g:J;P

= 7 A - - LY CUG 2018 - Stockholm
© 2018 Arm Limited” L " nt.Lebeau@arm.com

-+ +

Ecosystem for HPC

List of components needed:

Linux OS availability

Compilers

* Libraries

* Job schedulers
* Debuggers

e Profilers

Mix of open source and commercial products and applications...

https://developer.arm.com/hpc/hpc-software

2 © 2018 Arm Limited a r m

https://developer.arm.com/hpc/hpc-software

3

Arm development tools portfolio for HPC

-~

_

Arm Allinea Studio

Linux user space compiler
for HPC applications

Arm Performance Libraries

Develop and run on today’s hardware

Arm Forge Professional

Arm Performance Reports

BLAS, LAPACK and FFT

Multi-node interoperable
profiler and debugger

Interoperable application
performance insight

/

-

.

and also...

Arm Code Advisor

Understand what the
compiler could/could not do

Explore tomorrow’s architecture today

Arm Instruction Emulator

Run SVE binaries
on today’s hardware

© 2018 Arm Limited

arm

Arm Compiler — Building on LLVM, Clang and Flang projects

C/C++ Files
(.c/.cpp) |

Fortran Files
(.f/.f90) —

Arm C/C++/Fortran Compiler

Clang based

C/C++
Frontend

PGl Flang based
Fortran
Frontend

Language specific frontend

LLVM IR

-

LLVM based\

Optimizer

IR Optimizations

Auto-vectorization

Enhanced optimization for
ARMv8-A and SVE

o

/

Language agnostic optimization

LLVM IR

LLVM based
Armv8-A
Backend

LLVM based

SVE
Backend

Architecture specific backend

| Armv8-A
binary

|, SVE
binary

4 © 2018 Arm Limited

arm

Arm Compiler — OpenMP scaling

Better scaling at higher thread count Lulesh — size 40

Arm Compiler uses libomp based
optimized OpenMP runtime

For Lulesh (Livermore Unstructured
Lagrangian Explicit Shock
Hydrodynamics), Arm Compiler
shows better scaling than GCC for
higher thread count

Zones per Second

Number of threads

—armclang 18.0 —gcc 7.1
5 © 2018 Arm Limited a r m

DGEMM performance on Cavium ThunderX2

Excellent serial and parallel performance
DGEMM — 56 threads on Cavium ThunderX2

Achieving very high performance at the CN99

node level leveraging high core counts and 100%

large memory bandwidth :g:’ﬁ

70%
60%
50%
40%
30%
20%
10%

0%

0 2000 4000 6000 8000 10000
Matrix dimension (M=N=K)

Single core performance at
95% of peak for DGEMM

Parallel performance significantly higher
than OpenBLAS

Percentage of peak

——ARM Performance Libraries = ——0OpenBLAS

6 © 2018 Arm Limited a r m

Arm Performance Libraries

FFT performance speed-up using Arm Performance Libraries vs FFTW
Configuration: 1D Complex-to-Complex FFT transform, Arm Perf Libs 18.2, FFTW 3.3.7, run on Cavium ThunderX2

3
° o
°® N
2.5 ') ‘ ®e
o 9 ¢
Arm Perf Libs better than FFTW . «® ° P ° ., @
X (Speed-up > 1) . ° . o0 ce® o . o
o . L . ° T 4
) °
o b g . e © *® .]
'z . o ° ® .O..b..° oo.
@ 15 o L] o % o (N X
8 . o * o ¢ o ooV, T % o...' .6 ‘°
n Performance Parity e ® oo oo 2 % ‘ o’ .:.'f ° ..:?’~’ .‘0'0‘
[o0
(Speed-up = 1) LI Il ...o N o ¢ *Pe oo % .".. O.bzﬂ$
1 = J— YT o "o qpotq dle o
° . °] . e *
°
] ‘ . ¢ .. ° ° 0. L
* . o e & o0
o
0.5
FFTW better than Arm Perf Libs
(Speed-up < 1)
0
1 10 100 1000
FFT length

7 © 2018 Arm Limited q r m

Arm HPC ecosystem
Porting to Arm

Arm is engaging directly with partners and
HPC scientific code developers to support
porting and optimisation of common HPC
libraries, tools and applications

Initial focus on successfully building with
both Arm and GCC compilers across a
broad front

Often only modest changes to
environment variables, build scripts and
architecture files are needed

Degree of commonality between codes

8 © 2018 Arm Limited

o V7
AMD

Scalable Molecular Beynamics

{ Oiuwu.'fspﬂfssu
FAST.

GROMACS#is
FREE.

Open\VFOAM

T ol o Vo Vol W

L£rocr7

Geant 4

arm

Example: Particle in Cell codes

Two different approaches

VPIC

Explicit 2"9 order push, charge conserving
FDTD fields

C & C++ with MPI & pthreads

Low particle order

Heavily optimised push, previously tuned for specific
platforms

Vector kernel

https://github.com/lanl/vpic

9 © 2018 Arm Limited

EPOCH

Explicit 2" order push, charge conserving
FDTD fields

Fortran with MPI

High order particles

Flexible, extensible, versatile

Linked list storage

Dependencies: SDF
http://www.ccpp.ac.uk

arm

https://github.com/lanl/vpic
http://www.ccpp.ac.uk/

Example: Leveraging Arm intrinsics from C
VPIC

VPIC’s v4 kernel pushes four particles at a time — optimised 5
with SSE SIMD calls

Arm’s NEON instructions offer similar functionality

=
Ul

Datatypes and intrinsic calls from SSE can be mapped over
to NEON in many cases

Projects like SIMD Everywhere:

pushes (normalised)
=

0.5
https://github.com/nemequ/simde
may help generate portable code able to exploit Arm’s 0
vector calls Standard NEON

Could such vectorised kernels stand to benefit from Arm’s

SVE instructions? Arm

10 © 2018 Arm Limited a r m

Example: Leveraging Arm intrinsics from Fortran

EPOCH

Particle prefetch

Uses intel’s _mm_prefetch to improve
performance of linked-list

src/housekeeping/prefetch.f90

SUBROUTINE prefetch particle (p)
TYPE (particle) , INTENT (INOUT) :: p
#ifdef PREFETCH

CALL mm prefetch (p%part p(1l))
CALL mm prefetch (p%weight)

#endif

END SUBROUTINE prefetch particle

11 © 2018 Arm Limited

Arm C compiler preload

Use pldin place of _mm_prefetch

Requires Fortran 2003’s C-binding

INTERFACE
SUBROUTINE arm prefetch(p, x, w) BIND(C)

USE, INTRINSIC :: iso_c_binding

REAL (c_double) ,DIMENSION(3) :: p

REAL (c_double) , DIMENSION (¢ _ndims) :: x
REAL (c_double) :: w

END SUBROUTINE arm prefetch
END INTERFACE

C wrapper
src/housekeeping/arm_intrinsics.c

#include<arm acle.h>
void arm prefetch(void const* p)

{
__pld(p);

return;

}

A similar approach can be used to call
GCC’s __builtin_prefetch

arm

Example: Performance improvement

Speed-up memory-bound code

Armflang vs. GNU

1.2

1
0.8
0.6
0.4
0.2

0

standard standard

arm

12 © 2018 Arm Limited

gnu

Armflang with preload

1.2

1

0.8

0.6

0.4

0.2

0

standard prefetch

arm

GNU with prefetch

1.2
1
0.8
0.6
0.4
0.2
0
standard prefetch
gnu

arm

ArmALLINEA STUDIO _
Meets the requirements of HPC developers on Arm | B

Arm MAP

Cross-platform lightweight profiler

Arm Performance Reports
Maximize System Efficiency

CPU Metrics

Arm Performance Libraries
BLAS, LAPLACK, FFT

Linux perf event metrics

Lustre
Lustre file operations (per node)

better but 4 Mean write rate 1.27 M/s
|

Sy Peak write rate 19M/s N
Mean file opens 123/s 1
Mean metadata operations 11 /s
re— Develop
> 3 & D REELEREIER !
[AT =] Focus on current: © Group €
and build
Project a8 o
Arm Compiler for HPC

For C, C++ and Fortran codes

Arm DDT
Cross-platform parallel debugger

13 © 2018 Arm Limited q r m

Community building -

Going’
<
v

Our app work is

Outside the pec)‘pié we collaborate with, various complementary
Arm.HPC communities-already-exist:

e Arm HPC User-Groug(SC') and GoingArm (ISC/ArmRS)

* “Arm HPC.Google Group
* Arm HPC Gii-tLab?vpag‘eS(‘)

)

Encouraging our parthers to-use GitLab is a priority

to get suitable test cases, to

get

Arm support built in, and including helping them make AArch64 testing part of their

development processes

14 © 2018 Arm Limited

arm

https://groups.google.com/forum/#!forum/arm-hpc
https://gitlab.com/arm-hpc/

Community site — gitlab.com/arm-hpc
https://gitlab.com/arm-hpc/packages/wikis/home

Dynamic list of common HPC applications Up-to-date summary of package status

Provides focus for porting progress

BuildMaturity
NEONOptimized

il Com pilesARMCom piler
-l CompilesGCC

Community driven. S

EPDCH htto:/iwurw ccpp ac uk 19/10/17 22:10:20 NeedsPatch
SDE https://github.com/keithbennett/SOF 20/10/17 00:13:45 NeedsPatch
VPIC https://github.com/lanl/vpic 19/10/17 22:10:20
adios http./www.olcf.ornl.gov/center-projects/adios/ 17/07/17 23:33:11

M M M M arpack hitp:/fwww.caam.rice.edu/software/ARPACK, 17/07/17 23:33:11
aintaine rm. but anvone can ioin e D
’ a http:fiwww prnu.ore/software/sutomake 18/07/17 13:41:43

https://uk-mac.github.io/BookLeaf, 17/07/17 23:33:11

L =
http:/fwww boost.on 18/07/17 11:29:00
a l I ‘ O n rI u e ces-qed https://github.comyfiber-miniapp/ces-ged 01/08/17 21:43:40
° htt; 19/10/17 22:10:20

uk-mac. github.io/CloverLeaf, Up:
hitp:/fuk-mac github.io/CloverLeaf3D, 24/07/17 21. 1 Up:
http.//exmatex.github.io/CoMD 24/07/17 21:36:31 Up:
http /fwww nersc goviresearch and developmen ex-bend 24/07/17 21:36:31 NeedsPatch

o = al 24/07/17 21:36:31

Allows developers to share recipes, and ——
’ http:fwww pru. org/software/zs, 18/07/17 07:08:24

http:/fwww gromacs o 24/07/17 21:36:31

hdfs http://www. hdfgroup.or; 13/07/17 23:33:11

learn from progress on other applications e i

hoce http:/hwww nersc govresearch-and- ex-bend 24/07/17 21:48:23
hyore https://computation linlgov/project flinear_solvers/sottware php |17/07/17 23:33:11
imb 17/07/17 23:33:11
" . - http://lammps sandia gov/ 19/10/17 22: 0
18/07/17 13:41:43
Provides a mechanism for tracking status
17/07/17 23:33:11
. . http://mantevo.org/downloads/miniero_L.0.html 24/07/17 21:36:31 NeedsPatch
http://mantevo.org miniAMR 1.0 html 24/07/17 21:36:31 Up:
of applications and package sets (e.g. e ST .
htty 3l systems/co 5 U
http:/imantevo.org/downloads/miniMD_1.2.html 24/07/17 21 NeedsPatch
http://mantevo.org/downloads/miniXyce 1.0-html 24/07/17 21:36:31 up:
pen packages, Mantevo, etc.
’ ’ 17/07/17 23:33:11
mvapich-2 http: f/mvapich.cse.ohio-state.edu 21/08/17 13:26:19 Up:
namd hitp:/f ks viu ‘Research/namd 24/07/17 21:36:31 NeedsPatch

15 © 2018 Arm Limited r m

https://gitlab.com/arm-hpc/packages/wikis/summary.xlsx

Tack!
Thank Youl!
Danke!
Merci
57|
HYHBES!
Gracias!

Kiitos!
ZrApghL| cf
e gdle

Arm Limited

Migrate and debug application to Arm

File Edit View Control Tools Window Help

Switch between [*[Ca = Ffe I a5

Focus on current: € Group (" Process % 'ThreadE"_ Step Threads Together |

OpenMP threads ™

|| current Group: [All =

Project Files

CEIEIE]
00000600

[Search (ctri+K)

=|= & Application Code
=

H Headers

[Sources

¢ cclocke
) mofl

Create Group

Project Files

Search (Ctrl+K)

2 X & mainc [| ¢ hydro_godunovc|| ¢ conservarc] |
% const int Hnxt,
re
r.y int 1, 3, ivar, s;
2@ I ™ MpiEnvironment.cc 3% } ™ | atticeData.cc 3 | 't xyzpart.c ¥
l LN 546 if (allpicks[i].val != -1)

+ [template.cc
emplate_annotator.cc

&3

+- @ template_cache.cc

547 allpicks[nt
o 548 }

549

558 /* Sort all the

samples++] = allpicks[i];

icks */

Memory Leak Report

Thvs report shows untresd memary

Jick M81m 9 the bar chart balow will show S0cH0na) dataits about the Blacations. incluing whars thay were slocated

es, allpicks);

integration tools

18 ranks: Legend ial splitters. Set thg 0
Rank 0: 583.11 kB I I main (mmurt3.c:139) i++)
Rank 1: 58.71 kB ompi_free_list_grow picks[i*ntsamples/nf
Rank 2. S8.71 kB event del internal (minheap-internalh) | = IDX_MIN;
Rank 3: 58.71 k8 [l N other = IDX_HAX;
Rank 4: 5871 k8 [-
Rank 5: 58.71 kB [l
Rank 6: 5871 kB [- -
Rank 7: S8.71 kB e allpicks */ ¥ Unexpected
= -
[E Vector3DHemelb.cc 3 563 STOPTIMER(ct 1->AuxTmr2
& @ VelocityField.cc 564 STARTTIMER(ct ctri->AuxTmr3)
n e g ra e O & @ Viewpoint.cc = 565 384 ‘ 127 O Show local ranks
7] T I O] 566 /* Compute the number of elements thaf 5 S
. d
CO nt | n u o u S Input/Output | ints | | stacks | Tracepoints | point Output | Logbook | ' [only ranks with messages
gy Select communicator
Processes Threads Function B
17220 117220 |=main (main.cc:37) MPI_COMM_WORLD I
17220 117220 | HSimulaticnMaster:: (simulati .cc:63) MPI_COMM_SELF =
17220 117220] = SimulationMaster::Initialise (SimulationMaster.cc:154) MPI_COMM_NULL
17220]17220[| : i 0]
1722017220]
17220 117220 | 256 how D
17220 (17220 ’ Show Dbgram Ky l
17220]17220[_| [Update]
17220 117220 |
Text: Communicator Queue Pointer From (local) From (global) | To (locall To (global)
1 |Receive: 0x8... MPI COMMUN... Receive ox0 149 405 113 369
2 |Receive: 0x8... MPI COMMUN... Receive 0x0 16 272 1903 449
. .
D I s p I ay pe n d I n g 3 |Receive: 0x8... MPI COMMUN... Receive 0x0 111 111 aa a4
4 |Receive: Ox8... MPI COMMUN... Receive 0x0 174 430 252 508
Bacaia: Nx8 MPLCOMMUN | Racai v 130 3 151

17 © 2018 Arm Limited

communications | *

Me

<value optimized out>
—1065353216
<value optimized out>

[EEEES

[+]

@ B

Visualise data

structures

rm

Optimise for Arm platforms

Application activity

/hemelb_256p_2014-01-26_19-37.map - Allinea MAP - Allinea Forge 5.1-43967

File Edit View Metrics Window Help
Profiled: hemelb on 256 processes, 0 nodes Sampled from: Sun Jan 26 19:37:21 2014

Main thread activity

CPU floating-point '
149 %

File Edit View Metrics Window Help

Profiled: on 64 processes, 4 nodes, 64 cores (1 per orocess) Sampled from: Fri 9. Sep 15:09:25 2016 for 59.3s
Main thread activity
MPI calls

21.9 k cals/s

MPI point-to-point
20.7 k calls/s

Y Sy p— ———

0
172
Memarv usana

Main thread activity

Instructions
164G /s - = =

L2 Cache Accesses
337G/s R

L2 Cache Misses

0.79G /s = _

o
Mispredicted branch instructions 11

092G /s Pt S e i B e
o
07:24:47-07:35:08 (620.7195, 28.2% of total): Main thread compute 0.1 %, Pthreads 57.1 %, File /0 0.2 %, Synchronisation 9%, Uncatagorized 0.7 %

L] Vo
78 StepManager (Phase phases = 1, reporting::Timers * timers = NULL, bool separate concerns = false);
79

Understand CPU i e .
87 void Reaister(Phase phase. steps::Step sten. Concern & concern. MethodLabel method): 3

usage

Input/Output | Project Files | Main Thread Stacks | Functions |

Main Thread Stacks

Total core time ~ MPI Function(s) on line

Source

Position

=/ main

File Edit View Metrics Window Help

{

main.cc:16

Detect MPI load
imbalance

Profiled: Discovar on 1 process, 1 node, 24 cores (24 per process) Sampled from: Wed Jul 1 11:28:43 2015 for 478.1s

Application activity

18 © 2018 Arm Limited

Hide Metrics...

|dentify regions
of high OpenMP
synchronisation

rm

Maximize System Efficiency

19

© 2018 Arm Limited

CPU Metrics

Linux perf event metrics:

Cycles per instruction [Iz ey
es, 1 node
Pipeline stalls % [e2
12:27:50 2013
L2 cache misses 193 k/s 1 s (2 minutes)
ench2 L~ S
Mispredicted branch instructions 141 k/s [N er / HDD / 16 readers + writers MPI e}
is high. Lower values are better but are
application-dependent. High values may indicate memory latency hound in this configuration
or branch mispredictions.
= spent running application code. High v i
— linear
CPU 48% I This is low; it may be worth improving /O pel 10° A . ca
— o
Time spent in MPI calls. High values are ust/
MPI - 413% - This is average; check the MP1 breakdown f — mpi
/O s3e% Time spent in filesystem 1/O. High values are) — Ccpu
/ e - This is high; check the IO breakdown secti
This application run was |/0-bound. A breakdown of this time and advice for investigating
10¢
. C)
MPI]
M how the 4 5% total CPU time was spent: Of the 41 3% total time ::‘
emcry ps 49% | Time in collective calls 2
. 1 int-o- =
Per-process memory usage may also affect scaling: P o1% | Time In point-to-point calls) 5
950% (NN Estimated collective rate = 10!
Mean process memory usage 160 Mb [00 | Estimated point-to-point ra]
Peak process memory usage 173 Mb | formance is memory-bound. Use a profiler to All of the time is spent in ¢
uming loops and check their cache performance. This suggests a significant
Peak node memory usage 17.2% 0 It in vectorized instructions. Check the compiler's Synchronization overhead
ce to see why key loops could not be vedtorized. | profiler.
The peak node memory usage is low. You may be able to reduce
the total number of CPU hours used by running with fewer MP| Memory 10° .
processes and more data on each process. how the 57 9% total IO ime was spent: Per-process memory us| 32 64 128 256 512 1024 2048 4096
7% | Mean process memory usy| Number of Processes
ak process memory usage 173 Mb [
Lustre aknode memoryusage 17.2% Il

Mean write rate
Peak write rate

Mean file opens

Mean metadata operations

Lustre file operations (per node)

1.27MJs |

119 M/s
123 /s 1

011 /s |

e peak node memoary usage is low. You may be able to reduce
E total number of CPU hours used by running with fewer MP|
bcesses and more data on each process

Aggregate data

arm

