
© 2018 Arm Limited

CUG 2018 - Stockholm

Florent.Lebeau@arm.com

Software
Ecosystem for

Arm-based HPC

© 2018 Arm Limited2

Ecosystem for HPC

List of components needed:

• Linux OS availability

• Compilers

• Libraries

• Job schedulers

• Debuggers

• Profilers

Mix of open source and commercial products and applications…

https://developer.arm.com/hpc/hpc-software

https://developer.arm.com/hpc/hpc-software

© 2018 Arm Limited3

Arm development tools portfolio for HPC

Arm Performance Libraries

BLAS, LAPACK and FFT

Arm Compiler for HPC

Linux user space compiler
for HPC applications

Arm Performance Reports

Interoperable application
performance insight

Arm Allinea Studio Develop and run on today’s hardware

Arm Forge Professional

Multi-node interoperable
profiler and debugger

Instruction Emulator

Run SVE binaries on today’s
Armv8-A hardware

and also… Explore tomorrow’s architecture today

Arm Code Advisor

Understand what the
compiler could/could not do

Arm Instruction Emulator

Run SVE binaries
on today’s hardware

© 2018 Arm Limited4

C/C++

Frontend

Fortran

Frontend

Optimizer
Armv8-A

Backend

SVE

Backend

Clang based LLVM based

PGI Flang based

Enhanced optimization for

ARMv8-A and SVE

C/C++ Files

(.c/.cpp)

Fortran Files

(.f/.f90)

Arm C/C++/Fortran Compiler

Armv8-A

binary

SVE

binary

LLVM IR LLVM IR
IR Optimizations

Auto-vectorization

LLVM based

LLVM based

Language specific frontend Architecture specific backendLanguage agnostic optimization

Arm Compiler – Building on LLVM, Clang and Flang projects

© 2018 Arm Limited5

Arm Compiler – OpenMP scaling
Better scaling at higher thread count

Arm Compiler uses libomp based
optimized OpenMP runtime

For Lulesh (Livermore Unstructured
Lagrangian Explicit Shock
Hydrodynamics), Arm Compiler
shows better scaling than GCC for
higher thread count

Zo
n

es
 p

er
 S

ec
o

n
d

Number of threads

Lulesh – size 40

armclang 18.0 gcc 7.1

© 2018 Arm Limited6

DGEMM performance on Cavium ThunderX2
Excellent serial and parallel performance

Achieving very high performance at the
node level leveraging high core counts and
large memory bandwidth

Single core performance at
95% of peak for DGEMM

Parallel performance significantly higher
than OpenBLAS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 2000 4000 6000 8000 10000

Pe
rc

en
ta

ge
 o

f
p

ea
k

Matrix dimension (M=N=K)

DGEMM – 56 threads on Cavium ThunderX2
CN99

ARM Performance Libraries OpenBLAS

© 2018 Arm Limited7

Arm Performance Libraries

© 2018 Arm Limited8

Arm HPC ecosystem
Porting to Arm

Arm is engaging directly with partners and
HPC scientific code developers to support
porting and optimisation of common HPC
libraries, tools and applications

Initial focus on successfully building with
both Arm and GCC compilers across a
broad front

Often only modest changes to
environment variables, build scripts and
architecture files are needed

Degree of commonality between codes

© 2018 Arm Limited9

Example: Particle in Cell codes
Two different approaches

VPIC

Explicit 2nd order push, charge conserving

FDTD fields

C & C++ with MPI & pthreads

Low particle order

Heavily optimised push, previously tuned for specific
platforms

Vector kernel

https://github.com/lanl/vpic

EPOCH

Explicit 2nd order push, charge conserving

FDTD fields

Fortran with MPI

High order particles

Flexible, extensible, versatile

Linked list storage

Dependencies: SDF

http://www.ccpp.ac.uk

https://github.com/lanl/vpic
http://www.ccpp.ac.uk/

© 2018 Arm Limited10

Example: Leveraging Arm intrinsics from C
VPIC

VPIC’s v4 kernel pushes four particles at a time – optimised
with SSE SIMD calls

Arm’s NEON instructions offer similar functionality

Datatypes and intrinsic calls from SSE can be mapped over
to NEON in many cases

Projects like SIMD Everywhere:

https://github.com/nemequ/simde

may help generate portable code able to exploit Arm’s
vector calls

Could such vectorised kernels stand to benefit from Arm’s
SVE instructions?

0

0.5

1

1.5

2

Standard NEON

Arm

p
u

sh
es

 (
n

o
rm

al
is

ed
)

© 2018 Arm Limited11

Example: Leveraging Arm intrinsics from Fortran
EPOCH

Uses intel’s _mm_prefetch to improve
performance of linked-list

src/housekeeping/prefetch.f90

SUBROUTINE prefetch_particle(p)

TYPE(particle),INTENT(INOUT) :: p

#ifdef PREFETCH

CALL mm_prefetch(p%part_p(1))

CALL mm_prefetch(p%weight)

#endif

END SUBROUTINE prefetch_particle

Particle prefetch
Use __pld in place of _mm_prefetch

Requires Fortran 2003’s C-binding

INTERFACE

SUBROUTINE arm_prefetch(p, x, w) BIND(C)

USE, INTRINSIC :: iso_c_binding

REAL(c_double),DIMENSION(3) :: p

REAL(c_double), DIMENSION(c_ndims) :: x

REAL(c_double) :: w

END SUBROUTINE arm_prefetch

END INTERFACE

src/housekeeping/arm_intrinsics.c

#include<arm_acle.h>

void arm_prefetch(void const* p)

{

__pld(p);

return;

}

A similar approach can be used to call
GCC’s __builtin_prefetch

Arm C compiler preload C wrapper

© 2018 Arm Limited12

Example: Performance improvement
Speed-up memory-bound code

0

0.2

0.4

0.6

0.8

1

1.2

standard standard

arm gnu

Armflang vs. GNU

0

0.2

0.4

0.6

0.8

1

1.2

standard prefetch

arm

0

0.2

0.4

0.6

0.8

1

1.2

standard prefetch

gnu

Armflang with preload GNU with prefetch

86%108% 93%

© 2018 Arm Limited13

Arm Performance Libraries
BLAS, LAPLACK, FFT

Arm DDT
Cross-platform parallel debugger

Meets the requirements of HPC developers on Arm

Profile

Develop
and build

Debug

Optimize

Arm Compiler for HPC
For C, C++ and Fortran codes

Arm MAP
Cross-platform lightweight profiler
Arm Performance Reports
Maximize System Efficiency

© 2018 Arm Limited14

Community building

Our app work is engaging with code owners and users to get suitable test cases, to get
Arm support built in, and including helping them make AArch64 testing part of their
development processes

Outside the people we collaborate with, various complementary
Arm HPC communities already exist:

• Arm HPC User Group (SC) and GoingArm (ISC/ArmRS)

• Arm HPC Google Group
(https://groups.google.com/forum/#!forum/arm-hpc)

• Arm HPC GitLab pages (https://gitlab.com/arm-hpc/)

Encouraging our partners to use GitLab is a priority

https://groups.google.com/forum/#!forum/arm-hpc
https://gitlab.com/arm-hpc/

© 2018 Arm Limited15

Community site – gitlab.com/arm-hpc
https://gitlab.com/arm-hpc/packages/wikis/home

Dynamic list of common HPC applications Up-to-date summary of package status

Provides focus for porting progress

Community driven.

Maintained by Arm, but anyone can join
and contribute.

Allows developers to share recipes, and
learn from progress on other applications

Provides a mechanism for tracking status
of applications and package sets (e.g.
OpenHPC packages, Mantevo, etc.)

https://gitlab.com/arm-hpc/packages/wikis/summary.xlsx

1616 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

Tack!

© 2018 Arm Limited17

Migrate and debug application to Arm

Switch between
OpenMP threads

Display pending
communications

Visualise data
structures

Integrate to
continuous

integration tools

© 2018 Arm Limited18

Optimise for Arm platforms

Detect MPI load

imbalance

Identify regions

of high OpenMP

synchronisation

Understand CPU

usage

© 2018 Arm Limited19

Maximize System Efficiency

Aggregate data

