
© 2019 Cray Inc.

S h a s ta S o f tw a re Wo rk s h o p

CUG 2019 – Montreal, Canada

lkaplan@cray.com

© 2019 Cray Inc.

• Shasta Software Stack overview
• Themes and strategy

• Architecture
• System Management, Linux, PE

• System Management
• Levels and components
• Service infrastructure/APIs

• Image and config management/Boot
• Security
• Monitoring
• Network management

• Discussion

• Break

• Linux
• Components

• Slingshot
• User Environment

• User Access Service/Nodes
• WLMs
• Containers for users

• Cray Programming Environment
• Analytics

• Storage
• Software Status
• Discussion

• End

Shasta Software Workshop – Agenda

© 2019 Cray Inc.

• Larry Kaplan – Chief Software Architect
• Harold Longley – Manager, management systems
• Jason Rouault – Director, management systems

• Matt Haines – VP, system management and cloud software
• Jonathan “Bill” Sparks – Staff Engineer, cloud hosting
• John Fragalla – Principal Engineer, storage pre-sales
• Dave Poulsen – Senior Program Manager, strategic customer engagements

Presenters (in order of appearance)

© 2019 Cray Inc.

Overview
Larry Kaplan

© 2019 Cray Inc.

Shasta Software Themes

• Building on current management and Linux scalability
enhancements

• MPI scalability across full systems

Scaling to
exascale

• Separate management and operating environments
• Concurrent maintenance
• Health and resiliency support

Toward zero
downtime

• Customer choice of operating environment
• Broad container support
• Workload management and orchestration

Run any
workflow

• Clean APIs between software components
• Customizable with easy integration

Modularity

5

© 2019 Cray Inc.

• Evolution of proven XC software stack
• CLE managed ecosystem and image management
• Resilient services and other reliability features
• High performance networking software

• Emphasis on modularization and APIs
• Supports separation of software components
• APIs will be published
• Flexibility allows customers to engage with the software stack in new way

• Leverage Open Software
• Use existing open solutions where Cray differentiation not needed

Shasta Software Strategy

6

© 2019 Cray Inc.

Site Ethernet
Network

Management Network

Cray Shasta System

Utility

Storage

System Config,

Image Mgmt,
Boot Services,

RAS

Cray

System
Management

Services

Linux

Administrators

Service

Nodes

User Applications, Programs, & Scripts

libfabric APIs

Enhanced Accelerator Libraries Enhanced Libraries

MPI Scientific AnalyticsMPI Scientific

Programming Models

OpenMP Co-arraysUPCSHMEMMPI Chapel

Language BasedLibrary Based

Application Launch Infrastructure

CLE CLE

libfabric libfabric libfabric libfabriclibfabric libfabric libfabric libfabric

3rd-party

Accel
Compute

Nodes

Cray
Compute

Nodes

Cray

Accel
Compute

Nodes

Cray

Accel
Compute

Nodes

3rd-party
Compute

Nodes

Cray
Compute

Nodes

CUDA/HIP

CUDA/HIP

Directive Based

Lustre

SAN Customer
Filesystem

NFS

GPFS

Panasas

DVS

Programmers

Linux Environment

Development tools

Workload Manager

Cray Programming

Environment

Compilers

Debugging Tools

Performance Tools

Job Launch

Linux

Modules / Lmod

MOM

High Speed Network

L
e

g
e

n
d Cray Content

3rd Party Content

Community Content

Service

Nodes

Service

Nodes

Service

Nodes

Service

Nodes

Containerized Services

Cray
Gateway

Nodes

Cray
Storage

Nodes

Cray
Gateway

Nodes

CLE

libfabriclibfabric

CLE CLE CLECLE CLE CLECLE

7

CPS

© 2019 Cray Inc.

Shasta Software – Slingshot

Cray Software Cray Software integrated with
Open Source Software

Cray Software integrated
with Vendor Software

Open/3rd Party
Software

M
an

ag
em

en
t c

om
po

ne
nt

s
Ha

rd
w

ar
e

In
te

rfa
ce

 co
m

po
ne

nt
s

Run-tim
e com

ponents

Ad
m

in
is

tra
tio

n
an

d
M

on
ito

rin
g

(E
m

ph
as

is
 o

n
st

an
da

rd
in

te
rfa

ce
s)

Pr
ov

is
io

ni
ng

 a
nd

 Im
ag

e
M

an
ag

em
en

t

Im
ag

e
C

re
at

io
n,

C
on

fig
M

gm
t.,

 B
oo

t S
eq

ue
nc

e

N
et

w
or

k
M

an
ag

em
en

t

Po
w

er
 M

an
ag

em
en

t

Applications
Cray Compilers,

Libraries, Tools, MPI
Open/3rd Party Compilers,

Libraries, Tools, MPI
Vendor Compilers,

Libraries, Tools, MPI

Workload Managers (SLURM, PBS, ...)

Network/Kernel Drivers, APIs

Cray Linux Environment (CLE)
Orchestration, DVS, RAS, … File systems (Lustre, …)

Linux

Events/State/Status Message Bus

Network Monitoring/Control, Dragonfly Routing

RAS Components & Diagnostics RAS Components & Diagnostics

Cray Hardware Component Support Vendor Hardware Component Support

8

© 2019 Cray Inc. 9

Shasta System Software

Infrastructure Services (Hardware)

Storage Events Slingshot Compute

Managed Compute Nodes

External Interfaces (IPv4,IPv6)

Linux

Management
Services

Node Bootstrap

Orchestration

Utility
Storage

Monitoring

Configuration
Management

Slingshot
Management

Hardware
Inventory

Administrative
Control

Mgmt
APIs

(S
er

vi
ce

 N
od

es
)

Other
Managed

Nodes

User
Access
Service

Content
Projection
Service

© 2019 Cray Inc.

• Separate “Management Services” from platform-centric “Managed
Services”

• E.g. boot service is platform independent but Netroot service is specific to CLE

• Orchestrated containerized services
• Both management and managed

• Advantages
• Supports deployment and upgrade of unique software stacks
• Supports independent scale-out and resiliency for services

• Clear distinction between infrastructure and platform/ecosystem

Separation, Containers, and Orchestration

10

© 2019 Cray Inc.

Shasta System Management

Blade Control Shasta Hardware
Support Services

Storage
Infrastructure

Shasta Hardware

Utility
Storage Infrastructure

Support
Services

Shasta
Mountain

Shasta
River

Network
Infrastructure

Bootstrap
Orchest’n

Cray Platform
Support
Services

Customer Platform

Level 1
Services

Level 2
Services

Level 3
Services

Slingshot Fabric
ManagementCabinet Control

Power
Mgmt

Hardware
Inventory

Core Boot
Services

Image
Creation

Config
Mgmt

System
Management
Services

Embedded
Controllers

Image
Mapping

RBAC
Security

Event
Correlation

High
Availability

Log
Aggregation

Basic
Telemetry

Boot
Scripting

Hardware
Consumer

Dynamic
Infrastructure

Consumer

Production Class
Consumer

11

© 2019 Cray Inc. 12

CLE Software Components

Node Hardware

Kernel Network Driver Virtualization?

Content Projection Lustre

Orchestration

User Access WLM Process
Launch

I/O libs

Compilers

Debugging
Tools

Performance
Tools

OpenMP MPI

Common
Kernel-Level
Services

User-mode Containers RAS
Common
User-Level
Services

Core Specialization

libsci

PGAS

Compute Node
Services

Service Node
Services

Job Launch User Access
Service
Commands and
Tools

Compute Node
Programming
Models and
Libraries

Node Cleanup/
Health Check

libfabric

Gateway P-states

TCP/IP

© 2019 Cray Inc.

Tools
(continued)

Programming
Models

Programming
Languages

Tools Programming
Environments

Shasta Development Environment
Optimized
Libraries

Cray Developed
Licensed ISV SWCray added value to 3rd party
3rd party packaging

Analytics / AI **

AI ToolboxesEnvironment setup DebuggersDistributed Memory

Debugging Support

I/O Libraries

Scientific Libraries

DL Frameworks

ProgEnv-Languages

PGAS & Global View

Shared Memory / GPU

Fortran

C

C++

Chapel

Python

R

Cray MPI
SHMEM

OpenMP

UPC
Fortran coarrays

Coarray C++
Chapel

Cray Compiling
Environment
PrgEnv-cray

GNU
PrgEnv-gnu

3rd Party compilers
(AMD, Intel, PGI, etc)

PrgEnv-???

LAPACK

ScaLAPACK

BLAS

Iterative
Refinement

Toolkit

FFTW

NetCDF

HDF5

gdb4hpc

TotalView

DDT

Abnormal
Termination

Processing (ATP)

STAT

Valgrind4hpc

Performance Analysis

Porting

CrayPAT

Cray Apprentice2

Reveal

CCDB

Cray Urika
AI - Analytics

Chapel AI

Cray PE DL
Scalability Plugin

Tool Enablement
(supports Spack,

CMake, etc.)

Modules / Lmod

** Not PE dependent
13

© 2019 Cray Inc.

System
Management
Harold Longley
Jason Rouault

© 2019 Cray Inc.

Shasta System Management

Blade Control Shasta Hardware
Support Services

Storage
Infrastructure

Shasta Hardware

Utility
Storage Infrastructure

Support
Services

Shasta
Mountain

Shasta
River

Network
Infrastructure

Bootstrap
Orchest’n

Cray Platform
Support
Services

Customer Platform

Level 1
Services

Level 2
Services

Level 3
Services

Slingshot Fabric
ManagementCabinet Control

Power
Mgmt

Hardware
Inventory

Core Boot
Services

Image
Creation

Config
Mgmt

System
Management
Services

Embedded
Controllers

Image
Mapping

RBAC
Security

Event
Correlation

High
Availability

Log
Aggregation

Basic
Telemetry

Boot
Scripting

Hardware
Consumer

Dynamic
Infrastructure

Consumer

Production Class
Consumer

15

© 2019 Cray Inc.

• Services
• Represent a logical activity within the system
• Are self-contained
• Only expose interfaces (or APIs) for communication with other services and

components
• Modular approach

• Decouples the services from each other
• Allows for greater ease of maintenance and replacement of the components

within each service
• As long as the API behaves the same, there is no need for another service or

component that relies on it to know its internal structure or implementation

Service Based Architecture

16

© 2019 Cray Inc.

Distributed Services

Multiple non-compute nodes distribute service load

• Compose a service or tool by integrating
distributed, separately-maintained, and deployed
software components

• Enabled by technologies and standards that
make it easier for components to communicate
and cooperate over a network

• Increases the reliability, availability, and
scalability of the management functions

• Enables scaling across multiple hosts
• Allows the system management requests to be

load balanced across a distributed system for
automatic scalability and reliability

node 1

Service A

Service B

node 2

Service B

Service D

node 3

Service A

Service C

node 4

Service B

Service C

17

© 2019 Cray Inc.

• A RESTful API is an application program interface (API) that uses HTTP requests

• GET, DELETE, PUT, PATCH, POST

• REST API specification (swagger/OpenAPI 3.0) for Cray microservices used to
generate

• API documentation

• Provided in docker image and in tarball for webserver

• API server stubs for the microservice

• API client code for the Cray CLI framework

REST API

18

© 2019 Cray Inc.

API Documentation from REST API Specification

19

© 2019 Cray Inc.

CLI Documentation from REST API Specification

20

© 2019 Cray Inc.

• New CLI for interacting with Shasta Management

• Based on REST APIs and minimal code

• Generated CLI

• Built on a set of open standards

• REST for all control

CLI Framework from REST API Specification

$ cray --help

Usage: cray [OPTIONS] COMMAND [ARGS]...

Cray management and workflow tool

Options:

--help Show this message and exit.

Groups:

auth Manage OAuth2 credentials for the Cray CLI

capmc Cray Advanced Power Management and Control

config View and edit Cray configuration properties

pals Cray Parallel Application Launch Service

21

© 2019 Cray Inc.

System Management API Gateway
External System Management Applications

REST Client

REST Client REST Client
System Management CLI Network Management CLI

Software Management
Components

Hardware Management
REST Servers

Software Management
REST Servers

System Monitoring
REST Servers

Network Management
REST Servers

API Gateway

Hardware Management
Components

Shasta Software Stack
Enhanced Compute Node PE

WLMs

Analytics

Compute Node Services

System Monitoring
Components

User Access
Services/nodes

High Speed Network
(HSN) Components

Network and Fabric
Management Components

M
an

ag
ed

HMI
(HMS Messaging Interface)

M
an

ag
em

en
t

22

© 2019 Cray Inc.

• Docker
• Docker container runtime

• Docker execution environment

• Standardizes the management and interfaces

• Configuration data passed into the container modules

• Code that provides the networking is the same for every container

• Kubernetes
• Manages the life cycle of containers within the service infrastructure

• Scheduling of containers to run across a set of hosts

• Controlling where to run a service based on requirements of the service

• DNS and networking support between containers in a system

• Automatic scaling and health monitoring

• Upgrade strategies
23

Docker and Kubernetes

© 2019 Cray Inc.

Image and
Configurat ion
Management
and Boot
Orchestrat ion
Harold Longley

© 2019 Cray Inc.

• Prescriptive recipes create image artifacts used to boot nodes
• RESTful services for image management

• Package Repository Service (PRS)
• Define zypper/yum package repositories and provide the RPM content, at scale, for installing and updating

software for nodes in the system
• Image Management Service (IMS)

• Build images from kiwi-ng recipes and customize images
• Multiple Linux distributions supported
• Uses kiwi-ng in a docker container
• Uses Kubernetes Job workflow

• Artifact Repository Service (ARS)
• Store and retrieve artifacts (recipe, kernel, initrd, image root)

• Interact with these services using the REST API or Cray CLI
• CUG 2019 presentation

• Reimagining Image Management in the New Shasta Environment

Image Management

25

© 2019 Cray Inc.

• Admin submits a “create job” to IMS
• IMS establishes new Kubernetes pod

to build image

• Recipe downloaded from ARS
and passed to kiwi-ng running
in new pod
• kiwi-ng installs RPM packages

listed in recipe

• RPMs retrieved from repos setup by
the Package Repository Service
(PRS)

• After rpms installed, kiwi-ng runs
scripts specified in recipe on image
root

• When kiwi-ng completes,
image artifacts collected and
stored in ARS

26

Creating an Image

Image Root Initrd

Kernel

Image Artifacts

© 2019 Cray Inc.

• Admin submits a “customize job” to IMS

• IMS establishes new Kubernetes pod to

customize the image

• Existing image is downloaded

from ARS and uncompressed

• SSH environment is established

where admin can access the

image root and make any required

changes

• When admin is done, image artifacts are

collected and stored in ARS as new

artifacts

27

Customizing an Image

27

Image Root Initrd

Kernel

Image Artifacts

© 2019 Cray Inc.

Non-Compute Nodes
K8s services in containers (Pods)

kube-keepalive

nms-config

kvstore

nms-
cray-
service
launcher

slurm

ckdump

pals

smd

hms-matiadb ckdump

keycloak ckdump

kongtroller ckdump

BSS

ARS

TFTP

CAPMC DHCP

SLURM

PRS

IMSapi-gateway

conman

ckdump

cds

Boot Process Flow Needs Image Artifacts
Compute Nodes

Compute Nodes waiting to be booted

Target Node

1) CAPMC powers up node

2) Node BIOS asks PXE driver on network card to send DHCP request

3) DHCP provides TFTP server address and file name

4) TFTP provides ipxe.efi file which points to BSS iPXE boot script

5) BSS iPXE boot script indicates what is needed to boot

1) kernel (from ARS)

2) initrd (from ARS)

3) Kernel parameters (including the image root from ARS)
28

© 2019 Cray Inc.

• Booting compute nodes requires coordination of several services
• Hardware State Manager (HSM) – Inventory of nodes and their attributes
• Artifact Repository (ARS) – Stores boot artifacts (kernel, initrd, image root)
• Image Management (IMS) – Stores image record (a triple of kernel, initrd, image root)
• Boot Script (BSS) – Stores per-node information about iPXE boot script
• Cray Advanced Platform Management Control (CAPMC) – Powers control for node(s)
• Hardware Message Interface (HMI) – Manages heartbeat messages and state in HSM
• Version Control (VCS) – Stores configuration data and code with versioning
• Configuration Framework (CFS) – Configures node(s) using configuration framework

• Boot Orchestration Service (BOS)
• Coordinates these services
• Tracks status

Boot Orchestration

29

© 2019 Cray Inc.

• Provides a configuration framework for Cray and customers which integrates
industry-standard configuration management tooling with Cray services

• Flexible workflow
• pre-boot image customization
• post-boot node personalization
• post-boot re-configuration

• Provides dynamic inventory plugins to target Cray nodes for config
• Provides versioned config data management which enables upgrade, rollback,

and test

30

Configuration Framework

© 2019 Cray Inc.

• What tools can be used to change and track changes?
• Customize images or personalize nodes with Ansible

• Ansible will be used for remote execution
• https://docs.ansible.com/

• Ansible "push" mode
• https://www.ansible.com/overview/how-ansible-works

• System administrators are familiar with Ansible concepts
• playbooks, roles, modules, variable precedence, inventory, etc.

• Change management and version control
• System administrators/DevOps are familiar with git

• https://git-scm.com/
• Any customer provided methods to customize image or personalize nodes

31

Configuration Tools

https://docs.ansible.com/
https://www.ansible.com/overview/how-ansible-works
https://git-scm.com/

© 2019 Cray Inc.

• Image customization options (pre-boot)
• IMS via manual SSH configuration environment
• IMS via automatic Ansible plays in SSH configuration environment

• Node personalization options (post-boot)
• Node personalization via Ansible plays on booted node
• Node personalization via manual configuration
• Live Update (post-boot) zypper/yum updates rpm on booted node

• Reconfiguration of node (without rebooting)
• Same methods as node personalization

• Any customer provided methods for image customization, node personalization,
or reconfiguration

Configuration Options

32

© 2019 Cray Inc.

Security
Jason Rouault

© 2019 Cray Inc.

• Many published standards for security

• Related to the day to day activities of hardware and software development

• Shasta platform is designed for multiple consumers, use cases, and deployment
models

• Cray cannot rely solely on a single standard to meet our objectives

• A collection of standards will be used
• Assures we are working towards effective postures that apply to the scenarios for our platform

• These include:

Measuring Ourselves

34

© 2019 Cray Inc.

Internal Controls
• Vulnerability scanning, static/dynamic analysis, and code signing as part of the CI/CD pipeline
• Management of OSS ingest, specifically for base OS and container images

Shasta Management Services
• Applying best practice configurations to our core platform (CIS, etc.)
• Centralized CA and tooling to allow customers to use their internal certs
• Flexible AuthN / AuthZ architecture across the management services
• Centralized credential/secret/key management for services
• Integration with customer internal processes for SIEM, audit, etc. (logging)

Validation / On-going test
• Formal assessment (pentest, etc.) of management services and identification of security gaps

for remediation on a periodic basis as change dictates
• Build security scanning into our test plan/automation

Shasta Priorities

35

© 2019 Cray Inc. 36

Simplified AuthN/AuthZ Flow

Shasta Internal Services (mTLS)

AuthZ (Open Policy Agent)

AuthN (Keycloak)

User Access via
CLI / API / GUI

External Service
(customer app, CI/CD, etc.)

API Gateway (Kong)

Istio

External
Identity
Provider

Pluggable Authentication

RBAC

© 2019 Cray Inc.

Monitoring
Larry Kaplan

© 2019 Cray Inc.

• Tightly-integrated monitoring system
• Provides detailed telemetry information from multiple subsystems:

– Fabric – Power
– Network – User Applications
– Job Management – Messaging Libraries
– Storage – Operating Systems

• Incorporates the context necessary to understand telemetry data
• Feeds into a common message bus, persistence, and UI

infrastructure
• SMF is based upon Cray View for ClusterStor, but expanded to cover the

entire system

System Monitoring Framework (SMF)

38

© 2019 Cray Inc. 39

System Monitoring Framework Flows

Customer
Persistence

mySQL

Network Registers
OS (/sys, /proc, ip, etc.)
Network and Fabric Services
Storage, Power,
Logging

Pre-defined Collections
Customer-defined Collections

Instrumented Applications
Command-line Utility

User Job
Group Topology
Role Locality

Raw
Data

Organization

Customer
Input

Context

Common Monitoring Bus - Kafka Elasticsearch

Time-series

Grafana

Mail

CLI

Kibana

CrayUI
Cray

Analytics
Customer
Analytics

© 2019 Cray Inc. 40

System Monitoring Framework

© 2019 Cray Inc.

• RAS related information is available in the system telemetry streams/topics
• Includes logs, log analysis, change notifications, and system events

• As much as practical, this information is used to enable automated handling of
many scenarios

• Examples include responding to machine checks and other node health
events, network failures, and some forms of failover handling

• All events and logs use system coordinated time
• PTP on the HSN and NTP on the mgmt networks – synced to each other

• APIs are available for both streaming and historical access
• History provided by SMS limited to 30 days

RAS Events and Telemetry

41

© 2019 Cray Inc.

Network
Management
Larry Kaplan

© 2019 Cray Inc.

Fabric is:
• The infrastructure, including:

• Switches
• Links (cables or traces)
• Ports (and attached NICs/MACs)

• Common settings
• Traffic Classes

• Pool of Common Resources
• E.g. VLANs

Networks are:
• Logical constructs on top of the Fabric
• Ethernet configuration

• IP Address Ranges
• DHCP Settings
• DNS Settings

• Services
• Protocol support
• Scalability

Fabric vs. Network

© 2019 Cray Inc.

• Fabric and Network Management
Stack are modular

• Specific components support
Fabric and Network activities

• Stack is aligned with Cray System
Management’s Role-Based Access
Controls (RBAC)

• Fabric and Network admins own
specific responsibilities

44

Fabric and Network Administrators

© 2019 Cray Inc.

• All command and control
traffic is through REST
APIs

• Published but
proprietary

• Standard network
management protocols
are supported through
protocol bridges

45

Fabric and Network Management Access

© 2019 Cray Inc.

• Qualified by Cray
• Managed by SDN

Controller
• Simplified controller based

on OVS protocol to
configure interfaces, NAT,
and Firewall rules

• Support one of standard
controllers: OpenDaylight
or RYU

46

High Throughput 3rd Party Router
Datacenter

Network
Port Port

SD
N

 C
ontroller

RouterRouter

Slingshot Fabric

Edge
Port

Edge
Port

© 2019 Cray Inc.

• Routing service can
provide bridging
function

• Ethernet to IPoIB (or other
non-ethernet physical
transport)

47

Bridging Networks
Datacenter

Network
Port Port

Slingshot Fabric

Edge
Port

Edge
Port

Gateway
Node

NIC

Gateway
Node

NIC

NICNIC

Ethernet

InfiniBand
(IP over IB)

BREAK
QU E S T I O N S ?

© 2019 Cray Inc.

Linux
(M a n a g e d
E c o s y s t e m)
Larry Kaplan

© 2019 Cray Inc.

• Flexibility for Cray to meet customer needs
• Fully optimized Linux for high-end HPC, based on SLES

• Corresponds to current CLE software stack

• Provision for standard Linux distros with Cray network software

• Possibilities include SLES, CentOS, Red Hat

• Pricing and support model TBD

• Also considering a middle ground with some Cray enhancements

• Individual Cray Software Components
• Distro agnostic

• Less intrusive, better interoperability with site software stack

• Enables faster response time for updates

Shasta Linux Software Stack

50

© 2019 Cray Inc. 51

CLE Software Components

Node Hardware

Kernel Network Driver Virtualization?

Content Projection Lustre

Orchestration

User Access WLM Process
Launch

I/O libs

Compilers

Debugging
Tools

Performance
Tools

OpenMP MPI

Common
Kernel-Level
Services

User-mode Containers RAS
Common
User-Level
Services

Core Specialization

libsci

PGAS

Compute Node
Services

Service Node
Services

Job Launch User Access
Service
Commands and
Tools

Compute Node
Programming
Models and
Libraries

Node Cleanup/
Health Check

libfabric

Gateway P-states

TCP/IP

© 2019 Cray Inc.

Slingshot
Larry Kaplan

© 2019 Cray Inc.

Slingshot Components

64 ports x 200 Gbps

• Multiple QoS levels
• Aggressive adaptive routing

• Advanced congestion control
• Very low average and tail latencyRosetta

• Cray MPI stack

• Ethernet functionality
• RDMA offload
• ~50M MPI messages/sec

53

NIC

© 2019 Cray Inc.

• Application traffic association by packet marking
• Packet header field carries a Differentiated Services Code Point (DSCP)

• DSCP field of IP header
• PCP field in VLAN tag of Ethernet header

• Code Point indicates preferred network behavior

• Not guaranteed
• Aggregation is possible

• Network-wide, predefined classification mappings
• Specifies network properties and characteristic

• Manipulates underlying hardware resources
• Defines Code Point association

Traffic Classification

54

© 2019 Cray Inc.

• Example Traffic Classes
• Priority – low latency queries, barriers, etc.

• I/O – tuned for isolating large high-
bandwidth transfers

• Dedicated – reserve bandwidth to
minimize variations between runs of the
same job

• Best effort – default for non-critical
applications

• Scavenger – background, lossy traffic,
monitoring

• Establish ‘best practice’
• Default settings for each site or system

• Expect configuration varies between
systems

55

Rosetta Traffic Classes

© 2019 Cray Inc.

• Differentiated Services Code Points (DSCP) provide TC mechanism

• Allows both standard DSCP and the HPC classes to be used where appropriate

• Cray also will propose libfabric based access

• Jobs granted access to TCs via WLM

• WLM gets info on what is configured from network manager

• Executes access policies determined by site

• Applications can then use them in several ways

• Single TC – for the entire application (possibly dedicated)

• Two TCs – one for low bandwidth/low latency (priority), another for all other traffic

• Multiple TCs – fuller control, potentially on a per transfer basis

• Note that ordering is NOT maintained across TCs

Accessing Traffic Classes

56

© 2019 Cray Inc. 57

Slingshot Software Stack

Ethernet NIC Device (supports RoCEv2 offload)

IP

Sockets

Perf
Tools

Lustre
LNET

o2iblnd
kVerbs

DVS

Libfabric

xpmem

U
se

r s
pa

ce
Ke

rn
el

 s
pa

ce

Stats API Job
LauncherVerbs Libfabric Provider

Vendor Device Drivers

MPI PGASSHMEM

Cray Software
Linux or 3rd Party

© 2019 Cray Inc.

• Cray is moving to libfabric for our low-level communication interface (LLCI)
• Community created and supported

• Geared towards network clients rather than network hardware

• Provider needed to be both performant and scalable

• Existing ethernet providers have challenges, Verbs-based providers seemed best
• Others had more severe scaling issues (such as sockets-based provider)

• Choose between:
• OFI-RXM layered on Verbs Messaging Endpoints

• OFI-RXD layered on Verbs Datagram Endpoints

• a native RDM implementation within the Verbs core provider

• Selected #1 based on evaluation of performance, ease of enhancement, and maintainability
• Implemented enhanced eXtended Reliable Connection (XRC) for scalability

• Results are being committed back to the community

Verbs libfabric Provider

58

© 2019 Cray Inc.

User
Environment
Matt Haines

© 2019 Cray Inc.

• Load balanced and HA access

• Different OS per user

• Custom images per user

• Easy to test new OS/images

• Resource limits by role/profile

• Process space isolation

• Cloud-like “cattle” model for throw-
away and replace usage

• Hardware affinity by role/profile

• "User-access-to-go"

60

User Access on Containers?
Advantages

© 2019 Cray Inc.

• Load balanced and HA access

• Different OS per user

• Custom images per user

• Easy to test new OS/images

• Resource limits by role/profile

• Process space isolation

• Cloud-like “cattle” model for throw-
away and replace usage

• Hardware affinity by role/profile

• "User-access-to-go"

61

User Access on Containers (cont) ?
Advantages

• Access to special hardware features

• Swap space support

• Interesting deployments

• Specialized security & access
controls

• Sharing instances between users
raises security concerns

• Admin access for debugging and
support

• Kubernetes networking

Challenges

Thanks for the
feedback

© 2019 Cray Inc. 62

User Access Implementation Space (Internal)

User Access Instance (UAI) User Access Node (UAN)

Containers Metal

Goal to support both!

© 2019 Cray Inc.

• Create UAI
• Can have timeout or be

persistent
• ssh to UAI IP address

• Nonstandard port (for now)
• Native Kubernetes support for load

balancing UAIs across nodes

63

User Access and Login
UAI UAN

• ssh to UAN IP address
• Standard port (22)

• No native load balancing
• LB can be added by customer for

a single IP across multiple UANs

© 2019 Cray Inc.

• WLM clients are installed local to the
user access instance (UAI)

• Commands executed as WLM
vendor intended, not proxied

• No escaping or special handling
of the environment

• Access to Lustre mount for job
scripts, binaries, and results

• All UAIs default to /lus mount
• Networking handled by Kubernetes

64

User Access and Job Launch
UAI UAN

• WLM clients are installed local to the
user access node (UAN)

• Commands executed as WLM
vendor intended, not proxied

• No escaping or special handling
of the environment

• Access to Lustre mount for job
scripts, binaries, and results

• All UANs default to /lus mount
• Networking handled by base OS

© 2019 Cray Inc. 65

User Access Implementation Space
Sh

as
ta

 v
1

Containers Metal

In
te

rn
al

E
xt

er
na

l

User Access Instance (UAI) User Access Node (UAN)

External UAI
(e.g., laptop) External UAN

© 2019 Cray Inc.

• Actively working with SchedMD and
Altair on Shasta check-out and new
APIs

• Cray providing integration through a
new set of services and APIs

• Both WLMs supported for FCS

• Other WLMs can also use the same
APIs

66

Workload Management
SLURM & PBS PRO

• PALS – Parallel application launch
service

• JACS – Job and application
configuration services

• HATS – Health analysis test service

• JARS – Job and application
reporting service

CRAY WLM/RM SERVICES

© 2019 Cray Inc.

Containers for
Users
Jonathan “Bill” Sparks

© 2019 Cray Inc.

Orchestration & Scheduling

UAI
(e,g, kubectl, argo)

UAI
(e,g, srun, qsub)

Compute
(e,g, k8s compute planeCompute

(e,g, k8s compute planeCompute
(e,g, k8s compute planeCompute

(e,g, scheduler exec)

Compute
(e,g, k8s compute plane)Compute

(e,g, k8s compute plane)Compute
(e,g, k8s compute plane)Compute

(e,g, k8s compute plane)

Compute
(e,g, k8s control plane)Compute

(e,g, k8s control plane)Compute
(e,g, k8s control plane)

Lustre

P0

P1

Bare
Compute Node Linux

Container
Compute Node

Linux++

68

© 2019 Cray Inc.

• Orchestration/containers

• Batch

User Interactions

[root@ncn-005 ~]# kubectl get nodes
NAME STATUS ROLES AGE VERSION
nid000001 Ready master,node 11h v1.13.3
nid000002 Ready master,node 11h v1.13.3
nid000003 Ready master,node 11h v1.13.3
nid000004 Ready node 10h v1.13.3

[root@ncn-005 ~]# sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
workq* up infinite 4 idle nid[000001-000004]

© 2019 Cray Inc.

• HPC Containers
• Cray compute OS is container runtime agnostic

• Support for Docker and Singularity
• Bring your own container runtime environment via CMS/IMS

• Runtime choice depends on orchestration/scheduler
• Docker for use with Kubernetes – AI/ML/cloud-native

• Direct Docker engine access will be protected via authentication
• Singularity for use with Workload Manager (PBS, Slurm, ...)

• Communications for MPI have several options
• MPICH ABI compatible applications can use Cray MPI
• Libfabric enabled MPI can use Cray libfabric (late binding)
• Verbs based MPI can use standard Linux Verbs over Ethernet

Shasta Container Strategy

70

+

© 2019 Cray Inc.

• Network (RDMA): Network device plugin
• Accelerators (GPU): Device plugin
• Benefits:

• Framework provides monitoring and management of plugin
• Device plugins execute privileged, whereas the user containers run unprivileged

71

Kubernetes Host Resource Access

kubelet – device mgr

Container

device A

device plugin

device B

device A

node

• Plugin advertise devices to kubelet
• k8s allocate plugin device with mgr.
• Kubelet exports device to container

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/resource-management/device-plugin.md

© 2019 Cray Inc.

Programming
Environment
Larry Kaplan

© 2019 Cray Inc.

application
information

Debug
information Export/Import

Program
Analyses Performance

Analysis

Queries for
Application
Optimization

Compiler
information

Compile

The Cray Programming Environment Mission
§ The Cray PE is designed to drive maximum computing performance while focusing

on programmability and portability
§ Provide the best environment to develop,

debug, analyze, and optimize applications
for production supercomputing with
tightly coupled compilers, libraries, and
tools

• Address issues of scale and complexity of
HPC systems

• Intuitive behavior and best performance
with the least amount of effort

• Target ease of use with extended
functionality and increased automation

• Close interaction with users

Port

Application

Debug

Analyze

73

© 2019 Cray Inc.

• Cray technology designed for real scientific applications, not just for
benchmarks

• Fully integrated heterogeneous optimization capability

• Focus on standards compliance for application portability and investment
protection

The Cray Compiling Environment on Shasta

Fortran 2008 OpenMP 4.5C++ 17

C11 UPC 1.3

74

© 2019 Cray Inc.

• Fortran, C, and C++ compilers

• OpenMP directives to drive compiler optimization

• Compiler optimizations for multi-core processors and SIMD/vectors

• Cray Reveal

• Scoping analysis tool to assist user in understanding their code and taking full advantage of both software and hardware in
the system

• Cray Performance Measurement and Analysis toolkit

• Single tool for CPU performance analysis with statistics for the whole application

• Parallel debugger support with Totalview, DDT, and Cray CCDB

• Auto-tuned Scientific Libraries support

• Getting performance from the system … no assembly required

Cray Programming Environment for Shasta

75

© 2019 Cray Inc.

Tools
(continued)

Programming
Models

Programming
Languages

Tools Programming
Environments

Shasta Development Environment
Optimized
Libraries

Cray Developed
Licensed ISV SWCray added value to 3rd party
3rd party packaging

Analytics / AI **

AI ToolboxesEnvironment setup DebuggersDistributed Memory

Debugging Support

I/O Libraries

Scientific Libraries

DL Frameworks

ProgEnv-Languages

PGAS & Global View

Shared Memory / GPU

Fortran

C

C++

Chapel

Python

R

Cray MPI
SHMEM

OpenMP

UPC
Fortran coarrays

Coarray C++
Chapel

Cray Compiling
Environment
PrgEnv-cray

GNU
PrgEnv-gnu

3rd Party compilers
(AMD, Intel, PGI, etc)

PrgEnv-???

LAPACK

ScaLAPACK

BLAS

Iterative
Refinement

Toolkit

FFTW

NetCDF

HDF5

gdb4hpc

TotalView

DDT

Abnormal
Termination

Processing (ATP)

STAT

Valgrind4hpc

Performance Analysis

Porting

CrayPAT

Cray Apprentice2

Reveal

CCDB

Cray Urika
AI - Analytics

Chapel AI

Cray PE DL
Scalability Plugin

Tool Enablement
(supports Spack,

CMake, etc.)

Modules / Lmod

** Not PE dependent
76

© 2019 Cray Inc.

• Programming Environments, Applications, and Documentation (PEAD)

• Special Interest Group (SIG) meeting

• Today 4:40pm-6pm BoF 3B

Further Details

© 2019 Cray Inc.

Shasta
Analytics
Larry Kaplan

© 2019 Cray Inc.

• How can AI help simulation, and how
can simulation help AI?

• Trained models to replace expensive
computations with “good enough”
approximations

• Training models on simulated results

• Machine learning to choose optimal simulation
parameters (“tuning knobs”)

• Leverage full capabilities of hardware
• Increase utilization

• Reduce data movement

• Simplify workflows

Convergence of AI, Analytics, and Simulation

1
2

3

...
... ...

...

79

© 2019 Cray Inc.

• Flexible tools to enable creation and
exploration of converged workflows

• Learning outside
• Learning inside
• Learning on-the-side

• Interoperates with popular open source
ML/DL and Analytics frameworks and
libraries

Cray Vision: Tools and Expertise

1
2

3

...
... ...

...

1
2

3

...
... ...

...

1
2

3

...
... ...

...

80

© 2019 Cray Inc. 81

Urika – Shasta
Cr

ay
 S

up
po

rt
Open Source Usability Tools

Open Source Analytics & AI Frameworks

Distributed Training Framework
CrayPE ML Plugin, Horovod, HPO

CrayMPI, OpenMPI

Urika (XC, CS)

5 Course Dinner, Prix Fixe

Urika – Shasta
A la Carte

M
ic

ro
 S

er
vi

ce
s M

an
ag

em
en

t

In
te

ra
ct

iv
ity

 (J
up

yt
er

)

SH
AS

TA

UAI

Kubernetes

Multi-Tenancy/Security

HPO Plugin …

CrayMPI OpenMPI

Keras Horovod …

Micro Services

…

Tensor
Flow

Pytorch Spark

© 2019 Cray Inc.

• Based on community frameworks
• Cray additions leverage these frameworks
• Frameworks, libraries, and other components containerized as micro-services

• Micro-services management eases deployment
• Interactivity via Jupyter
• Leverage Shasta features

• Image Management
• Containers and Kubernetes
• Security
• Development pipelines

Urika-Shasta – Overview

© 2019 Cray Inc.

• Community
• TensorFlow
• Keras
• PyTorch
• TensorBoard
• Jupyter Notebooks
• Alchemist
• Python
• R
• DASK
• pbdR

• Cray
• Distributed Training Plugin
• Hyper Parameter Optimization (HPO)
• MPI
• Integration

• Others can also be added!

Urika-Shasta – Frameworks & Libraries

© 2019 Cray Inc. 84

Urika-Shasta – Dynamic Environments

© 2019 Cray Inc.

Storage
John Fragalla

© 2019 Cray Inc. 86

ClusterStor Product Transitions
2019 2020 Future

L300/N - HDD

L300F - SAS SSD

L300 Series

Neo 3.x

CN Flash – NVMe

ClusterStor Next ClusterStor Next

Lustre 2.11

100Gb Networks

Neo 4.x

Lustre 2.12 LTS

200Gb Networks 200Gb Networks

CS Next Sys S/W

Lustre 2.1x LTS

Lustre Foundation Scheduled Tiering More Tiering Features

CN Disk – 106 HDD

CN Flash – NVMe

CN Disk – 106 HDD

© 2019 Cray Inc. 87

ClusterStor Next – Flexibility

Extreme Performance Hybrid Flexibility HDD Performance HDD Capacity
SSD Performance (write) 60 GB/s 60 GB/s

SSD Usable Capacity (3.2 TB) 55.3 TB 55.3 TB

HDD Performance 15 GB/s 30 GB/s 30 GB/s

HDD Usable Capacity (14TB) 1.07 PB 2.14 PB 4.27 PB

Network ports 6 x 200 Gbps 4 x 200 Gbps 2 x 200 Gbps 2 x 200 Gbps

Height Rack Units 2 6 10 18

Compared 2 x L300N (10RU) 15 times faster 15 times (flash), 0.7 (HDD) 50% faster 50% faster

© 2019 Cray Inc.

ClusterStor Next – Directly on Slingshot™ HSN

88

Shasta™/
“ClusterStor Next”

Benefits:
• Lower cost
• Lower complexity
• Lower latency
• Improved small I/O

performance

Slingshot™
High Speed

Network

Compute
Node

Compute
Node

Performance
from

Capacity
from

Slingshot: Ethernet

© 2019 Cray Inc.

• Cohesiveness
• Reduce complexity for customers

• Scale
• Move beyond scale limits of Robinhood
• Target petascale to exascale

• Integration
• Direct integration with ClusterStor
• Built-in management and monitoring
• Workflow integration through workload managers

89

ClusterStor Data Services

ClusterStor
Data Services

Lustre Core
Features

DoM
(Data on Metadata)

PFL
(Progressive File Layout)

FLR
(File Level Replication)

D
at

a
M

an
ag

em
en

t

Search

A
ut

om
at

io
n

© 2019 Cray Inc. 90

Data Services Progression

Service
• Optimized placement
• Scalable search
Infrastructure
• Parallel data movers
• Admin tools
Optimal Uses
• Manual migration
• Project data mgmt

PLACEMENT
(2020)

Service
• Automated migration
• Storage reservations
Infrastructure
• DataWarp service
• WLM integration
Optimal Uses
• Time critical jobs
• Bad I/O acceleration

SCHEDULED Future Services
e.g. Transparent

© 2019 Cray Inc.

Ethernet Switch
Slingshot Network

Ethernet Switch
Arista

Storage Data Paths – Ethernet

Slingshot Network

Shasta

Gazelle
CX Eth

9405- SAS
Ethernet

Moose

SAS

HCA
HCA
HCA
HCA

Ethernet

Ethernet Router
Arista

L300

Neo 3.xCX 4 - Eth

Ethernet

Two Options

Ethernet

100Gb

3rd Party
Ethernet
Storage

91

© 2019 Cray Inc.

Ethernet Switch
Slingshot Network

IB Switch
Mellanox

Storage Data Paths – InfiniBand

IB Switch
Mellanox

Slingshot Network

IB

IB

Aries

Shasta

A
rie

s
N

et
w

or
k

LN
E

T
R

ou
te

r

XC50

IB
/E

th
er

ne
t

LN
E

T
R

ou
te

r

IB

HCA
HCA
HCA
HCA

L300

Neo 3.x

CX - IB

Gazelle

9405- SAS

CX - IB Moose
SAS

Ethernet

Ethernet

3rd Party
IB

StorageIB

92

© 2019 Cray Inc.

Status Update
Dave Poulsen

© 2019 Cray Inc.

• Cray R&D has engaged with (limited) customers around Shasta for some time
• Collaboration group
• Early previews of Shasta software

• Early results have been very encouraging!
• Much work to be done

• But starting earlier, and communicating more, is better
• Increased confidence in Shasta v1

• Collaboration has focused Cray on designing to meet customers’ needs

94

Shasta Status & Early Customer Experience

© 2019 Cray Inc. 95

Shasta v1 (Pre-)Release Cadence
2018 2019
Q4 Q1 Q2 Q3 Q4

Pre-Release 2

Solidified infrastructure,
plus initial new features

• COTS hardware
• Resilient K8s
• Common logging
• 1st CLIs for APIs
• Infrastructure work:

• Pkg. & install
• System mgmt.
• User access
• …

Pre-Release 3

Considerable new v1
functionality

• COTS hardware
• SLES15 CNOS
• UAS & end-user

workflow, SLURM
• System mgmt.
• More PE
• Analytics

Pre-Release 4

Feature-completeness
for Shasta v1

• COTS hardware
• SLES15 CNOS
• Install & upgrade
• System mgmt.
• UAS & WLM
• Cray PE
• Analytics

Shasta v1 GA

Fully-validated v1
release, to be used in

initial Shasta
acceptances

• Shasta hardware
• AMD Rome
• Rosetta
• SLES15 OS
• ...

Pre-Release 1

Installable, functional
first release

• COTS hardware
• Basic installer
• 1st system mgmt.

(services & APIs)
• Kubernetes (K8s)

orchestration
• Compile & launch

basic MPI jobs

Ongoing Shasta hardware enabling + scale-out readiness work…

© 2019 Cray Inc.

• 1st production Shasta SW release is
on track for later this year

• Will be used in initial Shasta
acceptances

• Validated, production-ready set of
Shasta v1 GA features

• (see previous slide…)
• Maturing internal R&D processes

• Agile planning & SW devel.
• Broad use of CI/CD/CT
• DevOps best-practices

• Further development will occur post-v1

• Hardware enabling

• Scale-out & hardening

• Merged system management &
administration (Shasta + Storage)

• System mgmt. & security
enhancements

• OS upgrades & enhancements

• And more new features…

96

Shasta v1 GA

© 2019 Cray Inc.

• Early customer interactions with Cray R&D

• Customers: early view of Shasta architecture & design ideas

• Cray: validate Shasta design, get customer feedback

• Pre-release software has been a useful vehicle

• Customers: early experience with Shasta SW

• Cray: creates opportunities for collecting (specific) feedback

• And has accelerated CI/CD/CT infrastructure development!

• Customer requests:

• Seek architectural input / feedback, even before features are “fully baked”

• Show how Shasta design addresses customers’ particular use-cases / needs

• Educate Cray teams on customers’ perspectives & requirements

97

Customer Feedback

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

T H A N K Y O U
Q U E S T I O N S ?

lkaplan@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

