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Introductions

● Dave Paul
● LBNL/NERSC

● Member of the Computational Systems Group

● Focus on filesystem stability on Cray systems, including DataWarp

● Involved with the NERSC DataWarp Early User program

● Ben Landsteiner
● Cray Inc. for 9 years

● DataWarp architect

● Prior projects include ALPS, WLMs, KNC, kernel
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Agenda

● Introductions and Format (5 minutes; done)
● DataWarp Introduction (25 minutes)
● System Configuration & Tuning (30 minutes)
● Log files & Analysis (30 minutes)
● Break  (30 minutes)
● Slurm & DataWarp (30 minutes)
● Common Problems & Solutions (30 minutes)
● Tools for DataWarp System Administration (30 minutes)
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Format

● Plenty of material in the tutorial
● Slide material augments the official documentation
● If something isn't clear, let us know and we will try to improve it

● Please ask questions throughout!
● Some examples come from NERSC

● Log files used in tutorial available on request
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DataWarp Introduction
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Overview – What is DataWarp?

● DataWarp is an IO Accelerator
● An implementation of the Burst Buffer concept, plus more

● Has both Hardware & Software components
● Hardware

● XC service node, directly connected to Aries network
● PCIe SSD Cards installed on the node

● Software
● DataWarp Service daemons
● DataWarp Filesystems (using DVS, LVM, XFS)
● Integration with WorkLoad Managers (Slurm, M/T, PBSpro)
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Usage overview (scratch)

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3: 
4: export JOBDIR=/lus/global/my_jobdir
5: srun -n 3200 a.out

Without DataWarp

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3: #DW jobdw type=scratch access_mode=striped capacity=1TiB
4: #DW stage_in type=directory source=/lus/global/my_jobdir destination=$DW_JOB_STRIPED
5: #DW stage_out type=directory source=$DW_JOB_STRIPED destination=/lus/global/my_jobdir
6: 
7: export JOBDIR=$DW_JOB_STRIPED
8: srun -n 3200 a.out

With DataWarp Scratch
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Usage overview (cache)

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3: 
4: export JOBDIR=/lus/global/my_jobdir
5: srun -n 3200 a.out

1: #!/bin/bash
2: #SBATCH --ntasks 3200
3: #DW jobdw type=cache access_mode=striped pfs=/lus/global 
capacity=10TiB
4:
5: export JOBDIR=$DW_JOB_STRIPED_CACHE/my_jobdir
6: srun -n 3200 a.out

Without DataWarp

With DataWarp Transparent Caching
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Hardware Overview
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Software Overview (Orchestration & Data)
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Transparent Cache Data Path

CUG 2018 Copyright 2018 Cray Inc.

● Compute nodes
● DVS client

● DataWarp nodes
● DVS server
● SSD space
● DataWarp File System
● Data Caching Filesystem
● PFS client
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Software Overview (Data path, scratch)

May 2018
12



Software Overview (Data path, cache)
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Transparent Cache Orchestration

CUG 2018 Copyright 2018 Cray Inc.

● Sets up and manages 
the data path

● Workload Managers
● DataWarp Service
● Node Health services

● Scalable fanout of 
commands

● MUNGE
● Security
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Software Overview (Orchestration)
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API Clients

● API clients send requests 
through the DW API gateway
● dwrest

● dw_wlm_cli: commandline
script for interacting with API 
GW for WLMs

● dwstat: status command
● dwcli: perform actions
● Authentication through 

MUNGE
● API GW discovery - dwgateway

and libdws_thin0
● Not shown
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API Gateway - dwrest

● RESTful API with JSON
● HTTPS
● MUNGE authentication
● dwrest

● nginx
● gunicorn

● API GWs on multiple 
nodes possible
● Resiliency
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dwsd

● DataWarp Scheduler Daemon
● Persists state in dwsd.db SQLite file
● Processes requests from API GW
● Dispatches tasks to dwmd, such as 

interacting with LVM, mounting 
filesystems, initiating end of job stage 
out

● Learns about dwmd from heartbeats
● All messages encrypted with MUNGE
● Uses RCA to verify node crashes
● Dispatched requests are asynchronous
● Responses to dwmd requests are 

received asynchronously
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dwmd

● DataWarp Manager Daemon
● Exists on every SSD-endowed 

node under DWS ownership
● Interacts with LVM volume 

group dwcache
● dwmd forks for every request
● Periodically heartbeats back to 

dwsd
● Responses to dwsd requests 

occur with new socket 
connection
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xtnhd

● Existing Cray software 
component, part of 
Node Health

● Scalably executes 
commands, pushes 
files, etc via a Tree-
based overlay network
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dws*.py (ok, and lvm*.py too)

● Python scripts for performing actual tasks
● Creating/destroying logical volume
● Mounting/unmounting XFS, dwfs, dcfs, DVS mounts
● Managing swap files
● Kicking off end-of-job stage-out
● Checking on health of dwcache volume group
● Requesting SSD health information from capmc

● Control data sent via a JSON file pushed with xtnhd
● Uses cgroups and “out of order task” (ooot) cache to 

ensure tasks are carried out in order
● It is possible though unlikely for a teardown task to get processed 
before a setup task, which can lead to admindown nodes
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Security within DWS

● Relies heavily on MUNGE
● Works well in environments where UID and GID namespace is 

identical across nodes
● DWS daemons only process messages that...

● ...are encrypted with MUNGE
● ...were sent by trusted user IDs
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Client security

● Client-API gateway communication over HTTPS
● Client authentication with MUNGE in HTTP header
● Authorization

● Admins, users, and none
● Admins specified in configuration file, default root and 

crayadm
● Admins can see everything, do almost anything, and do 

things on behalf of users
● Users can see things associated with or usable by their 

user id
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System Configuration & 
Tuning

May 2018
24



Points of Configuration

● cray_dws config set
● Over-provisioning

● Intel P3608 only
● LVM setup
● Software Runtime

● Pools
● Putting server nodes in to pools

● WLM
● Slurm example
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Points of Configuration: cray_dws

● Specify DataWarp servers in datawarp_nodes node group
● Enable cray_ipforward service

● DWS uses capmc for SSD health information, which requires access to SMW
● Enable cray_munge service

● DWS uses MUNGE for authentication
● Enable cray_persistent_data service

● Persisting /var/opt/cray/dws ensures DW filesystems and pool data survive reboots
● Configure cray_dws

● Enable the service
● Set managed nodes to datawarp_nodes node group
● Set api gateway nodes to login_nodes node group
● Set external_api_gateway_hostnames to FQDNs of login nodes with external network 

access to allow eLogin nodes and other non-XC nodes native access to the DataWarp
RESTful API

● Set dwrest_cachemount_whitelist to list of PFS on system
● Set allow_dws_cli_from_computes if needed

● Enable cray_dw_wlm service
● Configuration options that impact behavior of dw_wlm_cli during failures
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Points of Configuration: Over-provisioning

● Intel P3608 SSDs only
● Increases drive lifetime by reducing byte quantity 

available for filesystems
● …but probably not needed – your call!

● Replace /dev/nvme0 with /dev/nvme1, /dev/nvme2, 
/dev/nvme3 to get all devices on a node

● See Cray S-2564 for value for your SSD
dwnode# module load linux-nvme-ctl
dwnode# nvme set-feature /dev/nvme0 \
> -n 1 -f 0XC1 -v 3125623327
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Points of Configuration: LVM setup

● Only needed one time per set of hardware
● Create Volume Group dwcache from all available SSDs
● Restart dwmd daemon when finished

dwnode# pvcreate /dev/nvme0n1 /dev/nvme1n1 \
> /dev/nvme2n1 /dev/nvme3n1
<success output>
dwnode# vgcreate dwcache \
> /dev/nvme0n1 /dev/nvme1n1 /dev/nvme2n1 /dev/nvme3n1
<success output>
dwnode# systemctl start dwmd
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LVM Volume Group dwcache
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LVM Tools Bootcamp

May 2018

● Logical Volume Manager
● Block devices converted to Physical Volumes with 

pvcreate
● View PVs with pvs/pvdisplay

● PVs grouped in to Volume Groups with vgcreate
● View VGs with vgs/vgdisplay

● Logical Volumes carved out of VGs with lvcreate
● View LVs with lvs/lvdisplay

● Remove with lvremove, vgremove, or pvremove
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Underlying SSD file system
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Points of Configuration: Create DWS pool

● Create a storage pool with dwcli
● Pools must have a granularity of at least 16MiB
● Nodes can only belong to pools if the node allocation 

granularity (dwstat nodes) is a factor of the pool granularity
● Large granularity

● Less sharing & interference
● Less bandwidth OR more capacity waste

● Small granularity
● More bandwidth potential
● More interference potential
● Less capacity waste
● Server crash will impact more servers
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Pool Size Recommendations

● Recommendations
● Turn equalize_fragments on (default as of 6.0.UP05)
● Pool granularity should be as small as possible, usually 16MiB
● Pools should consist of nodes that are all the same size, 

performance
● If you must mix nodes in a pool with different node allocation 

granularities, calculate LCM(16MiB, node1 alloc gran, node2 alloc
gran, …) and use that

● Can’t turn equalize_fragments on?
● Performance will suffer
● Use dwpoolhelp tool to assist
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dwcli create pool

crayadm@login> module load dws

crayadm@login> dwcli create pool --name wlm_pool --granularity 16MiB
create request for pools entity with name = wlm_pool accepted, "dwstat pools" for status

crayadm@login> dwstat pools
pool units quantity    free  gran

wlm_pool bytes        0       0 16MiB
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Points of Configuration: Put nodes in to pool

● Find server nodes with dwstat nodes
● Put server nodes into pool with dwcli

crayadm@login> module load dws

crayadm@login> dwcli update node --name dwnode --pool wlm_pool
update request for nodes entity with name = dwnode accepted, 
"dwstat nodes" for status

crayadm@login> dwstat pools
pool units quantity    free  gran

wlm_pool bytes  5.82TiB 5.82TiB 16MiB

May 2018
35



Nodes in a Pool

● 1TiB allocation 
granularity
● This is very high, closer to 

16MiB is recommended
● Depending on your 

allocation granularity, 
you can waste space
● 0.4TiB per node wasted 

here
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Updating DataWarp Configuration Files

● Persistent changes should be made through 
configurator

● Immediate, one-time changes can be made to .yaml
files directly
● Then send SIGHUP or ‘systemctl reload dwsd/dwmd/dwrest’
● Syntax errors will NOT cause daemons to crash or abort, but they 

will complain in the log file
● api-gw:/etc/opt/cray/dws/dwrest.yaml
● sdb:/etc/opt/cray/dws/dwsd.yaml
● ssd-node:/etc/opt/cray/dws/dwmd.yaml
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Interesting dwsd.yaml Options

● scratch_limit_action, cache_limit_action: controls what to do when SSD 
excessive writes detected
● Do nothing, log only, error only, log and error

● Set the following to 0 to disable the SSD write protection by default
● scratch_namespace_max_files_default
● scratch_namespace_max_file_size_default
● cache_max_file_size_default
● instance_write_window_length_default
● instance_write_window_multiplier_default

● Change DVS stripe size with scratch_stripe_size
● Default of 8388608 bytes

● Change DWFS substripe size with scratch_substripe_size
● Default of 8388608 bytes

● Change DWFS substripe width with scratch_substripe_width
● Default of 12 for stripe
● Default of 1 for private
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Interesting dwmd.yaml options

● 61 options in CLE 6.0UP04, all with brief descriptions
● Majority are un-interesting path-related configuration options

● dvs_mnt_opt: custom options for DVS client mounts
● dvs_scratch_mnt_opt: scratch only
● dvs_cache_mnt_opt: cache only

● dwfs_mnt_opt: custom options for all DWFS mounts
● dwfs_scratch_mnt_opt: scratch only
● dwfs_cache_mnt_opt: cache only

● dcfs_mnt_opt: custom options for all DCFS mounts
● log_mask: enable extra dwmd logging
● rscript_debug: enable extra dws*.py debug logging
● debug_flag: developer knob

● 0x1: Dump child task table
● 0x2: SIGCHLD related messages
● 0x4: Heartbeat related messages
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dwmd.yaml rscript_debug controls

'all_debug': 32,
'p_inputfile': 33,
'p_map_table': 34,
'p_input': 35,
'p_data': 36,
'p_path': 37,
'p_info': 38,
# insert new flag here
'p_tmpfile': 48,
# insert new allfile flag here
'p_tlock': 55,
'p_mnt': 56,
'level1': 57,
'level2': 58,
'level3': 59,
# 60-62 are reserved for other 

actions
'save_tmp': 63,

}

self.dflags = {
'dws_device_health': 0,
'dws_n2rns': 1,
'dws_n2slb': 2,
'dws_namespace': 3,
'dws_realm_member': 4,
'dws_realm_member_reg': 5,
'dws_swap': 6,
'dws_sync_tasks': 7,
'dws_util': 8,
'lvm_fragment': 9,
'lvm_info': 10,
'dws_sync_tasks_dwfs2': 11,
# insert new script here
'test': 30,
'all_script': 31,
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rscript_debug details

● ‘_input’ prints parameters
● ‘_data’ prints processed input data such as json input data from request
● ‘_path’ prints mount path related
● ‘_info’ is some interesting data.
● 'p_map_table' prints table data such as mount lookup table which is used for 

finding umount all for destroy.
● ‘p_tmpfile’ prints created tmpfile data.
● ‘p_tlock’ is task related debug output
● ‘p_p_mnt’ is mount related data.
● ‘save_tmp’ is set, dwmd will not remove any tmp input file.
● ‘level3’ turns on 'p_tlock', 'p_input', 'p_data’
● ‘level2’ turns on 'p_path', 'p_mnt’
● 'level1' turns on 'p_info'

May 2018
41



Interesting dwrest.yaml options

● Some options are meant for use outside of WLM
● user_mountroot_whitelist

● Or to protect from misuse
● admin_mountroot_blacklist

● Grant “root like” privileges to DW functionality
● admins

● Flexible but insecure filter for type=cache
● cacheroot_whitelist

● Inflexible but secure filter for type=cache
● cachemount_whitelist

May 2018
42



Log Files & Analysis
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Logging Overview

● dwsd, dwmd, dwrest log centrally to SMW with LLM
● smw:/var/opt/cray/log/p#-<bootsession>/dws

● Log file per daemon type per day
● nginx log files stuck on internal API gateway nodes

● Rarely needed anyway
● Data path tends to log to system console
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Logfile Navigation

● nginx log file
● Useful for identifying if API clients can reach API gateway nodes
● Also lists out underling API URIs

● dwrest log file
● Useful in debugging staging issues

● dwsd log file
● Useful to establish when objects were created, destroyed
● Useful to track when nodes crashed, rebooted

● dwmd log file
● Useful for finding out what exactly encountered difficulty
● Tags most lines with DW object info and session token (i.e., WLM 

job)

May 2018
45



Blown Fuses (a brief detour)

● The DWS will retry create/destroy operations.  Persistent 
failures on an object, once the number of retries has 
exceeded, causes that object’s fuse to blow
● An operation will not be retried while the fuse is blown

● Blown fuses almost always means a stuck application 
process (for activations) or a bug (situations that lead to 
the inability to unmount something)

● Replace the fuse with dwcli
● dwcli update instance --id 12 --replace-fuse
● ...but unless the underlying problem is fixed, the fuse may blow again
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Blown Fuses (example)
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Why Did the Fuse Blow?

● Relatively straightforward in CLE 6.0.UP00 and higher
● Tedious in prior releases (sorry)
● dwmd log file tagging (next)

● Knowing why a fuse blew does not necessarily mean 
you can prevent it from happening again
● Sorry, but you probably have to file a bug with Cray

● Especially on teardown, sometimes you just have to 
reboot nodes
● But you don’t necessarily have to reboot right away!
● Depending on what is stuck, you may just not be able to access all 

of DW space until the issue clears up
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dwmd log file tagging

● dwmd LLM log file general format is
● LLM prefix + <task id> + [hostname]: + (tags) + message

● LLM prefix: rfc5424 format
● <task id>: identifier logged in dwsd log
● [hostname]: on which node the message originates
● (tags): object id, session id, session token (i.e., batch 

job id)
● message: the actual error or success message
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dwmd log file example

● LLM prefix + <task id> + [hostname]: + (tags) + message

● This message emitted for task id 681

● nid00350 generated the message

● Message concerns configuration 28, session 27, with session token 32236 (i.e., batch 

job id)

● Takeaway - can search single dwmd log file for batch job id to more quickly identify 

certain DataWarp issues associated with the batch job

<150>1 2016-05-29T00:00:47.031371-05:00 c1-0c2s0n2 dwmd 11570 p0-

20160528t233312 [dws@34] <681> [nid00350]: (cid:28,sid:27,stoken:32236)

dws_realm_member INFO:>>>> mount -t dwfs
/var/opt/cray/dws/mounts/fragments/52 /var/opt/cray/dws/mounts/realm-member/50 -
o realm_id=27,path=/var/opt/cray/dws/mounts/realm-
member/50,server_file=/tmp/tmpdBhJUg,threshold_action=log_and_error,write_wind
ow=86400,write_threshold=60473139527680
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Why [hostname] is needed

● dws*.py may execute on nodes other than dwmd
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Interactive Example

● As time permits
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Break (back in 30!)
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Slurm & DataWarp
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Courtesy D. 
Jacobsen
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Slurm configuration for DataWarp (very simple)

Øslurm.conf : BurstBufferType=burst_buffer/cray
Øburst_buffer.conf :

• DefaultPool: name of the pool used by default for resource allocations
• wlm_pool

• AltPoolName: allows for different storage configurations (ex. Granularity size)
• DenyUsers: list of user names and/or IDs prevented from using burst buffers
• Flags EnablePersistent: allows users to create/destroy persistent burst buffers
• Flags TeardownFailure: remove DW allocation on job failure

ØQoS/TRES – control user access, user quotas, usage and report them
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DWS’ dwcli vs. Slurm (one session)

# dwcli –j ls session
"created": 1473889069,
"creator": "CLI",
"expiration": 0,
"expired": false,
"id": 9711, 
"links": {
"client_nodes": []

"owner": 95448,
"state": {
"actualized": true,
"fuse_blown": false,
"goal": "create",
"mixed": false,
"transitioning": false
"token": "tractorD”

# scontrol show burst | grep dpaul
Name=tractorD CreateTime=2016-09-14T14:37:49 Pool=wlm_pool Size=7200G State=allocated UserID= dpaul(95448)
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Slurm status summary

# scontrol show burst

Name=cray DefaultPool=wlm_pool Granularity=80G TotalSpace=765600G UsedSpace=50400G

AltPoolName[0]=tr_cache Granularity=16M TotalSpace=61047200M UsedSpace=6842000M

Flags=EnablePersistent,TeardownFailure

StageInTimeout=86400 StageOutTimeout=86400 ValidateTimeout=5 OtherTimeout=300

GetSysState=/opt/cray/dw_wlm/default/bin/dw_wlm_cli

Allocated Buffers:

Name=udabb CreateTime=2018-04-28T13:33:26 Pool=wlm_pool Size=10400G State=allocated UserID=dgh(93131)

Name=rfmip_modat CreateTime=2018-04-30T21:18:23 Pool=wlm_pool Size=12400G State=allocated UserID=dfeld(96837)

Name=dpaul_tr CreateTime=2018-04-22T12:38:59 Pool=tr_cache Size=800G State=allocated UserID=dpaul(95448)

JobID=0_0(2793398) CreateTime=2018-04-31T00:28:50 Pool=(null) Size=0 State=allocated UserID=dfeld(96837)

JobID=2971140 CreateTime=2018-05-09T14:10:26 Pool=wlm_pool Size=1200G State=teardown UserID=kim(97002)

Per User Buffer Use:

UserID=dgh(93131) Used=10400G

UserID=dfeld(96837) Used=12400G

UserID=dpaul(95448) Used=800G

UserID=kim(91002) Used=1200G
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DWS dwstat (administrator focused)

# dwstat most

==============================================

pool units  quantity      free   gran 

tr_cache bytes 5.82TiB   5.82TiB  16MiB 

wlm_pool bytes 809.96TiB 627.34TiB 200GiB 

sess state        token creator owner created expiration nodes

9708 CA--- 2993022   SLURM 90891 2016-09-14T14:27:48      never 8 

9710 CA--- tractorD CLI 95448 2016-09-14T14:31:43      never 0 

inst state sess bytes nodes created expiration intact label public confs

1943 CA--- 9708 27.73TiB   142 2016-09-14T14:27:48      never true I9708-0  false 1 

1945 CA--- 9710 27.73TiB   142 2016-09-14T14:31:43      never true tractorD true 1 
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Using Datawarp without Slurm

$ dwcli create session --expiration 4000000000 --creator $(id -un) --token example- session --owner $(id -u) 
--hosts example-node created session id 10

$ dwcli create instance --expiration 4000000000 --public --session 10 --pool example-poolname --capacity 
1099511627776 --label example-instance --optimization bandwidth created instance id 8 

$ dwcli create configuration --type scratch --access-type stripe --root- permissions 0755 --instance 8 --
group 513 created configuration id 7 

$ create activation --mount /some/pfs/mount/directory --configuration 7 --session 10 created activation id 7 
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Slurm job script directives- #DW

#!/bin/bash

#SBATCH -n 32 -t 2

#DW jobdw type=scratch access_mode=striped capacity=1TiB 

#DW stage_in type=directory source=/lustre/my_in_dir destination=$DW_JOB_STRIPED  

#DW stage_out type=directory destination=/lustre/my_out_dir source=$DW_JOB_STRIPED

export JOBDIR=$DW_JOB_STRIPED 

cd $DW_JOB_STRIPED

srun –n 32 a.out
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User Library example - libdatawarp
// module load datawarp (to get access to the user library for building) 

#include <datawarp.h>

// Get Info on DataWarp Configuration:

int r = dw_get_stripe_configuration(fd, &stripe_size, &stripe_width, &stripe_index);

// Use dw_stage_file_in function to move a file from PFS to DataWarp int r = 
dw_stage_file_in(dw_file, pfs_file);

// Use dw_stage_file_out function to move a file from DataWarp to PFS int r = 
dw_stage_file_out(dw_file, pfs_file, DW_STAGE_IMMEDIATE);

// Use dw_query_file_stage function to check stage in/out completion

int r = dw_query_file_stage(dw_file, &complete, &pending, &deferred, &failed);
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Create a Persistent Reservation/Allocation (PR)

#!/bin/bash
#SBATCH -p debug
#SBATCH -N 1
#SBATCH -t 00:01:00

( Create a Persistent Reservation/Allocation (PR) )
#BB create_persistent name=tractorD capacity=7TB access=striped type=scratch
exit
________________________________________________________________

( Specify PR for a subsequent job - #sbatch omitted)
#DW persistentdw name=tractorD

( Copy in data in for the job)
#DW stage_in source=/global/cscratch1/sd/dpaul/decam.tar destination=$DW_PERSISTENT_STRIPED_tractorD/job1/runit.sh
type=file

#DW stage_in source=/global/cscratch1/sd/dpaul/src_dir destination=$DW_PERSISTENT_STRIPED_tractorD/job1/ 
type=directory

(continued)
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Persistent Reservation/Allocation (PR) cont.

( Run the job )
cd $DW_PERSISTENT_STRIPED_tractorD/job1/

srun runit.sh < src_dir > output_dir

( Save results at job completion – here for clarity, must be at top of script & contiguous )
#DW stage_out source=$DW_PERSISTENT_STRIPED_tractorD/job1/output_dir
destination=/global/cscratch1/sd/dpaul/job1/ type=directory
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Transparent Cache features

• BurstBuffer will be used as filesystem cache for all I/O to/from the PFS:

#DW jobdw pfs=/global/cscratch1/sd/dpaul/job_output/ capacity=800GB type=cache access_mode=striped 
pool=wlm_pool
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Log legend
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DataWarp creation process outputs
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Creation process outputs (slurmctld)
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Creation process outputs (dwmd)
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Creation process outputs (dwmd cont.)
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Creation process outputs (dwmd cont.)
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Creation process outputs (dwstat)
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dw_wlm_cli – command line use
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Common Problems & 
Solutions
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SSD fails with DWS state on it

● Sometimes SSDs fail
● Since the DWS tries and retries to initiate and wait for 

stageout activity, it needs to be told when this is futile
● Find the relevant registrations and set them to --haste 

with dwcli
● dwcli update registration --id 74 --haste

May 2018
75



SSD Failure Detection

● In rare cases SSDs have failed in a way that has locked up 
XFS and DVS
● This results in node health marking compute nodes admindown

● DataWarp Service now attempts to detect failing SSDs
● Upon detection, dwmd will intentionally panic a DW server 

node
● This allows processes to do some cleanup so compute nodes do not go 

admindown
● False positives are possible.  Be suspicious of hardware 

and software!2017-01-04T15:01:53.663992-06:00 c0-1c0s1n0 DataWarp dwmd daemon triggering a crash after 
detecting a failed LVM volume group. Check for failing hardware! 
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Hardware Maintenance

● Sometimes a blade needs servicing
● Server nodes set to drain with dwcli will not be used in 

new instance creations
● dwcli update node --name nid00350 --drain

● Be sure to set both nodes on a blade to drain
● Wait for instance count on nodes to hit 0 to minimize 

disrupting existing usages of DataWarp (dwstat nodes)
● May need to remove persistent instances

● When maintenance completes, unset drain state
● dwcli update node --name nid00350 --fill
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The Tale of Two dwcaches

● If node A has SSDs 1 and 2 and node B has SSDs 3 and 4, 
after maintenance node A may end up with 1 and 3 and 
node B with 2 and 4

● LVM Physical Volume headers for SSD 1 has information 
on VG dwcache, but SSD 3 does too (but it’s a different 
dwcache!)

● LVM is smart enough to know that they are really different 
VGs, but you’ll still see two dwcaches on each node

● Swap the hardware to fix or just re-initialize the SSDs with 
LVM
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#DW stage_in/out failures with lots of files

● #DW stage_in/out where target has thousands of files 
can fail due to hitting timeouts

● Short term: increase the timeouts (which were always 
way too short)
● DW admin guide includes instructions for using site-local ansible

play to bump timeouts
● Timeout bumps are for nginx and dwrest

● Long term: moving to new API that removes need for 
increasing timeouts, improves error messages
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User reports of unexplained stage failures

● Batch job #DW stage_in/out can fail
● System issue

● Your PFS must be mounted on DW servers!
● Typo in job script

● DataWarp Service does not give good error messages 
today
● For Slurm, 'squeue -l -u username' will show an 'offline namespaces'

error
● You must look in dwmd.log for clues!

● Search for batch job id or udwfs_stage
● Long term: moving to new underlying staging API that 

improves error messages
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Example outputs:
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User reports of unexplained IO errors

● SSD write protection will return one of three errno once 
activated
● -EROFS (write window exceeded)
● -EMFILE (maximum files created exceeded)
● -EFBIG (maximum file size exceeded)

● Log messages are emitted to the console log
● SEC rule looks for these and can take site-configured 

action
● If many users hit these, consider

● Educating user base on SSD write limits
● Raising the defaults to decrease false positives
● Turn the functionality off
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Example: ‘stuck umount’

May 2018
83



Stuck Session

● Sometimes a session just won’t go away
● This USUALLY means any of:

● a registration cannot make forward progress; set --haste if that’s acceptable
● a fuse has blown
● a process is stuck

● There is no “force remove” option in DWS because while it would 
clear up status displays, it wouldn’t actually fix the problem

● How to fix? Case-by-case basis
● Restart daemons (especially dwmd)
● Reboot nodes
● Hunt down and kill stuck processes
● Replace fuse
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Checking on DataWarp Health

● Especially after a system reboot, any of the previously 
mentioned hardware issues may arise

● New software updates may also introduce issues
● datawarp_check.py - basic DataWarp health check 

script
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Back up DataWarp State

May 2018

● Some DataWarp state (pools, drain state, node-pool 
association) can be backed up and restored

● State restoration necessary when…
● Updating to a new release of CLE with backwards-incompatible 

changes
● Rarely, dwsd database corruption

● dwcli config backup >/home/crayadm/dw.json method
● Saves data via RESTful API

● dwbackup >/home/crayadm/dw.json method
● Extracts data directly from dwsd database
● Necessary if "backing up" after backwards-incompatible change
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Backup examples
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# dwcli method
crayadm@login> module load dws
crayadm@login> dwcli config backup >/home/crayadm/dw.json

# dwbackup method
sdb# module load dws
sdb# dwbackup >/home/crayadm/dw.json



Restore DataWarp state
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● Saved DataWarp state can be restored at any time
● dwcli config restore </home/crayadm/dw.json

● Can be run multiple times
● If nodes are missing, you'll get a warning but can run the 

command later when the node boots
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crayadm@login> module load dws
crayadm@login> dwcli config restore </home/crayadm/dw.json
pool check progress [===========] 1/1 100% done
node update progress [===========] 2/2 100% done



Tools for DataWarp System 
Administration
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Tips and Tricks

● Use pdsh + dshbak to perform DW tasks in parallel
boot# N=$(ssh smw cfgset get \
> cray_node_groups.settings.groups.data.datawarp_nodes.members p0 | tr '\n' ',')
boot# pdsh -w $N 'lsblk -d' | dshbak -c
----------------
nid[00321-00322,00325]
----------------
NAME    MAJ:MIN RM   SIZE RO MOUNTPOINT
nvme0n1 254:0    0   1.5T  0
nvme1n1 254:64   0   1.5T  0
nvme2n1 254:128  0   1.5T  0
nvme3n1 254:192  0   1.5T  0
----------------
nid00326
----------------
NAME    MAJ:MIN RM   SIZE RO MOUNTPOINT
nvme0n1 254:0    0   2.9T  0
nvme1n1 254:64   0   2.9T  0
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jq

● In CLE as of 6.0.UP05
● “sed for json”
● DW RESTful API is stable, better for scripting
● Find instances with blown fuse

● dwcli -j ls instances | jq -rS '.instances[] | select(.state.fuse_blown == 
true) | .id’

● Select server nodes
● dwcli -j ls nodes | jq -rS '.nodes[] | select(.online == false and .capacity 

> 0) | .id’
● Can use with dwcli actions to operate on multiple objects
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datawarp_check.py
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● Simple script for checking on DataWarp health
● Excludes WLM layer

● Useful to run after system boots
● Contact Cray support for a copy
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crayadm@login> ./datawarp_check.py
v3 2017-06-26
...
PASS created session 1
PASS created instance 1
PASS created configuration 1
PASS created activation 1
...
Session 1 is now deleted



Libhio Test Suite
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● LANL-developed parallel IO package
● https://github.com/hpc/libhio
● Includes tests that run on DataWarp through WLMs

● Fantastic sanity check on DataWarp and WLM integration
● Varies DW allocation size, compute node count, IO pattern, etc
● Each test outputs performance information

● Supports Slurm and Moab/TORQUE as WLM
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https://github.com/hpc/libhio


KAUST DataWarp Regression Suite
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● Written by Georgios Markomanolis at KAUST
● https://github.com/gmarkomanolis/datawarp_regression
● Test coverage

● IOR runs
● Stage in, stage out

● Files and folders
● Persistent instances
● libdatawarp API

● Supports Slurm as WLM
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https://github.com/gmarkomanolis/datawarp_regression


NERSC bbcheck utility

● dwstat wrapper script (python)
● Created by the Operations Technology Group

● Basil Lalli, Tony Quan, John Gann
● Much easier to identify the pieces involved in a failure
● 30 minute snapshots with cron (for debugging)
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NERSC bbcheck utility
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# bbcheck
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# bbcheck -a
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# bbcheck -c
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Q&A
David Paul – dpaul@lbl.gov
Benjamin Landsteiner – ben@cray.com
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ß you folks understand 
this now right???


