
DataWarp Administration Tutorial

David Paul
Benjamin Landsteiner
CUG2018 – May 2018

Introductions

● Dave Paul
● LBNL/NERSC

● Member of the Computational Systems Group

● Focus on filesystem stability on Cray systems, including DataWarp

● Involved with the NERSC DataWarp Early User program

● Ben Landsteiner
● Cray Inc. for 9 years

● DataWarp architect

● Prior projects include ALPS, WLMs, KNC, kernel

May 2018
2

Agenda

● Introductions and Format (5 minutes; done)
● DataWarp Introduction (25 minutes)
● System Configuration & Tuning (30 minutes)
● Log files & Analysis (30 minutes)
● Break (30 minutes)
● Slurm & DataWarp (30 minutes)
● Common Problems & Solutions (30 minutes)
● Tools for DataWarp System Administration (30 minutes)

May 2018
3

Format

● Plenty of material in the tutorial
● Slide material augments the official documentation
● If something isn't clear, let us know and we will try to improve it

● Please ask questions throughout!
● Some examples come from NERSC

● Log files used in tutorial available on request

May 2018
4

DataWarp Introduction

May 2018
5

Overview – What is DataWarp?

● DataWarp is an IO Accelerator
● An implementation of the Burst Buffer concept, plus more

● Has both Hardware & Software components
● Hardware

● XC service node, directly connected to Aries network
● PCIe SSD Cards installed on the node

● Software
● DataWarp Service daemons
● DataWarp Filesystems (using DVS, LVM, XFS)
● Integration with WorkLoad Managers (Slurm, M/T, PBSpro)

May 2018
6

Usage overview (scratch)

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3:
4: export JOBDIR=/lus/global/my_jobdir
5: srun -n 3200 a.out

Without DataWarp

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3: #DW jobdw type=scratch access_mode=striped capacity=1TiB
4: #DW stage_in type=directory source=/lus/global/my_jobdir destination=$DW_JOB_STRIPED
5: #DW stage_out type=directory source=$DW_JOB_STRIPED destination=/lus/global/my_jobdir
6:
7: export JOBDIR=$DW_JOB_STRIPED
8: srun -n 3200 a.out

With DataWarp Scratch

May 2018
7

Usage overview (cache)

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3:
4: export JOBDIR=/lus/global/my_jobdir
5: srun -n 3200 a.out

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3: #DW jobdw type=cache access_mode=striped pfs=/lus/global
capacity=10TiB
4:
5: export JOBDIR=$DW_JOB_STRIPED_CACHE/my_jobdir
6: srun -n 3200 a.out

Without DataWarp

With DataWarp Transparent Caching

May 2018
8

Hardware Overview

May 2018
9

Software Overview (Orchestration & Data)

May 2018
10

Transparent Cache Data Path

CUG 2018 Copyright 2018 Cray Inc.

● Compute nodes
● DVS client

● DataWarp nodes
● DVS server
● SSD space
● DataWarp File System
● Data Caching Filesystem
● PFS client

11

Software Overview (Data path, scratch)

May 2018
12

Software Overview (Data path, cache)

May 2018
13

Transparent Cache Orchestration

CUG 2018 Copyright 2018 Cray Inc.

● Sets up and manages
the data path

● Workload Managers
● DataWarp Service
● Node Health services

● Scalable fanout of
commands

● MUNGE
● Security

14

Software Overview (Orchestration)

May 2018
15

API Clients

● API clients send requests
through the DW API gateway
● dwrest

● dw_wlm_cli: commandline
script for interacting with API
GW for WLMs

● dwstat: status command
● dwcli: perform actions
● Authentication through

MUNGE
● API GW discovery - dwgateway

and libdws_thin0
● Not shown

May 2018
16

API Gateway - dwrest

● RESTful API with JSON
● HTTPS
● MUNGE authentication
● dwrest

● nginx
● gunicorn

● API GWs on multiple
nodes possible
● Resiliency

May 2018
17

dwsd

● DataWarp Scheduler Daemon
● Persists state in dwsd.db SQLite file
● Processes requests from API GW
● Dispatches tasks to dwmd, such as

interacting with LVM, mounting
filesystems, initiating end of job stage
out

● Learns about dwmd from heartbeats
● All messages encrypted with MUNGE
● Uses RCA to verify node crashes
● Dispatched requests are asynchronous
● Responses to dwmd requests are

received asynchronously

May 2018
18

dwmd

● DataWarp Manager Daemon
● Exists on every SSD-endowed

node under DWS ownership
● Interacts with LVM volume

group dwcache
● dwmd forks for every request
● Periodically heartbeats back to

dwsd
● Responses to dwsd requests

occur with new socket
connection

May 2018
19

xtnhd

● Existing Cray software
component, part of
Node Health

● Scalably executes
commands, pushes
files, etc via a Tree-
based overlay network

May 2018
20

dws*.py (ok, and lvm*.py too)

● Python scripts for performing actual tasks
● Creating/destroying logical volume
● Mounting/unmounting XFS, dwfs, dcfs, DVS mounts
● Managing swap files
● Kicking off end-of-job stage-out
● Checking on health of dwcache volume group
● Requesting SSD health information from capmc

● Control data sent via a JSON file pushed with xtnhd
● Uses cgroups and “out of order task” (ooot) cache to

ensure tasks are carried out in order
● It is possible though unlikely for a teardown task to get processed
before a setup task, which can lead to admindown nodes

May 2018
21

Security within DWS

● Relies heavily on MUNGE
● Works well in environments where UID and GID namespace is

identical across nodes
● DWS daemons only process messages that...

● ...are encrypted with MUNGE
● ...were sent by trusted user IDs

May 2018
22

Client security

● Client-API gateway communication over HTTPS
● Client authentication with MUNGE in HTTP header
● Authorization

● Admins, users, and none
● Admins specified in configuration file, default root and

crayadm
● Admins can see everything, do almost anything, and do

things on behalf of users
● Users can see things associated with or usable by their

user id

May 2018
23

System Configuration &
Tuning

May 2018
24

Points of Configuration

● cray_dws config set
● Over-provisioning

● Intel P3608 only
● LVM setup
● Software Runtime

● Pools
● Putting server nodes in to pools

● WLM
● Slurm example

May 2018
25

Points of Configuration: cray_dws

● Specify DataWarp servers in datawarp_nodes node group
● Enable cray_ipforward service

● DWS uses capmc for SSD health information, which requires access to SMW
● Enable cray_munge service

● DWS uses MUNGE for authentication
● Enable cray_persistent_data service

● Persisting /var/opt/cray/dws ensures DW filesystems and pool data survive reboots
● Configure cray_dws

● Enable the service
● Set managed nodes to datawarp_nodes node group
● Set api gateway nodes to login_nodes node group
● Set external_api_gateway_hostnames to FQDNs of login nodes with external network

access to allow eLogin nodes and other non-XC nodes native access to the DataWarp
RESTful API

● Set dwrest_cachemount_whitelist to list of PFS on system
● Set allow_dws_cli_from_computes if needed

● Enable cray_dw_wlm service
● Configuration options that impact behavior of dw_wlm_cli during failures

May 2018
26

Points of Configuration: Over-provisioning

● Intel P3608 SSDs only
● Increases drive lifetime by reducing byte quantity

available for filesystems
● …but probably not needed – your call!

● Replace /dev/nvme0 with /dev/nvme1, /dev/nvme2,
/dev/nvme3 to get all devices on a node

● See Cray S-2564 for value for your SSD
dwnode# module load linux-nvme-ctl
dwnode# nvme set-feature /dev/nvme0 \
> -n 1 -f 0XC1 -v 3125623327

May 2018
27

Points of Configuration: LVM setup

● Only needed one time per set of hardware
● Create Volume Group dwcache from all available SSDs
● Restart dwmd daemon when finished

dwnode# pvcreate /dev/nvme0n1 /dev/nvme1n1 \
> /dev/nvme2n1 /dev/nvme3n1
<success output>
dwnode# vgcreate dwcache \
> /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
<success output>
dwnode# systemctl start dwmd

May 2018
28

LVM Volume Group dwcache

May 2018
29

LVM Tools Bootcamp

May 2018

● Logical Volume Manager
● Block devices converted to Physical Volumes with

pvcreate
● View PVs with pvs/pvdisplay

● PVs grouped in to Volume Groups with vgcreate
● View VGs with vgs/vgdisplay

● Logical Volumes carved out of VGs with lvcreate
● View LVs with lvs/lvdisplay

● Remove with lvremove, vgremove, or pvremove

30

Underlying SSD file system

May 2018
31

Points of Configuration: Create DWS pool

● Create a storage pool with dwcli
● Pools must have a granularity of at least 16MiB
● Nodes can only belong to pools if the node allocation

granularity (dwstat nodes) is a factor of the pool granularity
● Large granularity

● Less sharing & interference
● Less bandwidth OR more capacity waste

● Small granularity
● More bandwidth potential
● More interference potential
● Less capacity waste
● Server crash will impact more servers

May 2018
32

Pool Size Recommendations

● Recommendations
● Turn equalize_fragments on (default as of 6.0.UP05)
● Pool granularity should be as small as possible, usually 16MiB
● Pools should consist of nodes that are all the same size,

performance
● If you must mix nodes in a pool with different node allocation

granularities, calculate LCM(16MiB, node1 alloc gran, node2 alloc
gran, …) and use that

● Can’t turn equalize_fragments on?
● Performance will suffer
● Use dwpoolhelp tool to assist

May 2018
33

dwcli create pool

crayadm@login> module load dws

crayadm@login> dwcli create pool --name wlm_pool --granularity 16MiB
create request for pools entity with name = wlm_pool accepted, "dwstat pools" for status

crayadm@login> dwstat pools
pool units quantity free gran

wlm_pool bytes 0 0 16MiB

May 2018
34

Points of Configuration: Put nodes in to pool

● Find server nodes with dwstat nodes
● Put server nodes into pool with dwcli

crayadm@login> module load dws

crayadm@login> dwcli update node --name dwnode --pool wlm_pool
update request for nodes entity with name = dwnode accepted,
"dwstat nodes" for status

crayadm@login> dwstat pools
pool units quantity free gran

wlm_pool bytes 5.82TiB 5.82TiB 16MiB

May 2018
35

Nodes in a Pool

● 1TiB allocation
granularity
● This is very high, closer to

16MiB is recommended
● Depending on your

allocation granularity,
you can waste space
● 0.4TiB per node wasted

here

May 2018
36

Updating DataWarp Configuration Files

● Persistent changes should be made through
configurator

● Immediate, one-time changes can be made to .yaml
files directly
● Then send SIGHUP or ‘systemctl reload dwsd/dwmd/dwrest’
● Syntax errors will NOT cause daemons to crash or abort, but they

will complain in the log file
● api-gw:/etc/opt/cray/dws/dwrest.yaml
● sdb:/etc/opt/cray/dws/dwsd.yaml
● ssd-node:/etc/opt/cray/dws/dwmd.yaml

May 2018
37

Interesting dwsd.yaml Options

● scratch_limit_action, cache_limit_action: controls what to do when SSD
excessive writes detected
● Do nothing, log only, error only, log and error

● Set the following to 0 to disable the SSD write protection by default
● scratch_namespace_max_files_default
● scratch_namespace_max_file_size_default
● cache_max_file_size_default
● instance_write_window_length_default
● instance_write_window_multiplier_default

● Change DVS stripe size with scratch_stripe_size
● Default of 8388608 bytes

● Change DWFS substripe size with scratch_substripe_size
● Default of 8388608 bytes

● Change DWFS substripe width with scratch_substripe_width
● Default of 12 for stripe
● Default of 1 for private

May 2018
38

Interesting dwmd.yaml options

● 61 options in CLE 6.0UP04, all with brief descriptions
● Majority are un-interesting path-related configuration options

● dvs_mnt_opt: custom options for DVS client mounts
● dvs_scratch_mnt_opt: scratch only
● dvs_cache_mnt_opt: cache only

● dwfs_mnt_opt: custom options for all DWFS mounts
● dwfs_scratch_mnt_opt: scratch only
● dwfs_cache_mnt_opt: cache only

● dcfs_mnt_opt: custom options for all DCFS mounts
● log_mask: enable extra dwmd logging
● rscript_debug: enable extra dws*.py debug logging
● debug_flag: developer knob

● 0x1: Dump child task table
● 0x2: SIGCHLD related messages
● 0x4: Heartbeat related messages

May 2018
39

dwmd.yaml rscript_debug controls

'all_debug': 32,
'p_inputfile': 33,
'p_map_table': 34,
'p_input': 35,
'p_data': 36,
'p_path': 37,
'p_info': 38,
insert new flag here
'p_tmpfile': 48,
insert new allfile flag here
'p_tlock': 55,
'p_mnt': 56,
'level1': 57,
'level2': 58,
'level3': 59,
60-62 are reserved for other

actions
'save_tmp': 63,

}

self.dflags = {
'dws_device_health': 0,
'dws_n2rns': 1,
'dws_n2slb': 2,
'dws_namespace': 3,
'dws_realm_member': 4,
'dws_realm_member_reg': 5,
'dws_swap': 6,
'dws_sync_tasks': 7,
'dws_util': 8,
'lvm_fragment': 9,
'lvm_info': 10,
'dws_sync_tasks_dwfs2': 11,
insert new script here
'test': 30,
'all_script': 31,

May 2018
40

rscript_debug details

● ‘_input’ prints parameters
● ‘_data’ prints processed input data such as json input data from request
● ‘_path’ prints mount path related
● ‘_info’ is some interesting data.
● 'p_map_table' prints table data such as mount lookup table which is used for

finding umount all for destroy.
● ‘p_tmpfile’ prints created tmpfile data.
● ‘p_tlock’ is task related debug output
● ‘p_p_mnt’ is mount related data.
● ‘save_tmp’ is set, dwmd will not remove any tmp input file.
● ‘level3’ turns on 'p_tlock', 'p_input', 'p_data’
● ‘level2’ turns on 'p_path', 'p_mnt’
● 'level1' turns on 'p_info'

May 2018
41

Interesting dwrest.yaml options

● Some options are meant for use outside of WLM
● user_mountroot_whitelist

● Or to protect from misuse
● admin_mountroot_blacklist

● Grant “root like” privileges to DW functionality
● admins

● Flexible but insecure filter for type=cache
● cacheroot_whitelist

● Inflexible but secure filter for type=cache
● cachemount_whitelist

May 2018
42

Log Files & Analysis

May 2018
43

Logging Overview

● dwsd, dwmd, dwrest log centrally to SMW with LLM
● smw:/var/opt/cray/log/p#-<bootsession>/dws

● Log file per daemon type per day
● nginx log files stuck on internal API gateway nodes

● Rarely needed anyway
● Data path tends to log to system console

May 2018
44

Logfile Navigation

● nginx log file
● Useful for identifying if API clients can reach API gateway nodes
● Also lists out underling API URIs

● dwrest log file
● Useful in debugging staging issues

● dwsd log file
● Useful to establish when objects were created, destroyed
● Useful to track when nodes crashed, rebooted

● dwmd log file
● Useful for finding out what exactly encountered difficulty
● Tags most lines with DW object info and session token (i.e., WLM

job)

May 2018
45

Blown Fuses (a brief detour)

● The DWS will retry create/destroy operations. Persistent
failures on an object, once the number of retries has
exceeded, causes that object’s fuse to blow
● An operation will not be retried while the fuse is blown

● Blown fuses almost always means a stuck application
process (for activations) or a bug (situations that lead to
the inability to unmount something)

● Replace the fuse with dwcli
● dwcli update instance --id 12 --replace-fuse
● ...but unless the underlying problem is fixed, the fuse may blow again

May 2018
46

Blown Fuses (example)

May 2018
47

Why Did the Fuse Blow?

● Relatively straightforward in CLE 6.0.UP00 and higher
● Tedious in prior releases (sorry)
● dwmd log file tagging (next)

● Knowing why a fuse blew does not necessarily mean
you can prevent it from happening again
● Sorry, but you probably have to file a bug with Cray

● Especially on teardown, sometimes you just have to
reboot nodes
● But you don’t necessarily have to reboot right away!
● Depending on what is stuck, you may just not be able to access all

of DW space until the issue clears up

May 2018
48

dwmd log file tagging

● dwmd LLM log file general format is
● LLM prefix + <task id> + [hostname]: + (tags) + message

● LLM prefix: rfc5424 format
● <task id>: identifier logged in dwsd log
● [hostname]: on which node the message originates
● (tags): object id, session id, session token (i.e., batch

job id)
● message: the actual error or success message

May 2018
49

dwmd log file example

● LLM prefix + <task id> + [hostname]: + (tags) + message

● This message emitted for task id 681

● nid00350 generated the message

● Message concerns configuration 28, session 27, with session token 32236 (i.e., batch

job id)

● Takeaway - can search single dwmd log file for batch job id to more quickly identify

certain DataWarp issues associated with the batch job

<150>1 2016-05-29T00:00:47.031371-05:00 c1-0c2s0n2 dwmd 11570 p0-

20160528t233312 [dws@34] <681> [nid00350]: (cid:28,sid:27,stoken:32236)

dws_realm_member INFO:>>>> mount -t dwfs
/var/opt/cray/dws/mounts/fragments/52 /var/opt/cray/dws/mounts/realm-member/50 -
o realm_id=27,path=/var/opt/cray/dws/mounts/realm-
member/50,server_file=/tmp/tmpdBhJUg,threshold_action=log_and_error,write_wind
ow=86400,write_threshold=60473139527680

May 2018
50

Why [hostname] is needed

● dws*.py may execute on nodes other than dwmd

May 2018
51

Interactive Example

● As time permits

May 2018
52

Break (back in 30!)

May 2018
53

Slurm & DataWarp

May 2018
54

Courtesy D.
Jacobsen

May 2018
55

Slurm configuration for DataWarp (very simple)

Øslurm.conf : BurstBufferType=burst_buffer/cray
Øburst_buffer.conf :

• DefaultPool: name of the pool used by default for resource allocations
• wlm_pool

• AltPoolName: allows for different storage configurations (ex. Granularity size)
• DenyUsers: list of user names and/or IDs prevented from using burst buffers
• Flags EnablePersistent: allows users to create/destroy persistent burst buffers
• Flags TeardownFailure: remove DW allocation on job failure

ØQoS/TRES – control user access, user quotas, usage and report them

May 2018
56

DWS’ dwcli vs. Slurm (one session)

dwcli –j ls session
"created": 1473889069,
"creator": "CLI",
"expiration": 0,
"expired": false,
"id": 9711,
"links": {
"client_nodes": []

"owner": 95448,
"state": {
"actualized": true,
"fuse_blown": false,
"goal": "create",
"mixed": false,
"transitioning": false
"token": "tractorD”

scontrol show burst | grep dpaul
Name=tractorD CreateTime=2016-09-14T14:37:49 Pool=wlm_pool Size=7200G State=allocated UserID= dpaul(95448)

May 2018
57

Slurm status summary

scontrol show burst

Name=cray DefaultPool=wlm_pool Granularity=80G TotalSpace=765600G UsedSpace=50400G

AltPoolName[0]=tr_cache Granularity=16M TotalSpace=61047200M UsedSpace=6842000M

Flags=EnablePersistent,TeardownFailure

StageInTimeout=86400 StageOutTimeout=86400 ValidateTimeout=5 OtherTimeout=300

GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli

Allocated Buffers:

Name=udabb CreateTime=2018-04-28T13:33:26 Pool=wlm_pool Size=10400G State=allocated UserID=dgh(93131)

Name=rfmip_modat CreateTime=2018-04-30T21:18:23 Pool=wlm_pool Size=12400G State=allocated UserID=dfeld(96837)

Name=dpaul_tr CreateTime=2018-04-22T12:38:59 Pool=tr_cache Size=800G State=allocated UserID=dpaul(95448)

JobID=0_0(2793398) CreateTime=2018-04-31T00:28:50 Pool=(null) Size=0 State=allocated UserID=dfeld(96837)

JobID=2971140 CreateTime=2018-05-09T14:10:26 Pool=wlm_pool Size=1200G State=teardown UserID=kim(97002)

Per User Buffer Use:

UserID=dgh(93131) Used=10400G

UserID=dfeld(96837) Used=12400G

UserID=dpaul(95448) Used=800G

UserID=kim(91002) Used=1200G

May 2018
58

DWS dwstat (administrator focused)

dwstat most

==

pool units quantity free gran

tr_cache bytes 5.82TiB 5.82TiB 16MiB

wlm_pool bytes 809.96TiB 627.34TiB 200GiB

sess state token creator owner created expiration nodes

9708 CA--- 2993022 SLURM 90891 2016-09-14T14:27:48 never 8

9710 CA--- tractorD CLI 95448 2016-09-14T14:31:43 never 0

inst state sess bytes nodes created expiration intact label public confs

1943 CA--- 9708 27.73TiB 142 2016-09-14T14:27:48 never true I9708-0 false 1

1945 CA--- 9710 27.73TiB 142 2016-09-14T14:31:43 never true tractorD true 1

May 2018
59

Using Datawarp without Slurm

$ dwcli create session --expiration 4000000000 --creator $(id -un) --token example- session --owner $(id -u)
--hosts example-node created session id 10

$ dwcli create instance --expiration 4000000000 --public --session 10 --pool example-poolname --capacity
1099511627776 --label example-instance --optimization bandwidth created instance id 8

$ dwcli create configuration --type scratch --access-type stripe --root- permissions 0755 --instance 8 --
group 513 created configuration id 7

$ create activation --mount /some/pfs/mount/directory --configuration 7 --session 10 created activation id 7

May 2018
60

Slurm job script directives- #DW

#!/bin/bash

#SBATCH -n 32 -t 2

#DW jobdw type=scratch access_mode=striped capacity=1TiB

#DW stage_in type=directory source=/lustre/my_in_dir destination=$DW_JOB_STRIPED

#DW stage_out type=directory destination=/lustre/my_out_dir source=$DW_JOB_STRIPED

export JOBDIR=$DW_JOB_STRIPED

cd $DW_JOB_STRIPED

srun –n 32 a.out

May 2018
61

User Library example - libdatawarp
// module load datawarp (to get access to the user library for building)

#include <datawarp.h>

// Get Info on DataWarp Configuration:

int r = dw_get_stripe_configuration(fd, &stripe_size, &stripe_width, &stripe_index);

// Use dw_stage_file_in function to move a file from PFS to DataWarp int r =
dw_stage_file_in(dw_file, pfs_file);

// Use dw_stage_file_out function to move a file from DataWarp to PFS int r =
dw_stage_file_out(dw_file, pfs_file, DW_STAGE_IMMEDIATE);

// Use dw_query_file_stage function to check stage in/out completion

int r = dw_query_file_stage(dw_file, &complete, &pending, &deferred, &failed);

May 2018
62

Create a Persistent Reservation/Allocation (PR)

#!/bin/bash
#SBATCH -p debug
#SBATCH -N 1
#SBATCH -t 00:01:00

(Create a Persistent Reservation/Allocation (PR))
#BB create_persistent name=tractorD capacity=7TB access=striped type=scratch
exit
__

(Specify PR for a subsequent job - #sbatch omitted)
#DW persistentdw name=tractorD

(Copy in data in for the job)
#DW stage_in source=/global/cscratch1/sd/dpaul/decam.tar destination=$DW_PERSISTENT_STRIPED_tractorD/job1/runit.sh
type=file

#DW stage_in source=/global/cscratch1/sd/dpaul/src_dir destination=$DW_PERSISTENT_STRIPED_tractorD/job1/
type=directory

(continued)

May 2018
63

Persistent Reservation/Allocation (PR) cont.

(Run the job)
cd $DW_PERSISTENT_STRIPED_tractorD/job1/

srun runit.sh < src_dir > output_dir

(Save results at job completion – here for clarity, must be at top of script & contiguous)
#DW stage_out source=$DW_PERSISTENT_STRIPED_tractorD/job1/output_dir
destination=/global/cscratch1/sd/dpaul/job1/ type=directory

May 2018
64

Transparent Cache features

• BurstBuffer will be used as filesystem cache for all I/O to/from the PFS:

#DW jobdw pfs=/global/cscratch1/sd/dpaul/job_output/ capacity=800GB type=cache access_mode=striped
pool=wlm_pool

May 2018
65

Log legend

May 2018
66

DataWarp creation process outputs

May 2018
67

Creation process outputs (slurmctld)

May 2018
68

Creation process outputs (dwmd)

May 2018
69

Creation process outputs (dwmd cont.)

May 2018
70

Creation process outputs (dwmd cont.)

May 2018
71

Creation process outputs (dwstat)

May 2018
72

dw_wlm_cli – command line use

May 2018
73

Common Problems &
Solutions

May 2018
74

SSD fails with DWS state on it

● Sometimes SSDs fail
● Since the DWS tries and retries to initiate and wait for

stageout activity, it needs to be told when this is futile
● Find the relevant registrations and set them to --haste

with dwcli
● dwcli update registration --id 74 --haste

May 2018
75

SSD Failure Detection

● In rare cases SSDs have failed in a way that has locked up
XFS and DVS
● This results in node health marking compute nodes admindown

● DataWarp Service now attempts to detect failing SSDs
● Upon detection, dwmd will intentionally panic a DW server

node
● This allows processes to do some cleanup so compute nodes do not go

admindown
● False positives are possible. Be suspicious of hardware

and software!2017-01-04T15:01:53.663992-06:00 c0-1c0s1n0 DataWarp dwmd daemon triggering a crash after
detecting a failed LVM volume group. Check for failing hardware!

May 2018
76

Hardware Maintenance

● Sometimes a blade needs servicing
● Server nodes set to drain with dwcli will not be used in

new instance creations
● dwcli update node --name nid00350 --drain

● Be sure to set both nodes on a blade to drain
● Wait for instance count on nodes to hit 0 to minimize

disrupting existing usages of DataWarp (dwstat nodes)
● May need to remove persistent instances

● When maintenance completes, unset drain state
● dwcli update node --name nid00350 --fill

May 2018
77

The Tale of Two dwcaches

● If node A has SSDs 1 and 2 and node B has SSDs 3 and 4,
after maintenance node A may end up with 1 and 3 and
node B with 2 and 4

● LVM Physical Volume headers for SSD 1 has information
on VG dwcache, but SSD 3 does too (but it’s a different
dwcache!)

● LVM is smart enough to know that they are really different
VGs, but you’ll still see two dwcaches on each node

● Swap the hardware to fix or just re-initialize the SSDs with
LVM

May 2018
78

#DW stage_in/out failures with lots of files

● #DW stage_in/out where target has thousands of files
can fail due to hitting timeouts

● Short term: increase the timeouts (which were always
way too short)
● DW admin guide includes instructions for using site-local ansible

play to bump timeouts
● Timeout bumps are for nginx and dwrest

● Long term: moving to new API that removes need for
increasing timeouts, improves error messages

May 2018
79

User reports of unexplained stage failures

● Batch job #DW stage_in/out can fail
● System issue

● Your PFS must be mounted on DW servers!
● Typo in job script

● DataWarp Service does not give good error messages
today
● For Slurm, 'squeue -l -u username' will show an 'offline namespaces'

error
● You must look in dwmd.log for clues!

● Search for batch job id or udwfs_stage
● Long term: moving to new underlying staging API that

improves error messages

May 2018
80

Example outputs:

May 2018
81

User reports of unexplained IO errors

● SSD write protection will return one of three errno once
activated
● -EROFS (write window exceeded)
● -EMFILE (maximum files created exceeded)
● -EFBIG (maximum file size exceeded)

● Log messages are emitted to the console log
● SEC rule looks for these and can take site-configured

action
● If many users hit these, consider

● Educating user base on SSD write limits
● Raising the defaults to decrease false positives
● Turn the functionality off

May 2018
82

Example: ‘stuck umount’

May 2018
83

Stuck Session

● Sometimes a session just won’t go away
● This USUALLY means any of:

● a registration cannot make forward progress; set --haste if that’s acceptable
● a fuse has blown
● a process is stuck

● There is no “force remove” option in DWS because while it would
clear up status displays, it wouldn’t actually fix the problem

● How to fix? Case-by-case basis
● Restart daemons (especially dwmd)
● Reboot nodes
● Hunt down and kill stuck processes
● Replace fuse

May 2018
84

Checking on DataWarp Health

● Especially after a system reboot, any of the previously
mentioned hardware issues may arise

● New software updates may also introduce issues
● datawarp_check.py - basic DataWarp health check

script

May 2018
85

Back up DataWarp State

May 2018

● Some DataWarp state (pools, drain state, node-pool
association) can be backed up and restored

● State restoration necessary when…
● Updating to a new release of CLE with backwards-incompatible

changes
● Rarely, dwsd database corruption

● dwcli config backup >/home/crayadm/dw.json method
● Saves data via RESTful API

● dwbackup >/home/crayadm/dw.json method
● Extracts data directly from dwsd database
● Necessary if "backing up" after backwards-incompatible change

86

Backup examples

May 2018
87

dwcli method
crayadm@login> module load dws
crayadm@login> dwcli config backup >/home/crayadm/dw.json

dwbackup method
sdb# module load dws
sdb# dwbackup >/home/crayadm/dw.json

Restore DataWarp state

May 2018

● Saved DataWarp state can be restored at any time
● dwcli config restore </home/crayadm/dw.json

● Can be run multiple times
● If nodes are missing, you'll get a warning but can run the

command later when the node boots

88

crayadm@login> module load dws
crayadm@login> dwcli config restore </home/crayadm/dw.json
pool check progress [===========] 1/1 100% done
node update progress [===========] 2/2 100% done

Tools for DataWarp System
Administration

May 2018
89

Tips and Tricks

● Use pdsh + dshbak to perform DW tasks in parallel
boot# N=$(ssh smw cfgset get \
> cray_node_groups.settings.groups.data.datawarp_nodes.members p0 | tr '\n' ',')
boot# pdsh -w $N 'lsblk -d' | dshbak -c

nid[00321-00322,00325]

NAME MAJ:MIN RM SIZE RO MOUNTPOINT
nvme0n1 254:0 0 1.5T 0
nvme1n1 254:64 0 1.5T 0
nvme2n1 254:128 0 1.5T 0
nvme3n1 254:192 0 1.5T 0

nid00326

NAME MAJ:MIN RM SIZE RO MOUNTPOINT
nvme0n1 254:0 0 2.9T 0
nvme1n1 254:64 0 2.9T 0

May 2018
90

jq

● In CLE as of 6.0.UP05
● “sed for json”
● DW RESTful API is stable, better for scripting
● Find instances with blown fuse

● dwcli -j ls instances | jq -rS '.instances[] | select(.state.fuse_blown ==
true) | .id’

● Select server nodes
● dwcli -j ls nodes | jq -rS '.nodes[] | select(.online == false and .capacity

> 0) | .id’
● Can use with dwcli actions to operate on multiple objects

May 2018
91

datawarp_check.py

May 2018

● Simple script for checking on DataWarp health
● Excludes WLM layer

● Useful to run after system boots
● Contact Cray support for a copy

92

crayadm@login> ./datawarp_check.py
v3 2017-06-26
...
PASS created session 1
PASS created instance 1
PASS created configuration 1
PASS created activation 1
...
Session 1 is now deleted

Libhio Test Suite

May 2018

● LANL-developed parallel IO package
● https://github.com/hpc/libhio
● Includes tests that run on DataWarp through WLMs

● Fantastic sanity check on DataWarp and WLM integration
● Varies DW allocation size, compute node count, IO pattern, etc
● Each test outputs performance information

● Supports Slurm and Moab/TORQUE as WLM

93

https://github.com/hpc/libhio

KAUST DataWarp Regression Suite

May 2018

● Written by Georgios Markomanolis at KAUST
● https://github.com/gmarkomanolis/datawarp_regression
● Test coverage

● IOR runs
● Stage in, stage out

● Files and folders
● Persistent instances
● libdatawarp API

● Supports Slurm as WLM

94

https://github.com/gmarkomanolis/datawarp_regression

NERSC bbcheck utility

● dwstat wrapper script (python)
● Created by the Operations Technology Group

● Basil Lalli, Tony Quan, John Gann
● Much easier to identify the pieces involved in a failure
● 30 minute snapshots with cron (for debugging)

May 2018
95

NERSC bbcheck utility

May 2018
96

bbcheck

May 2018
97

bbcheck -a

May 2018
98

bbcheck -c

May 2018
99

Q&A
David Paul – dpaul@lbl.gov
Benjamin Landsteiner – ben@cray.com

May 2018
10
0

May 2018
10
1

ß you folks understand
this now right???

