
CUG 2018 BoF
Managing Effectively the User

Software Ecosystem

Bilel Hadri 1

Bilel	Hadri Chris	FusonGuilherme	Peretti-Pezzi

Mario	Melara and	Helen	He Peggy	Sanchez

Agenda
• Motivation	and	Goal	of	the	BoF

• Survey:	How	do	you	maintain	software	stack	?

• Short	presentation	on	the	different	strategies	by	NERSC,	CSCS,	
ORNL,	KAUST

• Cray	Demo

• Q/A	

CUG-2018 BoF Managing Effectively User Software Ecosystem 2

Motivations
• Supercomputing	centers	supports	and	maintains	hundreds	of	software	packages,	

– each	with	multiple	versions,	and	each	version	potentially	built	with	multiple	
compilers	and	usually	have	complex	dependencies.

– Necessary	to	upgrade	packages	on	a	regular	basis	and	to	make	the	process	of	
installation	versatile	and	automated	as	much	as	possible.	

– Need	more	reproducible	by	any	member	of	the	staff	and	result	in	less	issues	faced	
by	end	users.

• To	manage	effectively	the	user	software	ecosystem,	many	CUG	member	sites	have	
adopted	different	strategies	and	employed	different	tools	such	as	EasyBuild,	SWTools
and	Spack.
– these	tools	have	its	advantages	and	inconveniences	
– in	some	cases,	the	installation	does	not	consider	the	optimal	configuration	to	

achieve	the	best	performance	on	Cray	platform.

CUG-2018 BoF Managing Effectively User Software Ecosystem 3

Goal
• Start	a	discussion	between	CUG	members	along	with	Cray	Documentation	and	

Performance	teams,	
– Share	the	strengths	and	weaknesses	of	the	strategies	currently	adopted,	
– Gather	the	best	recipes	of	installation,	
– Merge	our	efforts	in	a	common	repository	hosted	in	the	Cray	Portal	

Documentation	or	on	the	CUG	website	for	example.	

• Centralize	in	one	place	all	the	recipes.	
– This	catalogue	gathering	of	the	different	applications	installations	will	

benefit	the	whole	HPC	community	using	Cray	systems.
– Forum	for	discussion	PEAD-SIG	mailing	list.	

• Don’t	be	shy,	ask	for	advise/help.	(it’s	free	:D)	

CUG-2018 BoF Managing Effectively User Software Ecosystem 4

Survey

• Are	you	using	EasyBuild,	SWTools and	Spack?

• Do	you	have	your	own	implementation?

• Are	you	targeting	a	basic	installation	or	optimized	?

CUG-2018 BoF Managing Effectively User Software Ecosystem 5

KAUST	users/ecosystem

• 7.2	PF	Cray	XC40	(Haswell)	supporting	
over	700	users,	300	projects.

• Support	more	than	130	app/libraries

CUG-2018 BoF Managing Effectively User Software Ecosystem 6

SWTOOLS
• SWTools created	to	help	manage	third-party	software	installations	at	

supercomputer	centers.	It	was	designed	to	keep	the	installations	consistent	and	
up-to-date	while	trying	to	avoid	problems	encountered	with	previous	software	
repositories.	Deployed	at	NICS,	OLCF,	NCSA	and	KAUST.

• Automated	building,	testing,	linking,	reporting
– Scripts	to	rebuild,		relink	,	and	retest	each	application
– Ability	to	do	batch	operations
– Easily	maintainable

• Inventory	of	currently	installed	software
– Automate	generation	of	many	user	documents
– Enforcement	of	rules

• Cons:
– Interactive	installation	,	Module	are	manually	created

• More	information:
– Nick	Jones	and	Mark	R.	Fahey,	“Design,	Implementation,	and	Experiences	of	Third-Party	Software	

Administration	at	the	ORNL	NCCS,”	Proceedings	of	the	50th Cray	User	Group	(CUG08),	Helsinki,	Finland,	
May	2008.

CUG-2018 BoF Managing Effectively User Software Ecosystem 7

Online	documentation

CUG-2018 BoF Managing Effectively User Software Ecosystem 8

Oak Ridge Leadership Computing Facility
• Mission: Provide the computational

and data science resources required
to solve the world’s most impactful
scientific & engineering problems.

• Users cover multiple science
domains and experience levels

• New projects and users are added
to system throughout year

• Average 250 projects and 1,000
active users per year

• OLCF users are spread out all over
the globe and come from academia,
national laboratories, other
government agencies, and industry

• Software requirements often vary
between projects

Titan
Cray XK7
27 petaflops
299,008 Processor Cores
18,688 GPUs

Software	Environment

• Diverse	user	community,	diverse	software	needs		
– Manage	and	provide	multiple	software	packages,	libraries,	
compilers,	versions,		build	configurations

• Mix	of	Cray	provided	and	center	provided	packages
• Modules	used	to	help	manage	environment

– Environment	modules	used	on	OLCF	Cray	systems
– Lmod	used	on	most	non-Cray	systems

• Center	controls	defaults,	future	and	previous	versions,	parings
• Center	software	areas:

• Center	installed,	maintained,	and	
supported

• Available	to	all	system	users

/sw/<system>
• Project	installed,	maintained
• Limited	center	support
• Available	to	only	members	of	the	

project

/proj/<project_ID>

Choosing	Packages	to	Install

• Initial	packages	chosen	from	acceptance	requirements
– Users	requests	packages	once	in	production

• Approving	package	also	assumes	some	center	responsibility
– Documentation,	testing,	updating	

• Not	all	requests	approved
– Packages	chosen	based	on	benefit	to	user	community	
– Assist	project	in	building	in	project	area

• NetApp	area	accessible	to	all	project	members
• Backed-up,	quota,	available	from	compute	nodes

• Dealing	with	requests	for	multiple	versions	and	build	configurations
– Provide	limited	versions
– Provide	single	build	configuration
– Projects	can	use	center’s	build	recipe	to	aid	building	in	project	area

Software	Updates	and	Changes

• Large	number	of	users/projects	with	varying	software	version	needs
– Some	need	latest	version
– Some	have	difficulty	moving	to	recent	releases

• Provide	multiple	versions
– previous,	default,	more	recent	

• 1.2,	1.4,	2.3,	2.6
– A	version	may	be	installed	for	specific	projects,	but	may	never	become	

default
• Changes	to	default	and	removals	can	impact	usability/results
• Include	users	in	changes	to	defaults	and	removals

– Provides	notification	and	opportunity	to	test	before	default	changes
• Notifications

– Weekly	email
– Web
– Module	load	message

Installation	Tools

• Manually	installing	packages	has	large	overhead	and	is	problematic
– Need	repeatable	standardized	method	for	installations,	modulefiles,	and	

documentation
• Installation	tools	and	installation	processes	used	over	the	years

• Spack	on	NCCS	systems
– Community	support
– Share	common	build	recipes		

• NCCS	CI	Management
– GitLab	runners
– Enforce	process,	installation	location,	format
– Install	only	as	software	user
– Verify	before	installation	

swtools													smithy													spack	

Scientific Software Management @ CSCS
Cray User Group 2018 (CUG2018)
Managing Effectively the User Software Ecosystem (BoF)
May 22nd, Stockholm

Guilherme Peretti-Pezzi

Scientific Computing Support (CSCS)

Piz Daint

EasyBuild @ CSCS 2

§ #3 Top 500
§ #1 in Europe
§ 19.590 PFLOPS

§ #10 Green 500
§ 10.398 MFLOPS/W

§ GPU partition
§ P100 + Haswell

§ MC Partition
§ 2 x Broadwell

Improving software stack quality using SCM,
code review and Continuous Integration

§ Distributed source code management (SCM) and CI are the
state of art for developing high quality software
§ Goal: improve quality while reducing the testing overhead

§ Why not using these practices for a fully automated
deployment of scientific software?

EasyBuild @ CSCS 3

Tools used at CSCS for deploying scientific software

§ EasyBuild
§ Strong focus on stability and has regular releases
§ Reproducible & community validated build recipes
§ Cray support since 2015 (presented at CUG’16)

§ Github
§ Standard way of performing distributed source code management
§ Version control, code review (pull requests) and CI hooks

§ Jenkins
§ Enable automated testing across different systems

§ Triggered by Pull Requests

§ ReFrame
§ Portable framework for writing regression tests for HPC systems

EasyBuild @ CSCS 4

EasyBuild timeline @ CSCS

EasyBuild @ CSCS 5

Feb’15 May’15 Jul’15 Sep’15 Dec’16 Jan’18

EB gets experimental
Cray support

SCS’ EB pilot project:
Python on Piz Dora/Daint

MeteoSwiss CS-Storm:
All software stack is built with EB
• Using pre-installed PrgEnv

11th Hackathon
Cray Stable

Piz Daint upgrade
All supported software
is installed with
EB + Jenkins + Github

• Jenkins performs
autonomous builds on
most of CSCS systems

• Jenkins setup now uses
pipelines

CI – Testing a new Easyconfig submitted to Github (1)

EasyBuild @ CSCS 6

Github PR ([daint-gpu]) Triggered Pipeline

CI – Testing a new Easyconfig submitted to Github (2)

EasyBuild @ CSCS 7

Github PR ([daint]) Triggered Pipeline

User instructions for EasyBuild

EasyBuild @ CSCS 8

Useful links for EasyBuild @ CSCS

§ EasyBuild User Documentation at CSCS
§ https://user.cscs.ch/scientific_computing/code_compilation/easybuild_framework/

§ Easyconfig files repositories
§ List of production builds performed by Jenkins

§ https://github.com/eth-cscs/production/tree/master/jenkins-builds

§ Custom CSCS easyconfigs and easyblocks:
§ https://github.com/easybuilders/CSCS

§ ReFrame
§ https://eth-cscs.github.io/reframe/

§ Acknowledgments
§ Scientific Computing Support team

EasyBuild @ CSCS 9

Thank you for your kind attention

Mario Melara and Helen He
User Engagement Group

Maintain and
Support User

Software
Environment at

NERSC

May 22nd, 2018
CUG 2018

Who We Are: NERSC
• Cori (Cray-XC40)

– 34 double-width cabinets
– 9,688 KNL + 2,388 Haswell nodes
– Aries-High-Speed Network
– Intel/Cray/GNU

• Edison (Cray-XC30)
– 30 cabinets
– 5,586 Ivybridge nodes
– 12 Sandybridge login nodes
– Intel/Cray/GNU

• Genepool (soon to be deprecated)
and Denovo

NERSC Software Environment

• Among three systems NERSC maintains: 700+ software packages
– Includes different:

• architectures - haswell, mic-knl, sandybridge
• compilers - gcc, intel, cce

• Different categories:
– High Energy Physics
– Climate
– Bioinformatics
– Libraries
– Machine Learning/Deep Learning libs and frameworks
– Debugging tools

Software Environment Policy

NERSC has established a software programming environment policy:
– Maintain 4 CDT (Cray Development Tools) versions on the system at

a time
• Users have access to any given software version for at least 18 months

– Install new CDT every 3 months (Mar, Jun, Sept, Dec releases)
– Change software default versions every 6 months

• Mostly for changing Cray provided software versions
• Promotes to rebuild NERSC supported packages with these new defaults

– Fix critical bugs as needed with user notices
– Provide pe_archive module for archived older versions

Package Installation without Spack
• Software Owners List for each System

– Consultant assigned a package to install and maintain
– Consultant usually has experience installing (and maybe using) package

• Bash scripts
• Each maintained their own
• No central repository for scripts

• No documentation
• Python – Anaconda

– Conda install
– Virtual environments

Choosing Spack
• Easy to install and use

– Git clone → $ spack install → installed!
• Lawrence Livermore National Laboratory close to us and easy to

collaborate with
– At the time Spack did not have Cray support but now does thanks to close work with

Spack developers

• Powerful package database querying system
– $ spack find

• Allows for combinatorial installs
– Can install the same packages with different features turned on and off
– No interference with other installs

• Rapid adoption from other facilities
– OLCF
– ALCF

Software Management Today
• Started using Spack for production software June-2017 on Edison
• Spack-built packages on Cori and Edison (700+ packages each for different

architecture)
• Some software still done by with bash scripts

– Usually the difficult to manage scientific applications (CP2K)
• Cross compilation still difficult
• Python

– Managed separately through anaconda and environments
• Users sometimes told to install their own package using Shifter

– Some build systems are difficult to use on Cray’s compilation environment
• Entire software stack is static
• Spack modulefiles not used

– Some NERSC custom logic in modulefiles (moving to the auto-generated ones)
– In-house script to generate modulefiles.

Spack Manages Software Through SWOwner

• SWOwner
– Pseudo-user with an elevated access (still no root privileges)
– Consultants login as “swowner” (using yubikey)
– Single spack instance

• Default configuration files
– packages.yaml - linking with external Cray tools and libraries
– config.yaml - for customizing install path format and location

• Run a spack install or transfer their custom bash script to pseudo-user
• Create modulefile using in-house script

– make_modulefiles.sh
• Collaboration between consultants

– Done via PRs
– Each consultant maintains their own fork and works on their own package

Impressions of Spack

• Pros
– Spack makes installing libraries and large software stacks easier
– Community is very active
– Close collaboration with developer
– Spack is easy to use
– Combinatorial installs

• Cons
– Spack re-builds a lot of packages
– Cross compilation not possible at the moment

• NERSC is working on this!
– Static linking support is lacking

• Most package files, like Linux systems, assume shared linking.
• This does not work well on Cray.

NERSC/Spack Roadmap

• Improve cross-compilation
• Improve linking of dependencies on Cray systems
• Automation of the creation of modulefiles

– Use spack built modulefiles instead of creating our own
• Provide spack as a module for users.

– Users can use Spack to install packages
– Developers part of the Exascale Computing Project (ECP) can use Spack to

install

Thank You

