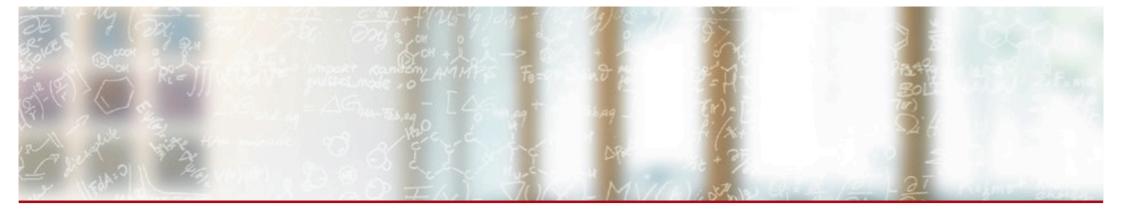


CUG 2019 Birds of a Feather Large-scale System Acceptance Testing: Procedures, Tests, and Automation

Chairs: Verónica G. Vergara Larrea Reuben D. Budiardja

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

BOF Goals


- Share acceptance test procedures
- Learn about tools used successfully for testing
- Compile resources, tools, and possibly tests

Presenters

- Nick Cardo (CSCS)
- Tina DeClerk (NERSC)
- Bilel Hadri (KAUST)
- Celso Mendes (NCSA)
- Verónica G. Vergara Larrea / Reuben Budiardja (OLCF)

Large-Scale System Acceptance Testing: Procedures, Tests, and Automation

Nicholas P. Cardo, CSCS May 7, 2019

Introducing Piz Daint

Servicing all scientific disciplines with a diverse workload...

- 5704 XC50 Compute Nodes
 - Intel® Xeon® E5-2690 v3 @ 2.60GHz
 - 12 cores, 64GB RAM
 - NVIDIA® Tesla® P100 16GB
- 1813 XC40 Compute Nodes
 - Two Intel® Xeon® E5-2695 v4 @ 2.10GHz
 - 2 x 18 cores, 64/128 GB RAM
- 8.8 PB Sonexion 3000 Lustre Scratch
- 12x Optical Inter-group cables (AOC)

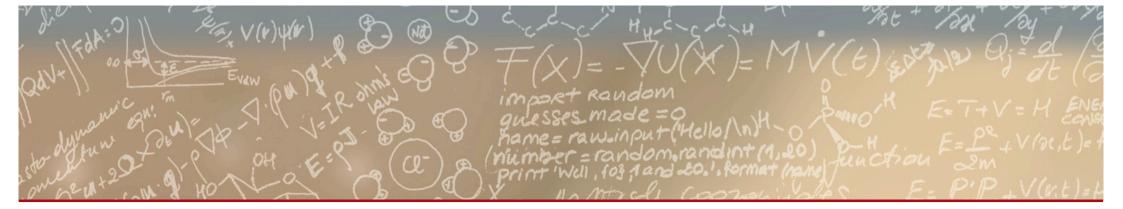
Acceptance Testing

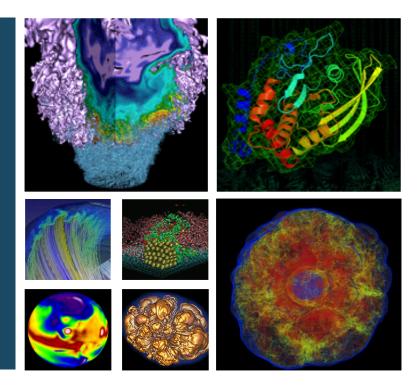
- Structured in Phases (2 weeks more or less)
 - Hardware Validation: all hardware delivered and working properly
 - system operates as a whole from system level to user level Functional Testing:
 - Performance Testing: expected performance levels have been achieved (and variability)
 - Availability Testing: system demonstrates reliability and readiness for the users
- **Test Selection**
 - Key scientific applications representative of select disciplines
 - Material Science, Chemistry, Physics, Climate, Biology, Economics, Machine Learning...
 - Key application kernels
- Sustained & High System Stress N-body, dgemm, magma, stencils, MPI, OpenMP, Affinity, Spec Suite, HDF5, NetCDF, streams, …
 - Representative benchmarks
 - IOR: HPC I/O Benchmark (https://github.com/hpc/ior)
 - HPCG: High Performance Conjugate Gradients (http://www.hpcg-benchmark.org)
 - HPL: High Performance Linpack (http://www.netlib.org/benchmark/hpl/)
 - all-to-all, p2p, latency,... Network:
 - CUDA Memory: latency, performance, variability)
 - huge pages: memory access latencies
 - ...
 - Others
 - Visualization graphical capabilities of the GPU accelerators
 - User Environment: quality of service
 - Connectivity: access methods to the system/network connectivity performance
 - Workload Management: large volumes of job, flexible scheduling, reservations, specific nodes, GPU setup

Testing Execution and Tools

- Test Execution
 - Specific testing designated for specific days based on identified phases
 - Testing tracked and gated by a coordinator
 - Specific people charged with specific activities
 - Upon completion of each phase the results are reviewed and discussed
 - Upon completion of all phases the results are reviewed and discussed

Testing Tools


- **GitHub** GitHub: revision control non-sensitive repositories
- GitLab GitLab: *revision control internal repositories*
- Jenkins Jenkins: continuous integration (https://jenkins.io)
 - ReFrame: regression test framework (https://reframe-hpc.readthedocs.io/en/latest/)
 - Scripts: *custom written as needed*
 - cksys: system level test harness
 - Cray supplied health checks are insufficient to check accelerator health



Thank you for your attention.

Acceptance Testing

NERSC

Components of Acceptance Testing

- Statement of Work
- Acceptance Tests
 - -Functionality Tests
 - -Reliability Tests
 - -System Tests
 - -Performance Tests
 - -Availability Tests
- Testing should be performed on the system when in a production configuration
- Tests are defined and agreed upon with the vendor in advance
- Vendor performs the tests and the site observes

Functionality, Reliability, and System Tests

- · Ensure the system works as expected
- Functionality
 - -Basic system works as expected and all components are available
 - User based Compilers, modules, basic commands, file system, etc.
 - System based configuration options, image creation, boot, shutdown, etc.
- Reliability
 - Ensure components with the ability to failover work pull power on secondary server
 - Ensure components with the ability to operate in degraded mode work as expected- fans, power supplies, etc.
- System Tests
 - -Warm and cold boot within a specified time limit

Performance Tests

- As defined in the SOW. Cover several aspects of system performance
 - -Application Benchmarks
 - -Data science benchmark
 - -Memory bandwidth
 - -MPI performance
 - -Bi-section bandwidth
 - -Network performance
 - -File system
 - Bandwidth performance
 - Metadata performance

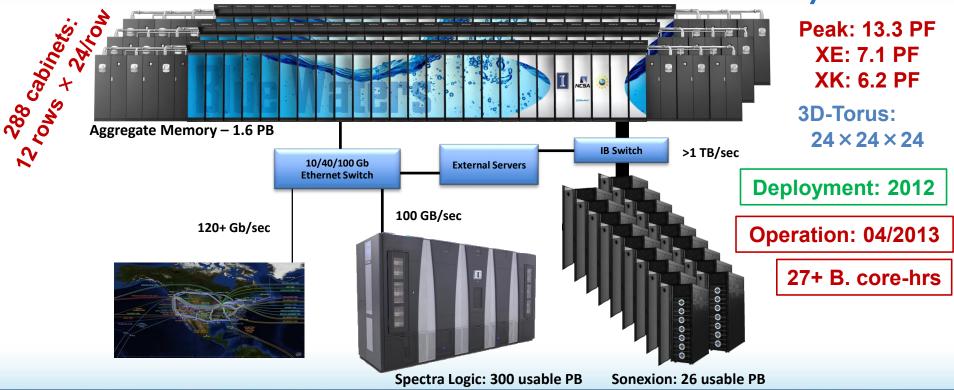
Availability

- System needs to run for 30 days in a 45 day window
 - -A specified amount of time is allowed for maintenance
 - -Users are on the system
 - Node or system failure rates must be within the limits specified by the SOW
 - -The system must at some point run for 7 continuous days
 - -Any failure to meet specification will stop the clock or require a re-start of the test

BLUE WATERS SUSTAINED PETASCALE COMPUTING

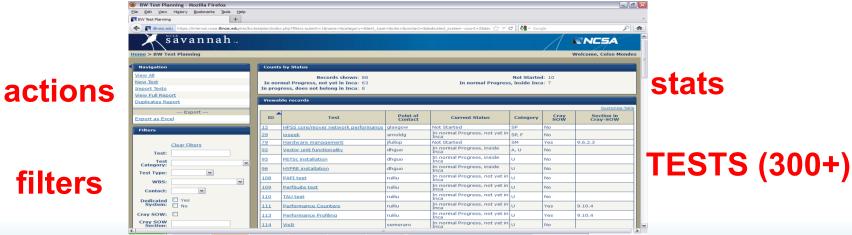
Blue Waters Acceptance Testing: Overview

Celso Mendes, Brett Bode, William Kramer NCSA



1 – Introduction - Blue Waters: Sustained-Petascale System

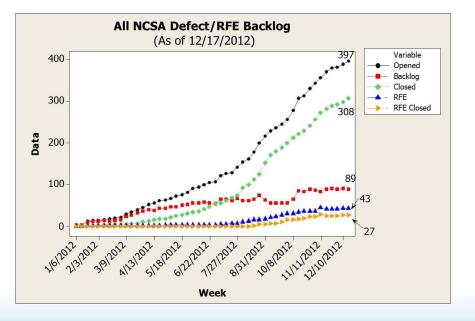
Blue Waters Acceptance Testing: Overview (BOF @ CUG'2019)

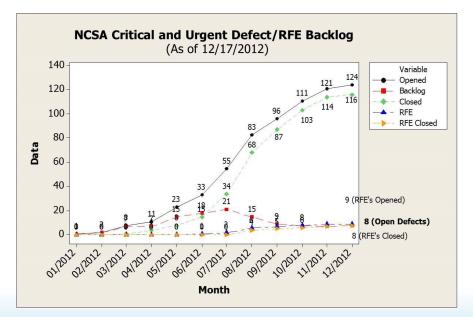


2 - Acceptance Testing

a) Structure of Test Plan: what does acceptance look like at your center?

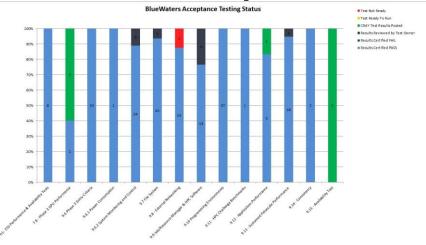
- Acceptance Testing: Test Design + Execution + Verification
- Detailed test-design phase: 2011 Test Matrix (ref: CUG-2012)


a) Structure of Test Plan: How long does it take? How large is your team?


- Timeframe of acceptance:
 - Jan-Jun/2012: Design and preparation of tests on TDS and Early-Sc.
 - Jul-Sep/2012: "Testing" of all tests debugging, refining, etc
 - Many tests applied to Cray software on TDS
 - Oct-Nov/2012: Bulk of acceptance testing, availability evaluation
 - Dec/2012: Reporting, acceptance decisions
- Personnel involved in testing:
 - Entire Blue Waters team: ~40 people
 - Varied levels of participation and responsibility

Defects found during testing period, filed to CrayPort

2 - Acceptance Testing (cont.)


- b) Test Selection: How do you determine which tests to use? What about job sizes to use? Do you use benchmarks, full applications, or a mix?
 - Two classes of tests:
 - Tests directly derived from the NCSA/Cray contract (SOW): 219 tests
 - Tests specified by NCSA based on other system specs
 - Job sizes:
 - Many full-system tests, to demonstrate sustained-petascale perform.
 - Some smaller tests to verify functionality
 - Types of tests Mix:
 - Full applications: Petascale apps, SPP apps various areas of science
 - Benchmarks (HPCC, IOR, etc)

- a) How do you execute your acceptance test? By hand vs. homegrown tool vs. open source vs. comm
 - Special job queue created for tests, controlled manually 24/7
 - Test execution: *test owner*
 - Job scheduler: Joe Glenski!
 - Tracking of progress: daily
 - Checked jointly by NCSA/Cray
 - All results stored at internal Wiki
 - Results classified into 5 levels

e.g. status on Oct.17, 2012:

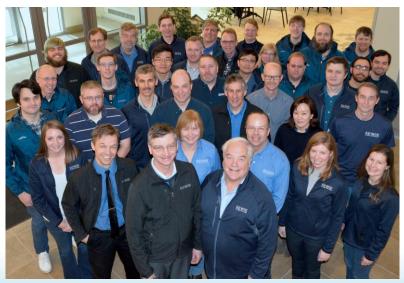
b) Have you considered other tools? e.g.: Gitlab CI, Jenkins, CTest, etc.

• NCSA <u>is</u> using Jenkins for regression testing on Blue Waters

GUI of BW-Jenkins:

- Tests run periodically or on demand
- Historical results remain available
- Help from R.Budiardja (ORNL)
 - Described in paper @ CUG'2017

New Item		Add JY	J test	ts that are considered done	and pro	duction-ready h	ere with "E	dit view".	Pedit d	lescrip
🌯 People ┥	Anonymous	All	в	lueWaters H2ologin4	JYC	Post PM shore	t tests	SPP bw-n	ew-pe +	
Build History	Only	s	w	Name ↓	Last	Success	Last Fa	ilure	Last Duration	
💮 Edit View	View		*	cray-hdf5-parallel-jvc	1 day	/ 18 hr - #48	5 mo 1	9 days - <u>#21</u>	10 min	Ø
🚫 Delete View			3							
Log In ┥		•	*	cuda-jyc	7 hr	45 min - <u>#442</u>	N/A		10 min	$\mathbf{\Sigma}$
🐡 Manage Jenkins			☀	HDF5Benchmarks	19 m	in - <u>#2095</u>	1 day 1	hr - <u>#2085</u>	58 sec	ø
🍓 My Views			*	IOR-jyc	8 hr -	49 min - <u>#613</u>	N/A		11 min	S
Credentials		-	Œ		_	 Select Pr 				
		-	*	JobLaunch-JYC	50 m	in - <u>#7394</u>	1 day 2	hr - <u>#7367</u>	1 min 34 sec	é
Build Queue	-			LAMMPS	1 day	7 0 hr - <u>#2086</u>	1 day 1	hr - <u>#2085</u>	46 min	2
No builds in the queue.		0	*	Lustre Check Ost JYC	58 m	in - <u>#6992</u>	N/A		3.9 sec	2
Build Executor Status	-	۲	*	mdtest-jyc	1 hr :	58 min - <u>#529</u>		e a Build - <u>#496</u>	10 min	ø
📇 master			*	MILC	4 hr	45 min - <u>#1254</u>	14 days	s - <u>#1250</u>	31 min	ø
1 Idle	Pass —		*	NAMD	2 hr	44 min - <u>#2135</u>	14 days	s - <u>#2126</u>	29 min	2
2 Idle		0		NWCHEM	00 h	- #1177	10 days	s - <u>#1173</u>	4 hr 6 min	5
3 Idle		-	-	NWCHEM	22 N	- <u>#1177</u>	13 days	s - <u>#1173</u>	4 nr 6 min	×
4 Idle 5 Idle			۲	osu reduce	10 hr	- <u>#418</u>	N/A		10 min	2
6 Idle			*	Ostat JYC	38 m	in - <u>#8032</u>	N/A		3.9 sec	5
7 Idle	Disabled	-	T		101			1007	10.1	
8 ior-h2ologin4-darshan	#197 🖬		*	stream-xe-jyc	12 hr	- <u>#445</u>	26 days	s - <u>#397</u>	10 min	
9 MILC-BW	#705		۰	testexternaljob	N/A		N/A		N/A	
	Fail -		alla	TestSSH-JYC		/s 4 hr - <u>#21</u>				~



Acknowledgments

- Funding: NSF OCI-0725070/ACI-1238993, State of Illinois
- Personnel: NCSA Blue Waters team, Cray site team

Blue Waters Acceptance Testing: Overview (BOF @ CUG'2019)

KAUST Supercomputing Lab: Acceptance and Regression

Bilel Hadri KAUST Supercomputing Laboratory (KSL) bilel.hadri@kaust.edu.sa

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Shaheen Supercomputer

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

		Processor type: Intel Haswell	2 CPU sockets per node, 16 processors cores per CPU,2.3GHz								
	Node	6174 Nodes	197,568 cores								
Ш		128 GB of memory per node	Over 790 TB total memory								
	Workload Manager	SLURM	Native								
COMPUTE	Prg-Env	Cray PrgEnv	KSL staff installation of 3 rd party packages (about 150)								
S	Speed	7.2 Pflop/s speak theoretical performance	5.53 Pflop/s sustained LINPACK and ranked 7 th in July 2015 Top500 list								
	Network	Cray Aries interconnect with Dragonfly topology	57% of the maximum global bandwidth between the 18 groups of two cabinets.								
	Disk	Sonexion 2000 Lustre appliance	17.6 Petabytes of usable storage. Over 500 GB/s bandwidth								
STORE	Burst Buffer	DataWarp	Intel Solid Sate Devices (SSD) fast data cache. 1.5 Petabytes of capacity Over 1.5 TB/s bandwidth.								
ST	Archive	Tiered Adaptive Storage (TAS)	Hierarchical storage with 200 TB disk cache and 20 PB of tape storage, using a spectra logic tape library. (Upgradable to 100 PB)								

Need to deliver the best computing environment to our users !

System performance and software assessments are critical ! REGRESSION TESTING is needed !

Motivations

- On previous HPC systems at KAUST since 2009.
 - Acceptance test were run only once with basic tests.
 - Simple and basic functionality of some system components were checked only before releasing the system back to the users as soon as possible.
- With Shaheen2 installation in April 2015,
 - Set detailed acceptance tests with expected functionality and performance
 - Identify potential hardware or software issues in a more rational & methodical way
 - Around 100 tests of functionalities and performance
- Following Acceptance, a regression procedure has been adopted
 - Developed SRT: Shaheen Regression Testing
 - Gathered a set of well-defined tests from acceptance tests to systematically assess the actual state of the system.
 - Designed to run after each maintenance session or unscheduled downtime
 - Main tests are done manually and occasionally using Jenkins
 - Keep adding additional tests on new features or new workload of users

Objective and Design

جامعة الملك عبداللم للعلوم والتقنية King Abdullah University of Science and Technology

• Objectives:

- **Provide performance similar or beyond acceptance results.**
- Run the tests with no special privileges.
- Analysis of the results by KSL team on whether or not to release the system to the users, based on the criticality of any issues detected
- Enabling 'on-the-fly' performance evaluation and even earlier detection of potential issues.

• Testing protocol :

- Component Tests:
 - Test the regular and basic of functionality of the system including the scheduler and programming environments
- Synthetic Tests
 - Extremely well-localized performance runs: compute nodes, interconnect, filesystem
- Typical Shaheen2 workload Run real applications in short jobs

Component Tests

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Category	Purpose	How to test?							
	Connection	Try to login via ssh (do this test with each login node), tunneling							
General	promptness of command line	How long for a regular shell command to return?							
	check X-Windows	Does an X11 window open correctly when spawned from Shaheen front-end?							
	check files	Are files accessible in /home, /lustre, /project, /scratch?							
	Cray compiler	Can we compile a toy program with these compilers?							
Licenses	Intel compiler								
	Commercial software	Can we run Totalview, DDT, Ansys ?							
	Availability	Check that all queues are up and running and record the number of nodes down							
	Nominal use	Submit (1, 4-512, 510-1000, > 1000) -node jobs							
	Nominal use	Submit from /project, from /scratch							
Scheduler	Stress	Measure the time needed to submit a job-array of 500 jobs. When running, cancel all of them.							
	Scheduling	Check policies and OoS partitions							
	policies	Check policies and QoS, partitions							
	Accounting	Check if the accounting is working							
	Compilers	Compile a toy code with Cray, Intel and GNU compiler							
Programming Environment	Libraries, modules	Link toy codes against petsc, perftools, hdf5 and netcdf libraries							
Environment	Monitoring	Check that the previous compilations have been recorded in the xalt database. Check that a toy program's IO behavior is tracked in Darshan.							
Burst Buffer	Availability	Submit a job using the burst-buffer and check the queue status and all the functionalities							

Performance Tests

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Category	Purpose	How to test?
	Node performance	Short HPL per node wrapped by MPI. Full scale test
Synthetic benchmark	Network	Test links. Full scale test
	ю	IOR performance
Burst Buffer	Performance	IOR performance
Applications	Performance and variability	VASP, WRF, SPECFEM, NEK5000

In average, when no issue, SRT last about one hour

Benefits

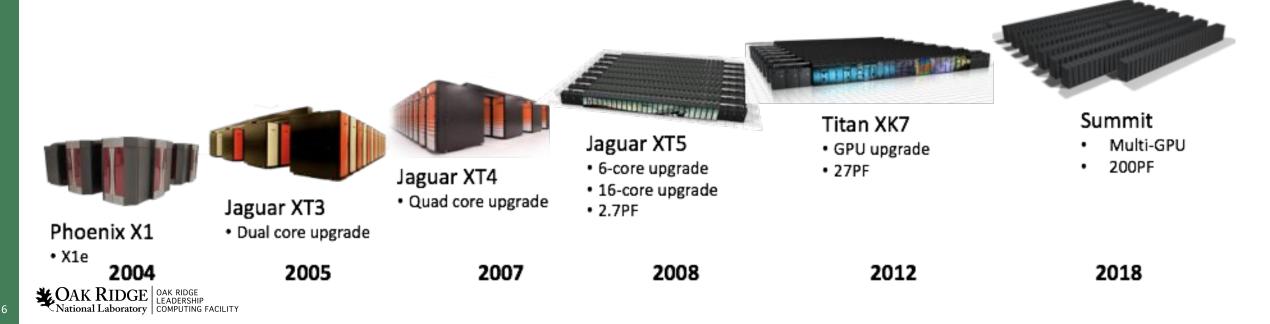
In the last 3 years, our acceptance and regression procedure has provided essential benefits:

- **1.** No hardware or software tickets/complaints related to the system for the next 24 hours after it is released to users.
- 2. An improved reproducibility of user experiments since the installation of the systems
- **3.** Better collaboration between CS team, sys-admin and Cray on site team
- 4. More detailed history of observed hardware and software problems
 → Allowing us to provide more accurate data to vendors about any performance degradation
- 5. With the new functionalities, new users, we add new regression testing and adapt it for acceptance for new HPC acquisition

OLCF Acceptance Testing

Verónica G. Vergara Larrea

Reuben Budiardja



Outline

- What is the OLCF?
- Summit
- Acceptance Testing
- Post-acceptance Testing

What is the Oak Ridge Leadership Computing Facility?

- Deploy and operate computational and data resources required to tackle global challenges.
- Offer leadership-class computing resources to researchers who have many of the largest computing problems in science.
- Partnering has been essential to delivering science in a rapidly changing computational environment.

Summit

Compute System

- 256 compute racks
- 4,608 compute nodes
- Mellanox EDR IB fabric
- 200 PFLOPS FP64
- ~11 MW, 70F cooling water
- 10.2 PB Total Memory

Compute Rack

18 Compute Servers

٠

- Warm water (70°F direct-cooled components)
- RDHX for air-cooled components

39.7 TB Memory/rack 55 KW max power/rack

250 PB storage 2.5 TB/s read, 2.5 TB/s write (**2.5 TB/s sequential and 2.2 TB/s random I/O)

- 2 x POWER9
- 6 x NVIDIA GV100
- NVMe-compatible PCIe 1.6 TB SSD

IBM POWER9

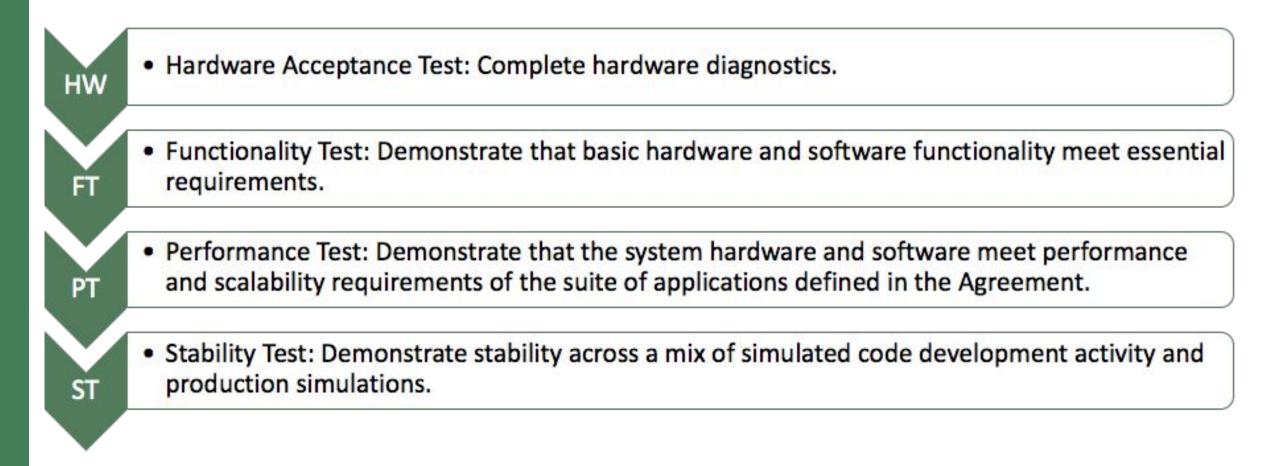
22 Cores

4 Threads/core

NVLink

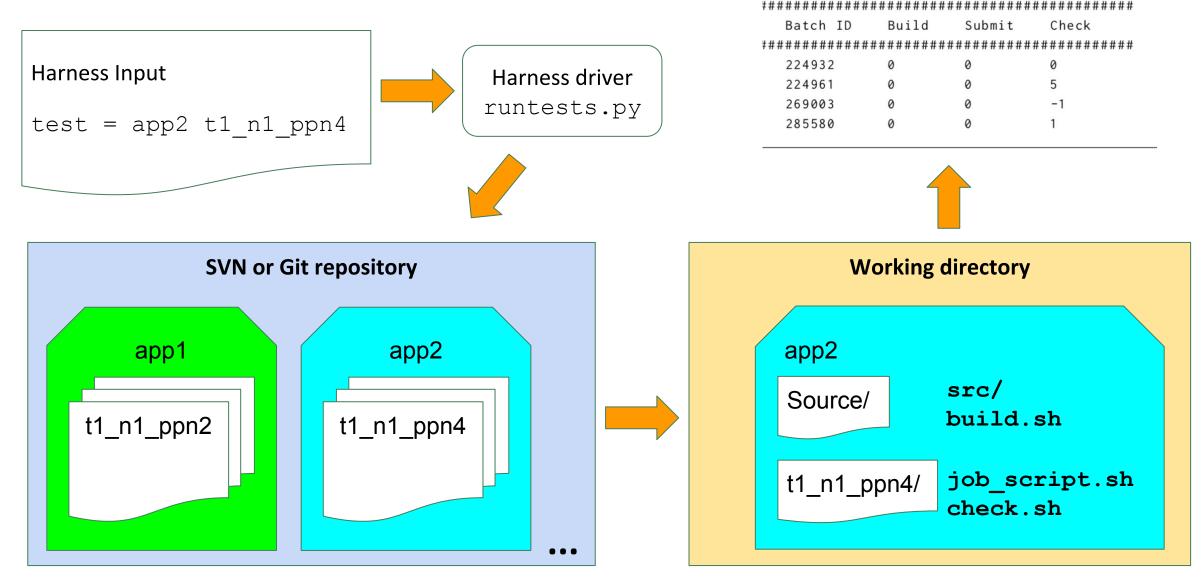
NVIDIA GV100 • 7 TF

- 16 GB @ 0.9 TB/s
- NVLink


GPFS File System

25 GB/s EDR IB- (2 ports) 512 GB DRAM- (DDR4) 96 GB HBM- (3D Stacked) Coherent Shared Memory

Acceptance Testing


Acceptance Tests

	L	ang	uage	es	C	omp	oiler	s		Ę	atur	:es /	Pro	g. I	۷od	els,	~~~	Libraries											N	lotif	s				0	ther	ł		ı/Q						
Full Applications	FORTRAN	FORTRAN 2003	v	£	Å	ILVM	GNU	Bg	GPU accelerated	Uses Multiple GPUs	-33	C++11 threads	OpenNIC 3.1	UDENNIC 4	CLIDA	Kokkas	MPI	BLAS	LAPACK	ESSL	Magma	cuBLAS	Scalapack	CUFFT	FTW	PETSC	Trilinos	Hypre	AmeX	Structured grids	Unstructured grids	Dense linear algebra	Sparse linear algebra	<u> </u>	Monte Carlo	Ħ	Burst Buffer	SCR	GPUDirect	MVN	GlobalArrays	HDF5	NetCDF	NetCDF parallel	SO
CHROMA			x	х	х	х	х		x			;	x		,	(x	x			Х	x								х			x		x				х	х					
NAMD				x					x)	x				x							х	x					х				x		х									
LAMMPS				х			x		х	х)	×)	x	x						Х		х									х		х									
LSMS	x			x			х		x	x)	ĸ		>	(x	x	2			x										х			х						2	x			
ACME	x	x			х		x	х	x)	ĸ	3	x		X													х	x								x				х	x	
GTC	x							x	х	x)	x	2	x		x									х		х	x	x	x		х	x											х
NWCHEM	×		x	x	x		x	x	x		x)	ĸ)	(x	x	x	x		x	x									x									x				
Profugus				х		х	х		x						>	(х								х										
Additional benchmarks, kernels, and mini-apps												x)	ĸ																							x	x				2	ĸ		

Acceptance Tests (cont'd)

- Benchmarks
 - contractual, feature specific
- Real-world Applications
 - past workloads and expected workloads
- Workflows
- Tools!
 - Profilers (nvprof)
 - Test in single- and multi-host modes on applications
 - Test traces, profiles, analysis metrics for CUDA programs
 - Debuggers (ARM DDT)
 - Ensure it can run at-scale (20% full system) reliable and start within 5 minutes
 - Used in *offline* (non-interactive) mode
 - Breakpoints set on application, output captured and validated with script

OLCF Test Harness

Post-acceptance Testing

- A shortened version of the acceptance test is prepared to validate new versions of the HPC SW stack.
- Expand tests to include applications from the new allocation cycle.
- Multi-stage testing:
 - Starts at the smaller scale on the test & development system
 - Schedule a 8-12 hour testshot on Summit
- Delicate balance: downtime vs. risk of introducing issues into production
- Automate regression testing:

