urika-XC

Procedure:
1. Load the analytics module

2. Allocate interactive nodes via SLURM or PBS

3. Execute the modified Tensorflow training script

$ module load analytics

$ salloc --nodes=2 --exclusive --gres=gpu -C P100

$ run_training –n 2 --ppn 1 --cudnn-libs /path/to/cudnn-8.0-v51/cuda/lib64 
--no-node-list “python mnist.py --enable_ml_comm
--data_dir=[mnist data pth] --model_dir=[train dir]”

$ qsub –I –q p100 –lnodes=2
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CPE ML Plugin Execution – Native XC

Procedure:
1. Locate/Install Tensorflow and set PYTHONPATH

2. Load the module cray-python and the craype-ml-plugin modules

3. Allocate interactive nodes (examples uses SLURM)

4. Execute the modified Tensorflow training script using srun

$ module load cray-python
$ module load craype-ml-plugin.py3

$ salloc --nodes=2 --exclusive --gres=gpu -C P100

$ srun --ntasks=2 --ntasks-per-node=1 --cpu_bind=none  python3 mnist.py
--enable_ml_comm --data_dir=[mnist data pth] --model_dir=[train dir]
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Instructions for Running Tensorflow on Piz Daint

% module load daint-gpu
% module avail Tensorflow

TensorFlow/1.2.1-CrayGNU-17.08-cuda-8.0-python3(default)
TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
TensorFlow/1.4.1-CrayGNU-17.08-cuda-8.0-python3
TensorFlow/1.4.1-CrayGNU-17.12-cuda-8.0-python3
TensorFlow/1.7.0-CrayGNU-17.12-cuda-8.0-python3

% module load TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
Loads cray-python, cuDNN, etc

% module load craype-ml-plugin-py3/1.0.1

Note: SLURM option --constraint=gpu on Piz Daint allocates the XC50 Intel Haswell 12-core nodes with 
GPU devices and automatically sets the SLURM option --gres=gpu

$ salloc --nodes=2 --exclusive --constraint=gpu
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Class Exercise: Tensorflow + CPE ML Plugin

● Run MNIST model using CPE ML Plugin on Piz Daint
● Step-by-Step Instructions:

● /scratch/snx3000/kristyn/CUG2018/Tensorflow/README

● Script provided to convert raw MNIST data to TFRecords file 
format, but can also use

● --data_dir=/scratch/snx3000/kristyn/datasets/mnist_data
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Using CPE ML Plugin with Keras

● Instructions for installing Keras
● Note: need to make sure Tensorflow and Keras versions are 

compatible
● For Tensorflow 1.3.0 need to use Keras 2.1.5

● git clone https://github.com/keras-team/keras.git
● cd keras
● git checkout tags/2.1.5

● Note: 
● Also make sure to use the Keras examples from the 2.1.5 branch
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Using CPE ML Plugin with Keras

● Modifications:
● Leverage the existing Tensorflow backend to keras

● Modify backend file to include CPE ML modifications
● keras-2.1.5/keras/keras/backend/tensorflow_backend.py

● Recompile
● Small modifications to user-level scripts

● Passing information to the backend for initialization, team configuration, 
and finalize

● Thanks to Diana Moise!
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Instructions for installing Keras (cont)

● Native XC
% module load cray-python
% module load TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
% python3 setup.py install --user

● Inside Urika-XC container
● Install into root: cd to keras directory, run install

% python setup.py install --user

● Install into conda environment 
% conda create --clone py36_tf_cpu --name py36_keras_cray_ml
% python setup.py install –user
% export PYTHONPATH=/opt/tensorflow_cpu:$PYTHONPATH
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Keras + CPE ML Plugin: Modifications to backend

● Added to tensorflow_backend.py
● Import ml_comm library and add new functions

# CRAY ADDED
import ml_comm as mc

# threads per team, number of teams, algorithm to use, grads len, total steps, ksteps, v, freq
def mc_init(th_team, n_teams, alg, grads_len, total_steps, ksteps, v, freq):

mc.init(th_team, n_teams, grads_len, "tensorflow")
for team in range(n_teams):

mc.config_team(team, alg, ksteps, total_steps, v, freq)

def mc_get_rank():
return mc.get_rank()

def mc_finalize():
mc.finalize()

# END CRAY ADDED
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Keras + CPE ML Plugin: Modifications to backend

● Broadcast Initial Model
● A bit complicated for a slide

● See source example:

● /scratch/snx3000/kristyn/CUG2018/keras/ tensorflow_backend_ml_comm.py

● Gradient Aggregation
# CRAY MOD

grads =tf.gradients(loss,variables,colocate_gradients_with_ops=True)

grads_mc = mc.gradients(grads, 0)

return grads_mc

# return tf.gradients(loss, variables, colocate_gradients_with_ops=True)

# END CRAY MOD
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Keras + CPE ML Plugin: Changes to user script

● Starting point was keras/examples/mnist_cnn.py
● Import some extra libraries at the beginning

● No other changes to user script until after we compile model

# CRAY ADDED
import numpy as np
import os
import math
nnodes = int(os.environ['SLURM_NNODES'])
# END CRAY ADDED

model.compile(... )
#CRAY ADDED
# calculate input parameters to pass through to backend
K.mc_init( …)
#END CRAY ADDED
model.fit( … )
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Keras + CPE ML Plugin: Changes to user script

● Need to determine number of trainable parameters, adjust number 
of epochs, calculate max_steps, then call backend to perform init

# CRAY ADDED

# Determine number of trainable variables
trainable_count = int(np.sum([K.count_params(p) for p in set(model.trainable_weights)]))

# Adjust epochs based on parallel throughput
epochs = int(epochs/nnodes)

# Compute max_steps
ntrain_samples = x_train.shape[0]
ntest_samples = x_test.shape[0]
total_steps = int(math.ceil(epochs * (ntrain_samples + ntest_samples)/batch_size))

# threads per team, number of teams, algorithm to use, grads len, total steps, ksteps, v, freq
K.mc_init(1, 1, 0, trainable_count, total_steps, 2000, 2, 1000)

# END CRAY ADDED
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Running Keras + CPE ML Plugin on Piz Daint

Load modules

Allocate GPU nodes from SLURM

Run

$ salloc --nodes=2 --exclusive --constraint=gpu

$ module load daint-gpu
$ module load TensorFlow/1.3.0-CrayGNU-17.08-cuda-8.0-python3
$ module load craype-ml-plugin-py3/1.0.1

srun -n 2 python3 keras-2.1.5/keras/examples/mnist_cnn_ml.py

CUG 2018 Copyright 2018 Cray Inc.
86



Class Exercise: Keras + CPE ML Plugin

● Install keras

● Run keras mnist_cnn model (or other examples) 

● Modify keras tensorflow_backend.py and mnist_cnn

model to use CPE ML Plugin

● Apply CPE ML Plugin to other keras example models

● acgan_mnist model
● Step-by-Step Instructions:

● /scratch/snx3000/kristyn/CUG2018/Keras/README
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Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 
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parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.
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exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.
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Q&A

Kristi Maschhoff
kristyn@cray.com



Analytics and AI on XC Tutorial
Setting up an R Environment
CUG 2018
Kristi Maschhoff, Cray Inc.



What is R? 

● R project for Statistical Computing
● https://www.r-project.org
● Environment for statistical computing and graphics
● “GNU S”
● Freely available – but note most R packages have licenses

● (GPL-2, GPL-3, MIT, Apache, etc.)
● Latest Version R 3.5.0 (Joy in Playing)

● R version 3.5.0 (2018-04-23)  -- "Joy in Playing"
● CRAN - The Comprehensive R Archive Network

● https://cran.r-project.org
● Network of ftp and web servers that store identical, up-to-date, versions of 

code and documentation for R
● R manuals

● https://cran.r-project.org/doc/manuals/
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Interactivity and R

● R community was developed with the goal of 
interactive exploration of data
● Basic R interactive console – provided with standard distribution
● Many R users work use R using an IDE

● RStudio is by far the most popular IDE for R
● R Markdown files and R Notebooks
● Files have extension .Rmd

● R can also be run using Jupyter Notebooks
● Install IRKernel
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What we plan to cover in the tutorial

● Setting up an R environment on XC

● R provided with Urika-XC 

● Urika-1.1 release pulls R from the EPEL repository
● For Urika-1.2 release, the plan is to provide optimized R using Cray libsci inside the container

● Update on R support on XC built with Cray libsci

● module load cray-R
● Currently support R-3.3.3

● Build Instructions - for those needing additional customization

● Build R using gcc/gfortran
● Build R using gcc/gfortran + Cray libsci
● Build R using gcc/gfortran + Cray libsci_acc (GPUs)
● Build R using Intel C++ and Fortran Compilers + MKL
● Build R using gcc/gfortran + MKL

● Installing R packages

● Using R from Jupyter Notebooks

● Using Anaconda to manage R packages and multiple R versions (environments)

● Setting up a R cluster using “parallel” package

● Setting up a pdbR environment (pdbMPI)
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Setting up an R environment on XC

● Base R Install
● Why build from source?

● Allows one to build optimized versions which use optimized math 

libraries (Cray libsci, Intel MKL)

● Download most recent version from CRAN

● R-3.5.0.tar.gz

● wget https://cran.r-project.org/src/base/R-3/R-3.0.0.tar.gz

● Enable additional non-default capabilities

● Memory profiling

● CRAN repository also provides precompiled binaries 

● Linux, OS X, Windows
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Be prepared to fight with the configure script!

● R build uses a configure script to build Makefile
● Be prepared to fight!

● This is especially true when trying to customize R
● Linking to vendor BLAS/LAPACK
● Enabling additional capabilities
● Carefully review config.log
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Simple R build from source using gcc/gfortran

> module swap  PrgEnv-cray PrgEnv-gnu
> wget https://cran.r-project.org/src/base/R-3/R-3.5.0.tar.gz
> (Note: other mirror sites work as well, for example
> wget http://cran.rstudio.com/src/base/R-3/R-3.5.0.tar.gz
> tar -xzf R-3.5.0.tar.gz
> cd R-3.5.0/

> ./configure --prefix=/tmp/CUG2018/R/sandbox/install/R-3.5.0
> make
> make check; make install
> cd /tmp/CUG2018/R/sandbox/install/R-3.5.0/bin

> ./R
> file R

> ( R: POSIX shell script, ASCII text executable )
> file exec/R

> exec/R: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses shared libs), for GNU/Linux 3.0.0, not 
stripped
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Example summary output from configure script

Fortran 90/95 compiler: gfortran -g -O2
Obj-C compiler: 
Interfaces supported: X11, tcltk
External libraries: readline, BLAS(generic),

LAPACK(generic), curl
Additional capabilities: PNG, JPEG, TIFF, NLS, cairo, ICU
Options enabled: R profiling

Capabilities skipped: 
Options not enabled: shared BLAS, memory profiling

Recommended packages: yes

R is now configured for x86_64-suse-linux-gnu

Source directory: .
Installation directory:
/tmp/CUG2018/R/sandbox/install/cray-R-3.5.0

C compiler: gcc -g -O2
Fortran 77 compiler: gfortran -g -O2

Default C++ compiler: g++ -g -O2
C++98 compiler: g++ -std=gnu++98 -g -O2
C++11 compiler: g++ -std=gnu++11 -g -O2
C++14 compiler: g++ -std=gnu++14 -g -O2
C++17 compiler: g++ -std=gnu++17 -g -O2
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Installed Packages – Base Install
> installed.packages()[,c("Version","License")]

Version License 

methods "3.5.0" "Part of R 3.5.0" 

mgcv "1.8-23" "GPL (>= 2)"

nlme "3.1-137" "GPL (>= 2) | file LICENCE"

nnet "7.3-12" "GPL-2 | GPL-3" 

parallel "3.5.0" "Part of R 3.5.0" 

rpart "4.1-13" "GPL-2 | GPL-3" 

spatial "7.3-11" "GPL-2 | GPL-3" 

splines "3.5.0" "Part of R 3.5.0" 

stats "3.5.0" "Part of R 3.5.0" 

stats4 "3.5.0" "Part of R 3.5.0" 

survival "2.41-3" "LGPL (>= 2)" 

tcltk "3.5.0" "Part of R 3.5.0" 

tools "3.5.0" "Part of R 3.5.0" 

utils "3.5.0" "Part of R 3.5.0" 

Version License 

base "3.5.0" "Part of R 3.5.0" 

boot "1.3-20" "Unlimited" 

class "7.3-14" "GPL-2 | GPL-3" 

cluster "2.0.7-1" "GPL (>= 2)"

codetools "0.2-15" "GPL" 

compiler "3.5.0" "Part of R 3.5.0" 

datasets "3.5.0" "Part of R 3.5.0" 

foreign "0.8-70" "GPL (>= 2)"

graphics "3.5.0" "Part of R 3.5.0" 

grDevices "3.5.0" "Part of R 3.5.0" 

grid "3.5.0" "Part of R 3.5.0" 

KernSmooth "2.23-15" "Unlimited" 

lattice "0.20-35" "GPL (>= 2)"

MASS "7.3-49" "GPL-2 | GPL-3" 

Matrix "1.2-14" "GPL (>= 2) | file LICENCE"
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>capabilities()

● Description
● Report on the optional features which have been compiled into 

this build of R
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Prebuilt versions of R provided on XC

● Cray PE provides R prebuilt with Cray libsci using the GNU compiler
● module load cray-R
● Currently supported version is 3.3.3

● R is also provided with Urika-XC
● Urika-XC 1.1 release

● Uses prebuilt R from EPEL repository ( R version 3.4.2)
● Installed in /usr/lib64/R in the Urika-XC container
● Provides R built as a shared/dynamic library

● Can use R helper routines such a ”littler”
● Flag --enable-R-shlib causes the make process to build R as a dynamic (shared) library, typically called libR.so, and 

link the main R executable against that library
● Possible performance penalty (10%) mentioned in R install notes – have not verified on XC

● Primarily included to support sparkR
● Planned for Urika-XC 1.2 release

● R version 3.5.0 (or most recent release)
● Plan to provide R prebuilt with Cray libsci + GNU compiler
● R built as a shared/dynamic library
● pbdR Ecosytem pre-installed using Cray MPI (initial base set of packages)
● Support for using Jupyter notebooks via IRKernel
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Build of R using gcc/gfortran + Cray libsci

Example build recipe: (for those needing additional customization)
> module swap PrgEnv-cray PrgEnv-gnu
> wget https://cran.r-project.org/src/base/R-3/R-3.5.0.tar.gz
> tar -xzf R-3.5.0.tar.gz
> cd R-3.5.0/

# Cray provides an environment variable with the path to the libsci directory
echo $CRAY_LIBSCI_PREFIX_DIR

> ./configure --build=x86_64-suse-linux --prefix=${install_dir} --with-blas="-fopenmp -
L${CRAY_LIBSCI_PREFIX_DIR}/lib -lsci_gnu_61_mp"  --with-lapack"-Wl,-ydgetrf”

# Note: additional arguments provided with the --with-lapack option to configure is really a workaround
# to a bug in the configure script (Thanks to Faisal Hadi - Cray libsci manager for the fix). This allows the
# configure script to find the LAPACK routine in libsci

> make
> make install 
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Build R using Intel C++ and Fortran Compilers + MKL

> module swap PrgEnv-cray PrgEnv-intel
> wget https://cran.r-project.org/src/base/R-3/R-3.4.0.tar.gz
> tar -xzf R-3.4.0.tar.gz

> setenv CC icc
> setenv CXX icpc
> setenv AR xiar
> setenv LD xild

> setenv CFLAGS “-03 –ipo –qopenmp –xHost”
> setenv CXXFLAGS “-03 –ipo –qopenmp –xHost”
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 CC="icc -mkl" CXX="icpc -mkl" FC="ifort -mkl" F77="ifort -mkl" FPICFLAGS="-
fPIC" AR=xiar LD=xild --with-x=no --with-blas=-lmkl --with-lapack=-lmkl

> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin

https://software.intel.com/en-us/articles/build-r-301-with-intel-c-compiler-and-intel-mkl-on-linux
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Simple build using gcc/gfortran + MKL

> module load PrgEnv-intel
> module load gcc

> setenv CC gcc
> setenv F77 gfortran
> setenv AR xiar
> setenv LD xild
> setenv MKL “-lmkl_gf_lp64 -lmkl_intel_thread -lmkl_core -liomp5 -lpthread”

> ./configure --prefix=/lus/scratch/kristyn/R/R-3.4.0/R-3.4.0 --with-blas="$MKL" --with-lapack
> make
> make install
> cd /lus/scratch/kristyn/R/R-3.4.0/bin
> ./R

https://cran.r-project.org/doc/manuals/r-release/R-admin.html#MKL
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Build R + MKL build notes

Default is to build shared libraries:
Useful to print out shared library dependencies to verify MKL is being used

> ldd exec/R
linux-vdso.so.1 (0x00007ffc247ed000)
libmkl_gf_lp64.so => 
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_gf_lp64.so 
(0x00007f47f09da000)
libmkl_intel_thread.so => 
/opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_intel_thread.so
(0x00007f47eefcc000)
libmkl_core.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/mkl/lib/intel64_lin/libmkl_core.so
(0x00007f47ed525000)
libiomp5.so => /opt/intel/compilers_and_libraries_2017.1.132/linux/compiler/lib/intel64/libiomp5.so 
(0x00007f47ed182000)

Can also specify to build static binary by using --enable-static when running ./configure
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Set up simple modulefile

● Create a modulefiles directory
● /lus/scratch/kristyn/modulefiles/R

● module use /lus/scratch/kristyn/modulefiles
● module load R/R-3.4.0

where the file R-3.4.0 contains

#%Module2.0
##
module load java
module load gcc

set R_VERSION R-3.4.0
set R_PATH /lus/scratch/kristyn/R/$R_VERSION/

prepend-path PATH $R_PATH/bin
prepend-path LD_LIBRARY_PATH $R_PATH/lib64/R/library
prepend-path MANPATH $R_PATH/share/man
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Installing R Packages from CRAN

● Bring up R on login node and install needed packages 
● Need external access to download packages
● In general, most tested, and most reliable compiler for R packages are the 

GNU compilers (gcc, gfortran)
● Note, if using a site-installed version, any additional installed packages will be 

saved to a location in your home directory
● ~/R/x86_64-suse-linux-gnu-library/3.3

> R packages we will be using for the tutorial
> install.packages(“foreach”)
> install.packages(“doParallel”)
> install.packages(“rlecuyer”)
> install.packages(“randomForest”)
> install.packages(“SPARQL”)
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Installing R packages within Urika-XC

● Use start_analytics
● Specify interactive node to run on login node
● Better connectivity than from XC compute node

● For Urika-XC 1.1
● R version 3.4.2 (2017-09-28) -- "Short Summer"
● User packages installed to 

● ~/R/x86_64-redhat-linux-gnu-library/3.4
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Using R on Piz Daint using Urika-XC

kristyn@daint101:~> module load analytics
kristyn@daint101:~> start_analytics –d

Once inside the container, bring up R 
interactive shell to install packages

bash-4.2$ R

Inside R interactive shell

> install.packages("foreach")

Installing package into ‘/usr/lib64/R/library’
(as ‘lib’ is unspecified)
Warning in install.packages("foreach") :
'lib = "/usr/lib64/R/library"' is not writable

Would you like to use a personal library 
instead? (y/n) y
Would you like to create a personal library
~/R/x86_64-redhat-linux-gnu-library/3.4
to install packages into? (y/n) y
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Running R in Jupyter With The R Kernel

● Install R packages

● Need to make R kernel visable for Jupyter
● Install IRKernel for the current user

● Start up Jupyter Notebook
● R should now be one of the kernels in the upper right corner in the 

“New” drop-down menu 

> install.packages(c('repr','IRdisplay','evaluate','crayon','pbdZMQ','devtools’, 'uuid', 'digest’))
> devtools::install_github('IRkernel/Irkernel')

> IRkernel::installspec()
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Running R in Jupyter using Urika-XC

Since Piz Daint is only accessible via ssh from the front end ela.cscs.ch, we need to create a tunnel 
through the front end to daint to use Web Uis (Jupyter, also for CGE)

Example: 
Create tunnel from laptop to internal daint node through ela.cscs.ch

$ ssh -L localhost:8022:daint:22 ela.cscs.ch
Then in a second terminal, log directly into the daint node

$ ssh -p 8022 -L localhost:15000:localhost:15000 localhost

Bring up Urika-XC
$ start_analytics -d --login-port 8022 --ui-port 15000

Then inside container, start Jupyter Notebook
bash-4.2$ jupyter notebook --port 15000
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Managing R using Anaconda

● Anaconda R
● Quite useful for managing R packages and multiple R environments on XC
● List of R language packages available for install from conda is located at http://repo.continuum.io/pkgs/r/
● R Essentials bundle includes about 100 of the most popular packages for R

> conda create --name myR -c r r-essentials
> source activate myR

● Also can specify specific versions of R

> conda create --name myR_3.2.2 -c r r=3.2.2

● When using an older version of R I found it works better to create the conda environment first, activate 
this, then install the allowing packages,  allowing conda to manage the package version dependencies

> source activate myR_3.2.2
> conda install -c r r-essentails r-xml
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Running R using CCM

� salloc -N 4 --partition=ccm_queue

� # Determine nid allocations
� echo “$SLURM_NODELIST” or env | grep SLURM

� SLURM_NODELIST=nid0000[4-7]

� # load R module
� module use /lus/scratch/R/modulefiles
� module load R/R-3.4.0

� # Log into head node and propagate environment
� module load ccm
� ccmlogin –V

� # Start up R on head node
� R

Note: CCM may not be available on all XC systems. This is a site-configuration. 
Piz Daint does not have CCM running, but is set up so one can use ssh between nodes within a job.

See   /scratch/snx3000/kristyn/CUG2018/R/README  for additional details.
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R using “parallel” package using CCM mode
Setting up a simple parallel socket cluster
“parallel” package

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf

> library(parallel)
> machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

> machineVec
> [1] "nid00004" "nid00004" "nid00004" "nid00004" "nid00005" "nid00005"
> [7] "nid00005" "nid00005" "nid00006" "nid00006" "nid00006" "nid00006"
> [13] "nid00007" "nid00007" "nid00007" "nid00007"
> cl <- makeCluster(machineVec)
> cl
> socket cluster with 16 nodes on hosts 'nid00004', 'nid00005', 'nid00006', 'nid00007’

> help(makeCluster)

> stopCluster(cl)
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Running parallel R package on Piz Daint

● Note: CCM may not be available on all XC systems. This is a site-configuration. 
● Piz Daint does not have CCM running, but is set up so one can use ssh between nodes within a job.

● Allocate nodes
� salloc -N 4 -C mc 

� # Determine nid allocations
� echo “$SLURM_NODELIST” or env | grep SLURM

� SLURM_NODELIST=nid0000[4-7]

� # load R module
� module load cray-R

� # Start up R on login node
� R

� # Set up socket-based cluster (follow same instructions as previous slide)

See   /scratch/snx3000/kristyn/CUG2018/R/README  for additional details.
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Enabling ssh between nodes using start_analytics

● On SLURM-based systems
● salloc -N 4 -C mc --image=custom:analytics-

1.01.0000.201712122205_0082-latest start_analytics –ssh

● On interactive node
� # Determine nid allocations

� echo “$SLURM_NODELIST” or env | grep SLURM

� SLURM_NODELIST=nid0000[4-7]

� # Start up R

� R
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Simple Parallel Socket Cluster

● Basic functionality
● Runs 'Rscript' on the specified host(s) to set up a worker process 

which listens on a socket for expressions to evaluate, and returns the 
results (as serialized objects).

● Commonly used R packages which then build upon the 
“parallel” package
● “foreach” package

● Provides looping construct
● “doParallel” package

● Provides mechanism needed to execute foreach loops in parallel
● https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
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Example datasets 

> # Base install of R already includes several datasets
> # To look at the datasets available in loaded packages

> data()

> # load the iris dataset

> data(iris)

> head(iris)

> # Many R packages also contain additional datasets

> install.package(‘rattle’)
> data(wine, package='rattle')

> # Also can import data directly
> # Here read.table reads a file in table format and creates a dataframe from it

> url <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv'

> whitewine <- read.table(url,header=TRUE,sep=“;”)
> head(whitewine)
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Example Code: using foreach and doParallel

� library(parallel)
� library(foreach)
� library(doParallel)
� machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

� cl <- makeCluster(machineVec)
� # To use the "foreach", we need to register the cluster with
� registerDoParallel(cl)
� getDoParWorkers()

� # sequential execution
� system.time(foreach(i=1:100000) %do% sum(tanh(1:i)))
� # parallel execution
� system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

� mcoptions <- list(preschedule=FALSE, set.seed=FALSE, cores=4)
� system.time(foreach(i=1:100000,.options.multicore=mcoptions) %dopar% sum(tanh(1:i)))
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Example Code: randomForest

� # Parallel execution of randomForest
> x <- matrix(runif(500), 100)
> y <- gl(2, 50)
>
> library(randomForest)
>
> rf <- foreach(ntree=rep(25000, 6), .combine=combine, 

.multicombine=TRUE, .packages='randomForest') 
%dopar% { randomForest(x, y, ntree=ntree)}
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R profiling

● Standard approach – use Rprof
● Profile R code is to use the Rprof function to profile and 

the summaryRprof function to summarize the result
� help(Rprof)

�Rprof(tmp <- tempfile())
� example(glm)
�Rprof()
� summaryRprof(tmp)
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Programming with Big Data in R (pbdR)

● Set of highly scalable R packages for 
distributed computing in data science
● http://r-pbd.org/

● George Ostrouchov, Wei-Chen Chen, Drew 
Schmidt, Pragneshkumar Patel

● Winner of the Oak Ridge National 
Laboratory 2016 Significant Event Award 
for "Harnessing HPC Capability at OLCF 
with the R Language for Deep Data Science
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Installing pdbMPI package

● If not already installed, install rlecuyer package
● wget https://cran.r-project.org/src/contrib/rlecuyer_0.3-4.tar.gz
● R CMD INSTALL  --no-test-load rlecuyer_0.3-4.tar.gz

● Install pdbMPI package
● wget https://cran.r-project.org/src/contrib/pbdMPI_0.3-3.tar.gz
● R CMD INSTALL pbdMPI_0.3-3.tar.gz --configure-args="--with-

mpi=/opt/cray/pe/mpt/default/gni/mpich-gnu/51/ --disable-opa --
with-mpi-type=MPICH2" --no-test-load

● https://cran.r-project.org/web/packages/pbdMPI/pbdMPI.pdf
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pdbMPI: run “Hello World”

Create file mpi_hello_world.r

# load the package

suppressMessages(library(pbdMPI, quietly = TRUE))

# initialize the MPI communicators

init()

# Hello world

message <- paste("Hello from rank", comm.rank(), "of", comm.size())

comm.print(message, all.rank=TRUE, quiet=TRUE)

# shut down the communicators and exit

finalize()

> srun -N 4 Rscript mpi_hello_world.r
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pbdMPi – beyond “Hello World”

● HPSC Cookbook – Wei-Chen Chen
● https://snoweye.github.io/hpsc/cookbook.html

● In addition there are several tutorials available with 
source code available for download

● Tutorials 1 and 2 both use the Iris dataset already 
available with base R install
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Parallel (SPMD) pi Example (from HPSC)

# File name: ex_pi_spmd.r
# Run: srun -N 2 Rscript --vanilla ex_pi_spmd.r

### Load pbdMPI and initial the communicator.
library(pbdMPI, quiet = TRUE)
init()
.comm.size <- comm.size()
.comm.rank <- comm.rank()

### Compute pi.
n <- 1000
totalcpu <- .comm.size
id <- .comm.rank + 1
mypi <- 4*sum(1/(1+((seq(id,n,totalcpu)-.5)/n)^2))/n # The example from Rmpi.
mypi <- reduce(mypi, op = "sum")

### Output from RANK 0 since mpi.reduce(...) will dump only to 0 by default.
comm.print(mypi)
finalize()
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Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third 
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. 
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and 
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, 
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the 
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.
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Agenda

● Introduction to Spark
● History and Background
● Computation and Communication Model

● Spark on the XC40
● Installation and Configuration
● Local storage

● Alchemist: MPI and Spark
● BigDL: Deep Learning in Spark
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In the beginning, there was Hadoop MapReduce…

● MapReduce: simplified parallel programming model
● All computations broken into two parts

● Embarassingly parallel map phase: apply single operation to every key,value-pair, 
produce new set of key,value-pairs

● Combining reduce phase: Group all values with identical key, performing combining 
operation to get final value for key

● Can perform multiple iterations for computations that require
● I/O intensive 

● Map writes to local storage.  Data shuffled to reducer’s local storage, reduce reads.
● Additional I/O between iterations in multi-iteration algorithms (map reads from HDFS, 

reduce writes to HDFS)
● Effective model for many data analytics tasks

● HDFS distributed file system (locality aware – move compute to 
data)

● YARN cluster resource manager
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Example: K-Means Clustering with MapReduce

● Initially: Write out random cluster 
centers

● Map: 
● Read in cluster centers
● For each data point, compute nearest cluster 

center and write <key: nearest cluster, value: 
data point>

● Reduce:
● For each cluster center (key) compute 

average of datapoints
● Write out this value as new cluster center

● Repeat until convergence (clusters 
don’t change)

Assign 
points to 
clusters

Recompute
centers

Disk Disk

Repeat
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MapReduce Problems

● Gated on IO bandwidth, possibly interconnect as well
● Must write and read between map and reduce phases
● Multiple iterations must write results in next time (e.g., new cluster 

centers)
● No ability to persist reused data
● Must re-factor all computations as map then reduce 

(rinse and repeat?)
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What is Spark?

● Newer (2014) analytics framework
● Originally from Berkeley AMPLab/BDAS stack, now Apache project

● Native APIs in Scala.  Java, Python, and R APIs available as well.

● Many view as successor to Hadoop MapReduce.  Compatible with 
much of Hadoop Ecosystem.

● Aims to address some shortcomings of Hadoop 
MapReduce
● More programming flexibility – not constrained to one map, one 

reduce, write, repeat.

● Many operations can be pipelined into a single in-memory task

● Can "persist" intermediate data rather than regenerating every 
stage
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Spark Execution Model

● Master-slave parallelism
● Driver (master)

● Executes main

● Distributes work to executors

● Executors (slaves)
● Lazily execute tasks (local operations on 

partitions of the RDD)

● Rely on local disks for spilling data that's too 

large, and storing shuffle data

● Resilient Distributed Dataset (RDD)
● Spark's original data abstraction

● Partitioned amongst executors

● Fault-tolerant via lineage

● Dataframes/Datasets extend this abstraction

Driver

main()

…

Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)
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RDDs (and DataFrames/DataSets)

● RDDs are original data abstraction of Spark
● DataFrames add structure to RDDs: named columns
● DataSets add strong typing to columns of DataFrames (Scala and 

Java only)
● Both build on the basic idea of RDDs

● DataFrames were originally called SchemaRDDs

● RDD data structure contains a description of the data, 
partitioning, and computation, but not the actual data 
… why?
● Lazy evaluation

CUG 2018 Copyright 2018 Cray Inc.
135



Lazy Evaluation and DAGs

● Spark is lazily evaluated
● Spark operations are only executed when and if needed
● Needed operations: produce a result for driver, or produce a 

parent of needed operation (recursive)
● Spark DAG (Directed Acyclic Graph)

● Calls to transformation APIs (operations that produce a new 
RDD/DataFrame from one or more parents) just add a new node 
to the DAG, indicating data dependencies (parents) and 
transformation operation

● Action APIs (operations that return data) trigger execution of 
necessary DAG elements

● Example shortly…
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Pipelining in Spark

● If an RDD partition's dependencies are on a single 
other RDD partition (or on co-partitioned data), the 
operations can be pipelined into a single task

● Spark stage: Execution of same task on all partitions
● Every stage ends with a shuffle (all-to-all communication), an 

output, or returning data back to the driver.
● Global barrier between stages.  All senders complete shuffle write 

before receivers request data (shuffle read)
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Spark Communication 
Model (Shuffles)

● All data exchanges 
between executors 
implemented via shuffle
● Senders (“mappers”) send 

data to block managers; block 
managers write to disks, tell 
scheduler how much destined 
for each reducer

● Barrier until all mappers 
complete shuffle writes

● Receivers (“reducers”) 
request data from block 
managers that have data for 
them; block managers read 
and send

Map task 

thread

Block 

manager

Disk

Reduce 

task 

threadRequest

TCP

Spark 

Scheduler

Shuffle write

Shuffle read

Meta data
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Spark Programming Model: Example

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 40)
val evens = rdd1M.filter(

a => (a%2) == 0
)

evens.take(5)

>>> Array[Int] = Array(2, 4, 6, 8, 10)

Create array of 
{1, 2, …, 1,000,000}  

Partition array into a 40-
partition RDD (can also 

create from file). Executors 
will execute tasks on 

parititions, so this is also 
the maximum parallelism. 

Spark transformation 
(Create new RDD from old 

RDD/RDDs)

Spark action
(return result to driver)

Lazy Evaluation: No computation until result requested

com
pute
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Example: Line-by-line

val arr1M = Array.range(1,1000001)

Driver:
{1, …, 1,000,000}

Executor 0: Executor 1: Executor 2: Executor 3:

Conceptually …
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Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Driver:
{1, …, 1,000,000}

Executor 0:
{1 … 125000}

{500001 … 625000}

Executor 1:
{125001 … 250000}
{625001 … 750000}

Executor 2:
{250001 … 375000}
(750001 … 875000}

Executor 3:
{375001 … 500000}
(875001…1000000}

Conceptually …
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Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Driver:
{1, …, 1,000,000}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …
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Example: Line-by-line

evens.take(5)

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

Executor 0:
{2,4, … 125000}

{500002,500004 …}

Executor 1:
{125002, 125004 …}
{625002, 625004 …}

Executor 2:
{250000,250002 …}
(750002,750004 …}

Executor 3:
{375002,375004 …}
(875002,875004 …}

Conceptually …
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Example: Line-by-line

val arr1M = Array.range(1,1000001) 

Executor 0: Executor 1: Executor 2: Executor 3:

Reality: Lazy Evaluation
Driver:

{1, …, 1,000,000}
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Example: Line-by-line

val rdd1M = sc.parallelize(arr1M, 8)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M 

RDD Partition 0

RDD Partition 7
DAG (Directed 
Acyclic Graph) 
schedule

…

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation
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Example: Line-by-line

val evens = rdd1M.filter(a => a%2==0)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed 
Acyclic Graph) 
schedule

… …

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation
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Example: Line-by-line

evens.take(5)

Executor 0: Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7
DAG (Directed 
Acyclic Graph) 
schedule

… … Take Result: 
RETURNS DATA

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation
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Example: Line-by-line

evens.take(5)

Executor 0:
{1 … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Start computing!

DAG (Directed 
Acyclic Graph) 
schedule

… … Take Result: 
RETURNS DATA

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation
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Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

… FilteredRDD 0

FilteredRDD 7

… Take Result: 
RETURNS DATA

DAG (Directed 
Acyclic Graph) 
schedule

Driver:
{1, …, 1,000,000}Reality: Lazy Evaluation
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Example: Line-by-line

evens.take(5)

Executor 0:
{2,4, … 125000}

Executor 1: Executor 2: Executor 3:

Input: Arr1M 
RDD Partition 0

RDD Partition 7

FilteredRDD 0

FilteredRDD 7

Driver:
{1, …, 1,000,000}

{2, 4, 6, 8, 10}

DAG (Directed 
Acyclic Graph) 
schedule

… … Take Result: 
RETURNS DATA

Reality: Lazy Evaluation
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Wait a second …

● How did Spark know that take() would only require data 
from one partition?
● What if filter() left fewer than 5 elements in the first partition?
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Wait a second …

● How did Spark know that take() would only require data 
from one partition?
● What if filter() left fewer than 5 elements in the first partition?

● Answer … It didn't. 
● Take is typically used to fetch a small initial piece of the data
● Spark guesses that it will all be available in the first partition
● If not, tries the first four partitions …
● Then the first 16 …
● Etc…
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Modified example

● Imagine we want to perform a number of actions on (i.e., 
return different data about) our filtered RDD.

● For each action, Spark computes all the DAG steps…

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the 
total size of an RDD

Reduce performs a 
reduction over the 
dataset, combining 
elements with the 
argument function.
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Modified example

● Problem: This means recomputing the filtered "evens" RDD 
three times – inefficient.

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Count returns the 
total size of an RDD

Reduce performs a 
reduction over the 
dataset, combining 
elements with the 
argument function.
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Modified example

● Problem: This means recomputing the filtered "evens" RDD 
three times – inefficient.

● Solution: Persist the RDD!*

val arr1M = Array.range(1,1000001) 
val rdd1M = sc.parallelize(arr1M, 8)
val evens = rdd1M.filter(a => (a%2) == 0)
evens.persist()  // or cache()
val firstFiveEvens = evens.take(5)
// How many evens?
val totalEvens = evens.count()
// Sum of evens
val evenSum = evens.reduce((a,b) => a+b)

Persist tells Spark to keep 
the data in memory even 
after it is done with the 

action.  Allows future actions 
to reuse without recomputing.  
Cache is synonym for default 
storage level (memory).  Can 

also persist on disk, etc.

*Relies on immutability of val

CUG 2018 Copyright 2018 Cray Inc.
155



Multi-stage Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one 
value to (possibly) 

many, instead of one-
to-one like map

groupByKey combines all 
key-value pairs with the 

same key (k, v1), …, 
(k,vn) into a single key-

value pair (k, (v1, …, vn)).

Collect returns all 
elements to the driver

Load file

• Let's like at a simple example: computing the number of 
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word

More efficient: replace 
group and sum with 

reduceByKey
CUG 2018 Copyright 2018 Cray Inc.
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val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

Execute!
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Execution

"fox jumps 
over"

"the brown 
dog"

"the quick 
brown"

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect
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Execution

"fox jumps 
over"

"the brown 
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick 
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

No cr
oss-

node 

dependencie
s: 

operations p
ipelined into 

sin
gle ta

sk
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Execution

"fox jumps 
over"

"the brown 
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick 
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)

Write shuffle data to local file system

Barrier
HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect
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Execution

"the quick 

brown"

"fox jumps 

over"

"the brown 

dog"

(quick, (1))

(brown, (1, 1))

(fox, (1))

(jumps, (1))

(over, (1))

(the, (1, 1))

(dog, (1))

(the, 1), (quick, 

1), (brown, 1)

(fox, 1), (jumps, 

1), (over, 1)

(the, 1), (brown, 

1), (dog, 1)

Fetch shuffle data from remote file systems

HDFS Block 1

…

HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect
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Execution

"the quick 
brown"

"fox jumps 
over"

"the brown 
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect

These are also
 pipelined 

into a sin
gle ta

sk 
per 

node
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Execution

"the quick 

brown"

"fox jumps 

over"

"the brown 

dog"

(quick, 1)

(brown, 2)

(fox, 1)

(jumps, 1)

(over, 1)

(the, 2)

(dog, 1)

(the, 1), (quick, 

1), (brown, 1)

(fox, 1), (jumps, 

1), (over, 1)

(the, 1), (brown, 

1), (dog, 1)

HDFS Block 1

…

HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Collect
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Execution

"the quick 
brown"

"fox jumps 
over"

"the brown 
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick, 
1), (brown, 1)

(fox, 1), (jumps, 
1), (over, 1)

(the, 1), (brown, 
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Take(5)
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Spark on Cray XC
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Spark on XC: Typical Setup Options

● Cluster Compatibility Mode (CCM) option
● Set up and launch standalone Spark cluster in CCM mode; run 

interactively from Mom node or submit batch script
● An example recipe can be found in: 

“Experiences Running and Optimizing the Berkeley Data Analytics Stack on 
Cray Platforms”, Maschhoff and Ringenburg, CUG 2015

● Container option
● Shifter container runtime (think “Docker for XC”) developed at 

NERSC
● Acquire node allocation: run master image on one node, interactive 

image on another, worker images on rest
● Cray’s Urika-XC analytics suite uses this approach

● Challenge: Lack of local storage for Spark shuffles and 
spills.



Reminder: Spark Shuffle –
Standard Implementation

● Senders (“mappers”) send data 
to block managers; block 
managers write to local disks, 
tell driver how much destined for 
each reducer

● Barrier until all mappers 
complete shuffle writes

● Receivers (“reducers”) request 
data from block managers that 
have data for them; block 
managers read from local disk 
and send

● Key assumption: large, fast local 
block storage device(s) available 
on executor nodes

Map task 
thread

Block 
manager

Disk

Reduce 
task 

threadRequest

Driver 
(scheduler, 
block and 

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node
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Shuffle on XC – Version 1

● Problems: No local disk on standard XC40
● First try: Write to Lustre instead

● Biggest Issue: Poor file access pattern for lustre (lots of small files, constant 
opens/closes).  Creates a major bottleneck on Lustre Metadata Server (MDS).

● Issue 2: Unnecessary extra traffic through network 

Map task 
thread

Block 
managerLustre

Reduce 
task 

threadRequest
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Shuffle on XC – Version 2

● Second try: Write to RAMDisk
● Much faster, but …
● Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up 

quickly; takes away memory that could otherwise be allocated to Spark
● Spark behaves unpredictably when it's local scratch space fills up (failures not 

always simple to diagnose)

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

threadRequest
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Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)
● Initially fast and keeps working when RAMDisk full
● Issues: Slow once RAMDisk fills; Round robin between directories (no bias 

towards faster RAM)

Map task 
thread

Block 
managerRAMDisk

Reduce 
task 

threadRequest

TCP

Lustre
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Shuffle on XC – Version 3

● Third try: Write to RAMDisk and Lustre
● Set local directories to RAMdisk and lustre (can be list)

● Initially fast and keeps working when RAMDisk full

● Issues: Slow once RAMDisk fills; Round robin between directories (no bias 
towards faster RAM), but can specify multiple RAM directories

Map task 

thread

Block 

managerRAMDisk

Reduce 

task 

threadRequest

TCP

Lustre
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Shuffle on XC – with Shifter PerNodeCache

● Shifter implementation: Per-node loopback file system
● NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary 

filesystem

● Local to each node – fully cacheable

● Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space

● Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

● Urika-XC ships as a Shifter image and uses this approach

Map task 
thread

Block 
manager

Sparse, 
cacheable 

“local” 
filesystem

Reduce 
task 

threadRequest

TCP

Lustre

File
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Other Spark Configurations

● Many config parameters … some of the more relevant:
● spark.shuffle.compress: Defaults to true.  Controls whether 

shuffle data is compressed.  In many cases with fast interconnect, 
compression and decompression overhead can cost more than 
the transmission time savings.  However, can still be helpful if 
limited shuffle scratch space.

● spark.locality.wait: Defaults to 3 (seconds).  How long to wait for 
available resources on a node with data locality before trying to 
execute tasks on another node.  Worth playing around with -
decrease if seeing a lot of idle executors.  Increase if seeing poor 
locality.  (Can check both in history server.)  Do not set to 0!
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Spark Performance on XC: HiBench
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Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

● Intel HiBench
● Originally MapReduce, Spark 

added in version 4
● Compared performance 

with Urika XA system
● XA: FDR Infiniband, XC40: 

Aries
● Both: 32 core Haswell nodes
● XA: 128 GB/node, XC40: 256 

GB/node (problems fit in 
memory on both)

● Similar performace on 
Kmeans, PageRank, Sleep

● XC40 faster for Sort, 
TeraSort, Wordcount, 
Bayes
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Spark Performance on XC: GraphX

● GraphX PageRank
● 20 iterations on 

Twitter dataset
● Interconnect 

sensitive
● GX has slightly 

higher latency and 
lower peak TCP 
bandwidth than XC 
due to buffer chip
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Demo: PySpark in Jupyter
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Alchemist
An Apache Spark ó MPI Interface

A Collaboration of Cray and the UC Berkeley RiseLab (Alex Gittens, Kai Rothauge, 
Michael W. Mahoney, Shusen Wang, Jey Kottalam)

Slides courtesy Kai Rothauge



Ground
(context metadata 

service)

WAVE
(decentralized 

authorization service)
Confluo

(formerly DiaLog)

Py
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Ray

RLlib Ray Tune
Spark

HDFS, Kafka, 
Cassandra, 
DBMSes, …
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Clipper

Mixed-autonomy 
Traffic

Pylot
(self-driving 

platform)
Cloud robotics Smart Buildings

Jarvis

TensorFlow, 
PyTorch, 
MXNet, 

Caffe2, … 

FireSim AWS, Azure, GCE, Kubernetes, Mesos, … 

Applications

Processing

Infrastructure
(cluster management, 
storage, authorization & 
authentication, 
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MPI vs Spark
• Cray and AMPLab performed case study for numerical linear algebra on Spark vs. MPI

• Why do linear algebra in Spark?

• Pros: 
• Faster development, easier reuse
• One abstract uniform interface (RDD)
• An entire ecosystem that can be used before and after the NLA computations
• Spark can take advantage of available local linear algebra codes
• Automatic fault-tolerance, out-of-core support

• Con:
• Classical MPI-based linear algebra implementations will be faster and more efficient

Slides courtesy Kai Rothauge, UC Berkeley



Rank 20 PCA of 2.2TB oceanic data
MPI vs Spark

A. Gittens et al. “Matrix factorizations at scale: A comparison 

of scientific data analytics in Spark and C+MPI using three 

case studies”, 2016 IEEE International Conference on Big Data 

(Big Data), pages 204–213, Dec 2016.

• Performed a case study for 
numerical linear algebra on 
Spark vs. MPI:
• Matrix factorizations 

considered include Principal 
Component Analysis (PCA)

• Data sets include
• Oceanic data: 2.2 TB
• Atmospheric data: 

16 TB

Slides courtesy Kai Rothauge, UC Berkeley



MPI vs Spark: Lessons learned

• With favorable data (tall and skinny) and well-adapted algorithms, linear 

algebra in Spark is 2x-26x slower than MPI when I/O is included

• Spark’s overheads are orders of magnitude higher than the actual 

computations

• Overheads include time until stage end, scheduler delay, task start delay, executor 

deserialize time, inefficiencies related to running code via JVM

• The gaps in performance suggest it may be better to interface with 

MPI-based codes from Spark

Slides courtesy Kai Rothauge, UC Berkeley



Alchemist
• Interface between Apache Spark and existing MPI-based libraries for NLA, ML, etc.
• Design goals include making the system easy to use, efficient, and scalable
• Two main tasks:

• Send distributed input matrices from Spark to MPI-based libraries (Spark => MPI)
• Send distributed output matrices back to Spark (Spark <= MPI)

• Want as little overhead as possible when transferring data between Spark and a library
• Three possible approaches:

• File I/O (e.g. HDFS)
• Use shared memory buffers, Apache Ignite, Alluxio, etc.
• Use in-memory transfer, send data between processes using sockets

too slow!
extra copy in memory

Slides courtesy Kai Rothauge, UC Berkeley



Truncated SVD Alchemist vs Pure Spark

176 211 295
495

1272

1527

DNF DNF

25 GB 50 GB 100 GB 200 GB

Alchemist Pure Spark

• Use Alchemist and MLlib to get 

rank 20 truncated SVD

• Setup:

• 30 KNL nodes, 96GB DDR4, 

16GB MCDRAM

• Spark: 22 nodes; Alchemist: 8 

nodes

• A: m-by-10K, where m = 5M, 

2.5M, 1.25M, 625K, 312.5K

• Ran jobs for at most 60 minutes 

(3600 s)

• Alchemist times include data 

transfer

Slides courtesy Kai Rothauge, UC Berkeley



Don’t miss Alex Gitten’s talk on Tuesday!

Alchemist: An Apache Spark <=> MPI Interface
Technical Session 9C
Tuesday, 4:00-4:30PM

Right after Alex Heye’s talk



Deep Learning in Spark with BigDL
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Motivating Example: Precipitation Nowcasting

● Problem: Predict precipitation locations and rates at a 
regional level over a short timeframe
● Neighborhood level predictions
● T+0 – T+6 hours

● Standard Approach: Numerical Weather Prediction
● Physics based simulations
● High computational cost limits performance and accessibility 

● Cutting edge approach: Deep Learning
● Predict rainfall by learning from historical data
● Heavy computation occurs ahead of time
● Pre-Trained models can be deployed as soon as data is available
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Data Processing Pipeline

Data Collection
• Historical Radar Data 

(NETCDF) 
• Geographical Region 

(Eg:- Seattle)
• Days with over 0.1 inches 

of precipitation, info from 
NOAA – NCDC

• Radar scans every 5-10 
minutes throughout the 
day

Transformation
• Raw radial data structure 

converted to evenly 
spaced Cartesian grid 
(Tensors with float 32)

• Resolution scaling and 
clipping

• Configure dimensionality
• Sequencing
• 2 channels –

Reflectivity, Velocity
• Uses Py-ART package

Sampling
• Time-series 
• Inputs and 

Labels
• Random 

sampling
BigDL
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Initial Implementation: Tensorflow + Spark

● Separate workflows – no integration
● Forced overhead – data movement
● Distinct data pipelines

● Data processing – highly distributed analytics platform
● DL Training implementation – dense compute platform

● Pro: 
● Specialized hardware
● good individual performance

● Con: 
● Productivity loss
● Fragmented workflow

Raw Data

P
rocessed D

ata

Trained Model
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New Implementation: Intel BigDL

● Distributed Deep Learning Library
● Natively integrated with Spark

● Single Spark Context
● Dataset stays in memory
● Effortless distributed training

● Optimized with MKL-DNN libraries
● Interface similar to Torch

● Stacked NN layers
● Define a very complex model in very few lines

● Quickly integrate Deep Learning and Machine Learning into 
Spark-based data analytics workloads

BigDL
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BigDL Training Scaling
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Implementation: BigDL on Spark

● Singular workflow
● Data processing on spark flows directly into the training process with BigDL

● HPC scale with Urika-XC
● High performance compute nodes excel at data analytics
● MKL, MKL-DNN provide suitable optimization for DL workloads
● Suite of analytics tools to aid in development

● Pros:
● Single platform
● Highly productive development environment
● Effortless distribution

● Cons:
● Less flexible expressive Deep Learning tools
● Less flexible compute environment Raw Data

BigDL

Trained 
Model
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Demo: BigDL MNIST
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Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third 
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. 
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and 
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, 
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the 
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.
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Q&A

Mike Ringenburg
mikeri@cray.com



Analytics and AI on XC Tutorial
Cray Graph Engine
CUG 2018
Kristi Maschhoff, Cray Inc.



Cray Graph Engine (CGE)

● Scalable parallel graph analytics framework 
● Semantic in-memory graph database

● Basic graph pattern search
● Graph-theoretic algorithms (whole graph algorithms)

● W3C Standards Based
● Uses RDF Data representation 
● Uses SPARQL as query language

● Built for “vertical scaling” based on parallel and distributed computing 
principles — competitors are all horizontally scaled

● Brings interactivity to graph-based discovery
● Scaling and performance enables interactive analysis of very large 

datasets
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Cray Graph Engine: Updates and Features

● Multi-Architecture Support
● CGE is available on the Urika-GX and the XC platforms.
● Strong scaling becomes a key differentiator 

● Bigger datasets => more nodes => better performance
● Integration with Spark 

● Interface to data sources - support for end-end analytic workflow realization
● Integration with Python/Jupyter Notebooks

● Connect to SPARQL endpoint using sparqlwrapper or sparql-client packages
● CGE Python API – utilizes the CGE Java API

● Start up server, run queries, updates, checkpoint, shut down
● Integration with R

● SPARQL package – connect to SPARQL endpoint, run queries, updates

● Don’t miss the talk on Thursday!
● Thursday, Technical Session 24C

● “Loading and Querying a Trillion RDF triples with Cray Graph Engine on the Cray XC”
● And you may also be interested in …

● BOF “Tools and Utilities for Data Science Workloads and Workflows,”
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What is RDF?

● Resource Description Framework (RDF)
● A standardized abstract data model centered around the notion of Triples
● A Triple expresses a directed relationship between two entities e.g.

● Components of a Triple are commonly known as Subject, Predicate and Object
● Subject – The thing I am making a statement about
● Predicate – The relationship being stated
● Object – The thing which is related

Rob Cray
WorksFor

http://www.cray.comhttp://www.dotnetrdf.org/people/RobVesse (URIs)

http://schema.org/worksFor
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Graph analysis workloads

● Two main workloads
● Pattern matching
● Whole graph analysis

● Typical systems only 
good at one

● CGE excels at both
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What we plan to cover in the tutorial

● Background on CGE
● Pattern matching, whole-graph analysis

● Hands-on exercises
● Build and start up a database (cge-launcher)
● Run queries

● Using the cge-cli command line
● Using the CGE Web UI

● Integration with R and Python
● Connecting to the CGE SPARQL endpoint

● Using R SPARQL package
● Using Python SPARQLwrapper package
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A Graph-pattern matching workload

Given a pattern of interest 
find all instances thereof…
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What SPARQL Can Do

● Subgraph isomorphism on specific, fixed patterns

“LUBM Query 9”
SELECT ?X, ?Y, ?Z
WHERE
{ ?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z}

● Plus lots of useful database features: filter, group, update…

faculty  

course

advisor

teacherOf

takesCourse

student
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A Graph-theoretic Workload

What is the ranking of the targeted vertex?

What's the shortest route from A to B?
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Built-in Graph Functions (BGFs)

● RDF and SPARQL are graph-oriented, but SPARQL is limited 
in its ability to express graph processing

● We augmented SPARQL with a capability of calling library 
graph algorithms

● You can go from SPARQL to a graph algorithm and back to 
SPARQL for further refinement

● The whole is greater than the sum of its parts
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CGE User Interface Model

● Database owner 
launches the 
database server

● Users interact via 
their preferred 
interface
● Commands Line
● Web Browser
● SPARQL Tools & 

APIs
● CLI may be used 

for scripted 
workflows
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Building and launching

● cge-launch is used to build databases:

● cge-launch is a script that takes care of resource allocation for the user!

● After a successful build, the database directory will contain:

dataset.nt
rules.txt
dbQuads
string_table_chars
string_table_chars.index
graph.info

cge-launch –N 8 –I 16 –o /mnt/lustre/myresults –d 
/mnt/lustre/mydata –l logfile
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The database port

● A  TCP port used for communication with this server 
instance:

cge-launch –N 8 –I 16 –p 3750 …

● The default is 3750

● Changing this port allows multiple versions
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The database directory

● The database directory, typically:

/mnt/lustre/user/datasets/lubm0

● Is the start of a directory tree containing all checkpoints, 
and potentially authorized_keys

● It can be moved, archived and returned (!)

● Multiple users can access it, with permissions
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The Command Line Interface (CLI)

● The CLI is used for most interactions with the server, and has many 
options…

● cge-cli help (or cge-cli help checkpoint) will give verbose 
information on options

● Designed for scripted control, querying and updates with  database 
server

● Communications are secure SSH

cge-cli –db-port 3750 query myquery.rq
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CLI — most common options

query – submits SPARQL queries

update – submits SPARUL updates

sparql – submits both queries and updates

checkpoint – creates a database checkpoint

echo – check status of server
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Customization using NVPs and cge.properties file

● Retrieve the Default NVP Configurations

● For Piz Daint, need to modify internal memory allocator defaults 
settings due to accommodate smaller 64GB nodes
● CGE uses a internal memory allocator to avoid issues with observed memory 

fragmentation on XC systems 
● cge.server.BuddyMemPercent 20  (current default 35)
● cge. server.PersistBuddyMemPercent 20 (current default 25)

● More information
● https://pubs.cray.com/content/S-3014/3.2.UP01/cray-graph-engine-user-guide

$ cge-cli nvp-info
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Hands on Exercises: Running CGE on Piz Daint

● See README for instructions and exercises
● /scratch/snx3000/kristyn/CUG2018/CGE/README

● Load CGE module
● module use /scratch/snx3000/kristyn/CUG2018/modulefiles

● module load cge

● To use CGE Web UI, need to set up ssh tunneling
● Piz Daint is only accessible via ssh from the front end 

ela.cscs.ch,need to create a tunnel through the front end to Daint

● Use a random port number (8022) to connect to ssh port 22

● ssh -L localhost:8022:daint:22 ela.cscs.ch

● Then ssh directly into daint node, choosing another random port number 

(15000) for CGE fe

● ssh –p 8022 –L localhost:15000:localhost:15000 localhost
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Hands on Exercises: Running CGE on Piz Daint (2)

● Create cge.properties file in ~/.cge/cge.properties
● Set up database directory on Lustre

● Make sure Lustre striping is set
● lfs setstripe –c 16 --stripe-size 16m .

● Needed files: dataset.nt, graph.info, rules.txt
● Set up query_results directory on Lustre

● Make sure Lustre striping is set
● Be sure to set passwordless ssh

● ssh-keygen
● cat id_rsa.pub >> authorized_keys
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Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is 
granted by this document. 

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. 

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published 
specifications. Current characterized errata are available on request. 

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third 
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at 
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. 
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. 

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and 
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, 
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the 
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their 
respective owners.
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Q&A

Kristi Maschhoff
kristyn@cray.com


