

New Site: Paderborn Center for Parallel Computing (PC²)

Christian Plessl

Paderborn University, Germany Paderborn Center for Parallel Computing

Cray User Group Conference 2019 – Montreal – 11 May 2019

Paderborn: Germany's Chippewa Falls

- Heinz Nixdorf (1925–86)
 - founder of Nixdorf Computer
 - businessman, sportsman, donor
- Major player in business computing
 - headquarter in Paderborn
 - > 30'000 employees worldwide
 - > 20 countries
 - > 5 B DM revenue
- Our local Seymour Cray
 - or Steve Jobs
- Remains of Nixdorf Computer seeded IT
 industry in our area

Heinz Nixdorf

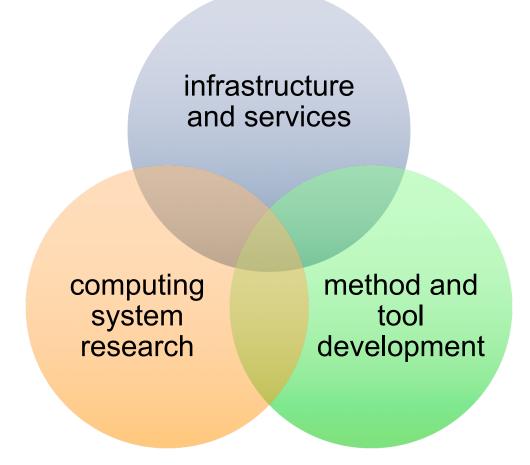
Paderborn University

• Founded in 1972

- 20'000 students
- 260 faculty members, ~1200 PhD students and postdocs

• Departments

- Humanities
- Economics
- Natural Science
- Mechanical Engineering
- Math., CompSci and EE


Research focus

- optoelectronics and photonics
- material science
- business informatics
- intelligent technical systems

Paderborn Center for Parallel Computing

- Scientific institute of Paderborn University
 - established in 1992
 - roots in theoretical computer science
- Service provider and research institution
 - provision HPC infrastructure and services for computational sciences
 - develop new methods and tools for HPC simulation in cooperation with domain scientists
 - perform computing systems research for energyefficient HPC with emphasis on heterogeneous and accelerated computing with FPGAs and manycores
- Long track record in exploring emerging and off the beaten path technologies

PC² History and Innovations

	HPC System	Properties / Innnovation	Research Topics
1991	Parsytec SC320	 system design in Germany (Aachen), Transputer processors developed in UK largest parallel computer with freely programmable network parallel programming with OCCAM 	 graph partitioning optimal embedding of graphs of degree 4
1992	Parsytec GCel #262 of Top500	 1024 processors, largest parallel computer with Transputers in Europe Solaris Unix and parallel programming environment PARIX scalable 2D communication network 	 general graph embedding, in particular in 2D meshes
1995	Parsytec GC/PP #118 of Top500	 transition to standard technologies (CPU, compiler, operating systems) innovation through heterogeneous nodes: PowerPC (computing) + Transputer (communication) 	 load balancing HIBRIC-MEM streaming cache
1999	Fujitsu- Siemens hpcLine #351 of Top500	 use of Intel x86 and Solaris/Linux as standard components innovation in networking: Scalable Coherent Interface (SCI), European development first large scale SCI-cluster worldwide 	 message passing fault tolerance start of HPC usage beyond computer science

PC² History and Innovations (2)

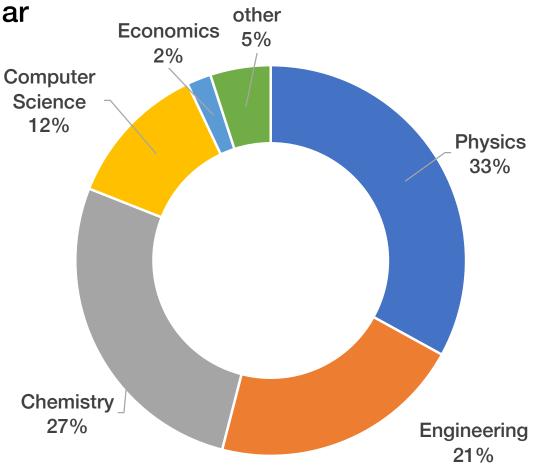
	HPC System	Properties / Innovation	Research Topics
2003	Megware FPGA Cluster	 combination of standard CPU/OS technologies with application-specific accelerators (FPGA) used for powering one of the best Chess computers of the day Myrinet network with low latency 	 distributed game tree search custom computing
2003	HP PLING	 step towards 64bit CPU technology (Intel Itanium) first 64bit Linux Cluster with InfiniBand in Europe 	 software support for InfiniBand in 64bit Linux
2004	Fujitsu/ICT Arminius #213 of Top500	 Direct water cooling for CPUs integration of GPU nodes in cluster PCIe / InfiniBand x86-64, Linux 	 3D visualization of simulations immersive control
2007	Fujitsu Siemens BiSGrid	 nodes with high compute power, 4 sockets with AMD processors 	grid computingworkflow management
2013	Clustervision OCuLUS #173 of Top500	 heterogeneous nodes with GPUs, Intel Xeon Phi 	virtualizationmulti/many Core
2018	Cray CS500 Noctua	 16 nodes with FPGA accelerators and dedicated interconnect between FPGAs 	 HPC acceleration with FPGAs

Noctua HPC Cluster

- Cray CS500 cluster system
- 256 CPU nodes
 - 256 nodes with 2 x 20-core Xeon Skylake Gold 6148
 - 192 GiB RAM / node
 - 100 Gbit/s Omni-Path interconnect
 - 700 TB Lustre parallel file system
- 16 FPGA nodes
 - same configuration as CPU nodes
 - each with 2 x Nallatech 520N FPGA boards
 - Stratix 10 GX2800, 32GB DDR4, 4 memory channels
 - PCle 3.0 x16
 - 4 QSFP+ ports
- Operational since Sept 2018

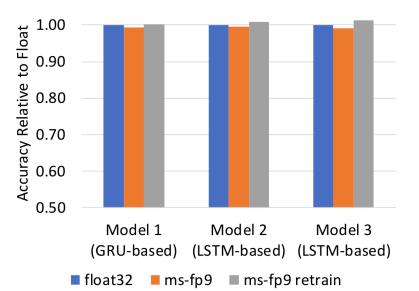
at time of installation largest academic installation of FPGAs in HPC cluster

Noctua Phase 2



- New data center optimized for HPC
 - best of class energy efficiency and flexibility
 - warm water cooling (free cooling)
 - modular design to support concurrent operation and upgrades of multiple generation HPC systems
 - extensibility (power, cooling, office space)

- Specificaitons
 - white space: 300m²
 - other technical facilities: 1100m²
 - initial power / cooling capacity: 1.2-2 MW
 - office space for 25+ persons + seminar rooms, labs, ...


Workloads and Users

- Solid state physics and chemistry (in particular DFT codes)
 - CP2K, VASP, QuantumEspresso, Turbomole
- Optoelectronics and photonics
 - CST microwave studio
 - in-house codes
- Engineering
 - Fluent, OpenFOAM
- Computer science
- Statistics
 - 70 active projects
 - 400 active users

data: PC² 2016 (Oculus cluster)

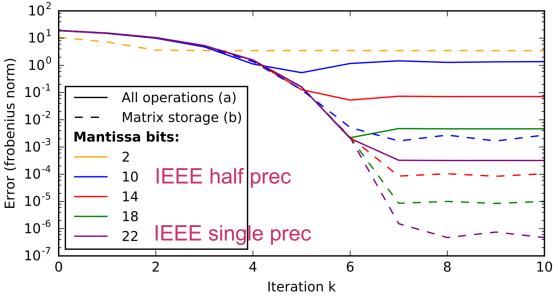
Why FPGAs?

500.0 -----Stratix V D5 @ 225MHz 90.0 65.0 0.05 0.05 0.5 30.7 18.6 15.0 11.5 5.2 1.8 4.5 2.7 2.0 1.4 0.5 16-bit int 8-bit int ms-fp9 ms-fp8

sweet spot

for FPGAs

- end of Dennard scaling and Moore's law is imminent
- Post-CMOS technologies will not be ready for many years
- demand for HPC and general data center applications growing rapidly
- CPUs are fundamentally inefficient due to generality (instructions, caches, OoO)
- What can we do
 - scale out by using ever larger and more costly systems
 - specialization of architectures
 - develop new methods that do not require exact computation and/or high precision
 - method/architecture codesign


FPGAs are currently the only viable technology for application-specific computing (when ASICs don't pay off)

Approximate Computing

- Exploit performance/energy vs. accuracy trade-offs in computing architectures
- Suitable if:
 - application is inherently tolerant to inaccuracies
 - inaccuracies can be compensated, e.g. iterative methods
- Target applications
 - molecular dynamics, quantum chemistry
- Architectures
 - CPU/GPU: reduce memory bandwidth
 - FPGA: trade area saved for more computing units

- A massively parallel algorithm for the approximate calculation of inverse p-th roots of large sparse matrices. In Proc. Platform for Advanced Scientific Computing Conference (PASC). ACM, 2018.
- Accurate Sampling with Noisy Forces from Approximate Computing. In preparation.

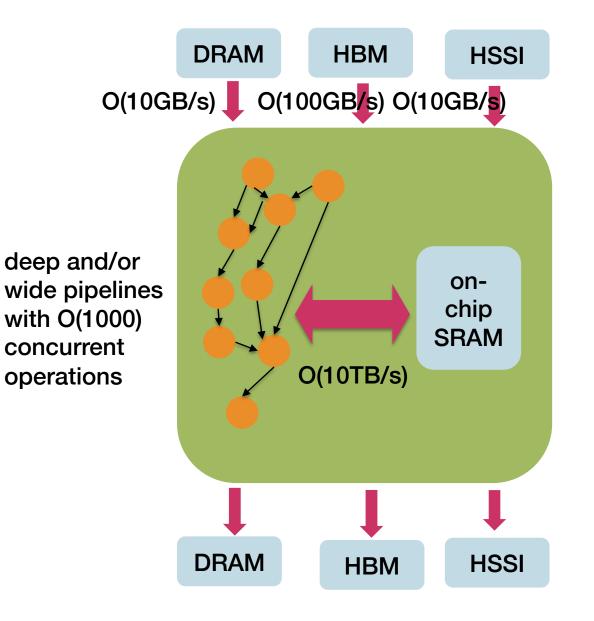
iterative computation of A^{-1/p}: approximation error for custom floating-point formats

Capabilities of Todays Top-Of-The-Line FPGAs

Example: Intel Stratix 10 GX2800 (used in Noctua)

- > 900,000 configurable logic blocks
 - up to 4 Boolean functions of 8 inputs
- 5760 hardened arithmetic units (DSP)
 - fixed point and IEEE 754 SP floating-point
- > 11,000 independent SRAM blocks
 - width/depth/ports highly configurable
- integrated DDR4-2666 memory controllers
- 96 serial transceivers, up to 28.3 Gbps
- typically about 300-600MHz
- power consumption 50-225W

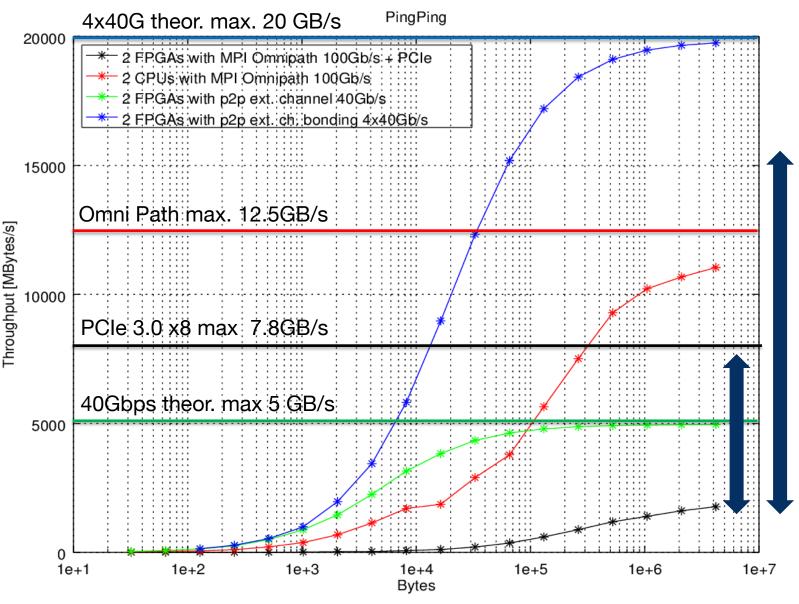
100 TERRA-OPS


10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth (full duplex)

300 TB/s communication bandwidth (full duplex)

up to 80 GFLOPS/W


How Can FPGAs Compete with CPUs or GPUs

- Compute-bound applications
 - customization of operations and data formats
 - new methods considering FPGA architecture
- Memory-bound applications
 - unrolling and data flow computing with very deep pipelines
 - application-specific, distributed memory architectures
- Latency-bound applications
 - speculative or redundant execution
- I/O-bound applications
 - on-board network interfaces
 - direct FPGA-to-FPGA communication

HBM: high-bandwidth memory HSSI: high-speed serial interface, e.g. 100G Ethernet

Direct Integration of FPGAs in Interconnect

- peer-to-peer optical links between FPGAs
 - high throughput
 - low latency (<600ns)
 - even better for streaming
- building application specific networks
 - circuit switched (optical switch)
 - packet switched (Slingshot!)

Ideas for Collaboration within CUG

- What we can share
 - provisioning of FPGA firmware and tool versions with Slurm
 - applications and libraries with FPGA support (CP2K, DBCSR, FFT)
 - integration of optical switches as secondary networks in cluster
 - access to our FPGA partition for research and development

srun --partition=fpga \
 --constraint=18.0.1

- Possible areas of collaboration
 - integration of FPGAs as network-attached accelerators in Slingshot
 - tools for application analysis to identify suitable functions for offloading
 - numerical methods for approximate computing in linear scaling DFT and molecular dynamics

• We are looking forward working with the CUG community

Further Information / Feedback

Christian Plessl Paderborn University <u>christian.plessl@uni-paderborn.de</u>

Twitter: @plessl @pc2_upb

http://pc2.uni-paderborn.de

