
1

Latest CPUs Support

Intel Skylake

AMD Zen/Epyc

IBM POWER9

AVX-512 code generation

Full OpenACC 2.6

OpenMP 4.5 for multicore CPUs

Integrated CUDA 9.2 toolkit/libraries

New PGI fastmath intrinsics library

Partial C++17 support

Optional LLVM-based code generator

www.pgicompilers.com/whats-new

http://www.pgicompilers.com/products/new-features.htm

2

0

50

100

150

200

2-socket Skylake 2-socket EPYC 2-socket Broadwell

G
E
O

M
E
A

N
 S

e
c
o
n
d
s

Intel 2018

PGI 18.1

SPEC CPU 2017 FP SPEED BENCHMARKS

40 cores / 80 threads 48 cores / 48 threads 40 cores / 80 threads

Performance measured February, 2018. Skylake: Two 20 core Intel Xeon Gold 6148 CPUs @ 2.4GHz w/ 376GB memory, hyperthreading enabled. EPYC: Two 24 core AMD EPYC 7451 CPUs

@ 2.3GHz w/ 256GB memory. Broadwell: Two 20 core Intel Xeon E5-2698 v4 CPUs @ 3.6GHz w/ 256GB memory, hyperthreading enabled. Volta: NVIDIA DGX1 system with two 20 core

Intel Xeon E5-2698 v4 CPUs @ 2.20GHz, 256GB memory, one NVIDIA Tesla V100-SXM2-16GB GPU @ 1.53GHz. SPEC® is a registered trademark of the Standard Performance Evaluation

Corporation (www.spec.org).

OpenMP 3.1 Performance on Multicore CPUs – smaller is better

3

Performance measured February, 2018. Skylake: Two 20 core Intel Xeon Gold 6148 CPUs @ 2.4GHz w/ 376GB memory, hyperthreading enabled. EPYC: Two 24 core AMD EPYC 7451 CPUs

@ 2.3GHz w/ 256GB memory. Broadwell: Two 20 core Intel Xeon E5-2698 v4 CPUs @ 3.6GHz w/ 256GB memory, hyperthreading enabled. Volta: NVIDIA DGX1 system with two 20 core

Intel Xeon E5-2698 v4 CPUs @ 2.20GHz, 256GB memory, one NVIDIA Tesla V100-SXM2-16GB GPU @ 1.53GHz. SPEC® is a registered trademark of the Standard Performance Evaluation

Corporation (www.spec.org).

SPEC ACCEL 1.2 BENCHMARKS

0

50

100

150

200

2-socket Skylake 2-socket EPYC 2-socket Broadwell

G
E
O

M
E
A

N
 S

e
c
o
n
d
s

Intel 2018

PGI 18.1

OpenMP 4.5

40 cores / 80 threads 48 cores / 48 threads 40 cores / 80 threads

0

50

100

150

200

G
E
O

M
E
A

N
 S

e
c
o
n
d
s

PGI 18.1

OpenACC

2-socket
Broadwell

1x Volta
V100

4.4x
Speed-up

smaller is better

4

GAUSSIAN 16

Using OpenACC allowed us to continue

development of our fundamental

algorithms and software capabilities

simultaneously with the GPU-related

work. In the end, we could use the

same code base for SMP, cluster/

network and GPU parallelism. PGI's

compilers were essential to the success

of our efforts.

Mike Frisch, Ph.D.
President and CEO
Gaussian, Inc.

Parallelization Strategy

Within Gaussian 16, GPUs are used for a small fraction of code that consumes a large

fraction of the execution time. T e implementation of GPU parallelism conforms

to Gaussian’s general parallelization strategy. Its main tenets are to avoid changing

the underlying source code and to avoid modif cations which negatively af ect CPU

performance. For these reasons, OpenACC was used for GPU parallelization.

T e Gaussian approach to parallelization relies on environment-specif c parallelization
frameworks and tools: OpenMP for shared-memory, Linda for cluster and network
parallelization across discrete nodes, and OpenACC for GPUs.

T e process of implementing GPU support involved many dif erent aspects:

 Identifying places where GPUs could be benef cial. T ese are a subset of areas which

are parallelized for other execution contexts because using GPUs requires f ne grained

parallelism.

 Understanding and optimizing data movement/storage at a high level to maximize

GPU ef ciency.

Gaussian, Inc.
340 Quinnipiac St. Bldg. 40
Wallingford, CT 06492 USA
custserv@gaussian.com

Gaussian is a registered trademark of Gaussian, Inc. All other trademarks and registered trademarks are
the properties of their respective holders. Specif cations subject to change without notice.

Copyright © 2017, Gaussian, Inc. All rights reserved.

Roberto Gomperts
NVIDIA

Michael Frisch
Gaussian

Brent Leback
NVIDIA/PGI

Giovanni Scalmani
Gaussian

Project Contributors

PGI Accelerator Compilers with OpenACC
PGI compilers fully support the current OpenACC
standard as well as important extensions to it.
PGI is an important contributor to the ongoing
development of OpenACC.

OpenACC enables developers to implement
GPU parallelism by adding compiler directives
to their source code, of en eliminating the need
for rewriting or restructuring. For example, the
following Fortran compiler directive identif es a
loop which the compiler should parallelize:

! $ a c c p a r a l l e l l o o p

Other directives allocate GPU memory, copy data
to/from GPUs, specify data to remain on the GPU,
combine or split loops and other code sections,
and generally provide hints for optimal work
distribution management, and more.

T e OpenACC project is very active, and the
specif cations and tools are changing fairly
rapidly. T is has been true throughout the
lifetime of this project. Indeed, one of its major
challenges has been using OpenACC in the midst
of its development. T e talented people at PGI
were instrumental in addressing issues that arose
in one of the very f rst uses of OpenACC for a
large commercial sof ware package.

Specifying GPUs to Gaussian 16

T e GPU implementation in Gaussian 16 is sophisticated and complex but using it is simple and straightforward. GPUs are specif ed with

1 additional Link 0 command (or equivalent Default.Route f le entry/command line option). For example, the following commands tell

Gaussian to run the calculation using 24 compute cores plus 8 GPUs+8 controlling cores (32 cores total):

%CPU= 0 - 3 1 Request 32 CPUs for the calculation: 24 cores for computation, and 8 cores to control GPUs (see below).
%GPUCPU= 0 - 7 = 0 - 7 Use GPUs 0-7 with CPUs 0-7 as their controllers.

Detailed information is available on our website.

PGI’s sophisticated prof ling and performance evaluation tools were vital to the success of the ef ort.

5

ANSYS FLUENT

We’ve effectively used

OpenACC for heterogeneous

computing in ANSYS Fluent

with impressive performance.

We’re now applying this work

to more of our models and

new platforms.

Sunil Sathe
Lead Software Developer
ANSYS Fluent

6

MPAS-A

Our team has been evaluating
OpenACC as a pathway to
performance portability for the Model
for Prediction (MPAS) atmospheric
model. Using this approach on the
MPAS dynamical core, we have
achieved performance on a single
P100 GPU equivalent to 2.7 dual
socketed Intel Xeon nodes on our new
Cheyenne supercomputer.

Richard Loft
Director, Technology Development
NCAR

Image courtesy: NCAR

7

VASP

For VASP, OpenACC is the way

forward for GPU acceleration.

Performance is similar and in some

cases better than CUDA C, and

OpenACC dramatically decreases

GPU development and maintenance

efforts. We’re excited to collaborate

with NVIDIA and PGI as an early

adopter of CUDA Unified Memory.

Prof. Georg Kresse
Computational Materials Physics
University of Vienna

8

PGI Presentations @ CUG 2018

OpenACC and CUDA Unified Memory
Sebastien Deldon, PGI Compiler Engineer
4:00pm Wednesday, Technical Session 20B

Strategies to Accelerate VASP with GPUs
using OpenACC
Stefan Maintz, NVIDIA Devtech Engineer
4:30PM Wednesday, Technical Session 20B

