CRAY AND AMD PAST SUCCESS IN HPC
AMD IN TOP500 LIST 2002 TO 2011

2011 - AMD IN FASTEST MACHINES IN 11 COUNTRIES

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Site</th>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>United States of America</td>
<td>Oak Ridge</td>
<td>Cray</td>
</tr>
<tr>
<td>12</td>
<td>Germany</td>
<td>Universitaet Stuttgart</td>
<td>Cray</td>
</tr>
<tr>
<td>19</td>
<td>United Kingdom (Scotland)</td>
<td>Edinburgh</td>
<td>Cray</td>
</tr>
<tr>
<td>31</td>
<td>Korea (South)</td>
<td>KMA</td>
<td>Cray</td>
</tr>
<tr>
<td>34</td>
<td>Switzerland</td>
<td>CSCS</td>
<td>Cray</td>
</tr>
<tr>
<td>41</td>
<td>Canada</td>
<td>Sherbrooke</td>
<td>SGI</td>
</tr>
<tr>
<td>44</td>
<td>Sweden</td>
<td>KTH</td>
<td>Cray</td>
</tr>
<tr>
<td>50</td>
<td>Brazil</td>
<td>INPE</td>
<td>Cray</td>
</tr>
<tr>
<td>61</td>
<td>Taiwan</td>
<td>Taiwan HPC Center</td>
<td>Acer</td>
</tr>
<tr>
<td>78</td>
<td>Austria</td>
<td>Vienna Scientific Center</td>
<td>Megware</td>
</tr>
<tr>
<td>203</td>
<td>Finland</td>
<td>CSC</td>
<td>Cray</td>
</tr>
</tbody>
</table>
“ZEN” A FRESH APPROACH

Designed from the Ground up for Optimal Balance of Performance and Power

- Totally new high-performance core design
- New high-bandwidth, low latency cache system
- Simultaneous multithreading (SMT) for high throughput
- Energy-efficient FinFET design tuned for enterprise applications
8 ZEN CORES PER DIE

Compute
- 8 Zen x86 cores
- 4MB total L2 cache
- 16MB total L3 cache

Memory
- 2 channels ddr4 with ECC
- 2 DIMM per channel
- up to 256GB per channel

Infinity fabric
- Connects die and I/O

Security
- On die security processor
- Memory encryption per VM
ZEN IN MULTI-CHIP ARCHITECTURES

Ryzen 8c Desktop

EPYC 32c HPC server

Threadripper 16c Workstation
RYZEN 2 – 12NM – IMPROVES TOP BOOST CLOCK
Lowering TCO through an Optimal Balance of Compute, Memory, I/O and Security

COMPUTE
- 8 to 32 AMD “Zen” x86 cores (16 to 64 threads)
- 512KB L2 cache per core (16 MB total L2 cache)
- 64MB shared L3 cache (8MB per 4 cores)
- TDP range: 120W-180W

MEMORY
- 8 channel DDR4 with ECC up to 2666 MHz
- RDIMM, LRDIMM, 3DS, NVDIMM
- 2 DIMMs/channel capacity of 2TB/socket

INTEGRATED I/O
- NO CHIPSET
 - 128 lanes PCIe Gen3
 - Used for PCIe, SATA, and Coherent Interconnect
 - Up to 32 SATA or NVMe devices

SECURITY
- Dedicated Security Subsystem
- Hardware Root-of-Trust
- Hardware Memory Encryption
Feature Consistency and Simplified Product Stack

<table>
<thead>
<tr>
<th>ONE-SOCKET AND TWO-SOCKET</th>
<th>EPYC 32 CORE</th>
<th>EPYC 24 CORE</th>
<th>EPYC 16 CORE</th>
<th>EPYC 8 CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7601</td>
<td>$4,200</td>
<td>7451</td>
<td>$2,400</td>
<td>7351P</td>
</tr>
<tr>
<td>7551</td>
<td>$3,400</td>
<td>7401</td>
<td>$1,850</td>
<td>7301</td>
</tr>
<tr>
<td>7501</td>
<td>$3,400</td>
<td></td>
<td></td>
<td>7281</td>
</tr>
<tr>
<td>ONE-SOCKET ONLY</td>
<td>7551P</td>
<td>7401P</td>
<td>7351P</td>
<td>7251</td>
</tr>
<tr>
<td>DDR4-2666</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2TB memory capacity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>128 lanes PCIe³</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Turbo boost</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SMT</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

AMD pricing based on 1k unit pricing January 2018
EPYC LEADERSHIP TWO-SOCKET

WORLD RECORD BENCHMARKS!

EPYC 7601

More Cores 1

14%

EPYC 7601

SPECfp® _rate2006

33% More Memory Bandwidth 2

SPECrate®2017_fp

2.6x More Memory Capacity 3

EPYC 7601

FABRIC

UP TO 2.6x More Performance / $ 4

Feature and perf/$ comparison to 2 Intel Xeon Platinum 8180.
Perf/$ based on published prices and published SPECfp_rate2016 scores on spec.org
World record benchmarks based on SPECfp_rate2006 and SPECrate_2017_fp scores
on spec.org as of Jan. 18, 2018
See Endnotes

See Endnotes
AMD X86 CORE ROADMAP

“Naples”
- “Zen”

“Rome”
- “Zen 2”

“Milan”
- “Zen 3”

AMD IS BACK TO STAY
“NAPLES” TO “ROME” - WILL BE EPYC TOO

Artistic impression of 14nm to 7nm process shrink
DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale. Timelines, roadmaps, and/or product release dates shown in these slides are plans only and subject to change.

ATTRIBUTION

© 2018 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, EPYC, and combinations thereof are trademarks of Advanced Micro Devices, Inc. PCIe is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.