
The Art of Conversation with CrayPort
Bidirectional Record Management

Daniel Gens, Owen James, Elizabeth Bautista, Melissa Abdelbaky
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, California, USA

{dygens, o1james, ejbautista, mromanus}@lbl.gov

Abstract — The National Energy Research Scientific
Computing Center (NERSC) is the primary scientific
computing facility for the Office of Science in the U.S.
Department of Energy. NERSC houses top-ranked Cray
supercomputers, and staff works very closely with on-site Cray
engineers, submitting on average 75 Cray cases each month.
Until recently, submitting a Cray case was done by phone or
email, and all subsequent updates were delivered manually.
This process caused delays, errors during manual data entry,
and increased incident processing and resolution time. In 2018,
NERSC deployed an API-based bidirectional integration that
allowed submitting and updating Cray cases directly from one
Incident Management platform, thus streamlining 24x7
operations and enhancing communication between engineering
teams.

As the first site to implement this solution, we will share our
development and deployment experience, as well as some
report data. This solution is extendable to any Incident
Management platform.

Keywords-incident management; bidirectional; integration;
Cray case; streamline; deployment; implement API

I. INTRODUCTION

The National Energy Research Scientific Computing

Center (NERSC) is the primary unclassified computational
facility for the Office of Science in the U.S. Department of
Energy (DOE). Serving approximately 7,000 scientists
working on at least 700 research projects across the 50 states
and collaborations globally, NERSC accelerates scientific
discovery through high performance computing and data
analysis spanning a wide range of scientific disciplines.
NERSC’s current system is Cori, a ~12,000 node XC-40.
Perlmutter, the upcoming system to be delivered in 2020 will
have over 3 times the compute power of Cori and contain a
mixture of CPU-only and GPU-accelerated nodes.

A key challenge of operating these large-scale computing

systems is the number of potential system issues that can
arise due to their size and complexity. Efficient management,
response, and documentation of these issues is critical in
delivering high-availability and functionality of the systems
to NERSC users. Resolving them and minimizing their
impact on other machine components, services, and users

requires seamless communication and joint collaboration
between NERSC and Cray engineering. In the current
production environment, NERSC engineers work very
closely with on-site Cray engineers, submitting an average of
75 machine support cases each month. At extreme-scales, the
number of potential system issues and the rates at which they
occur will increase tremendously, making coordination more
challenging and driving the need for new service
management tools capable of meeting the increased demand.

Existing tools for issue tracking and/or incident

management in production IT environments, such as
ServiceNow 1 , Salesforce Service Cloud 2 , Zendesk 3 ,
Atlassian JIRA4, etc., play a vital role in capturing system
and data center issues. They provide a centralized view
within a company or organization of what happened, what
actions were taken, what systems or services are impacted,
who responded to this issue, and more. At NERSC,
employees from two organizations, i.e., Cray and NERSC,
are involved in collaboratively resolving issues on the same
high-performance system yet each organization maintains a
separate platform for internal incident management —
specifically, NERSC uses ServiceNow while Cray uses a
Salesforce-based platform called CrayPort. Thus, the same
issue results in two incident reports - one that a Cray
engineer opens and can update in CrayPort and one that
NERSC staff opens in ServiceNow.

Traditionally, updating these tickets was a manual

process that employees at each respective organization
would be responsible for supporting. Further, Cray provides
limited external access to CrayPort by their customers for
security and privacy purposes, so not all members of NERSC
staff had the ability to create and update tickets on the
CrayPort system. This created a number of challenges related
to synchronizing and communicating relevant information
between organizations, as well as coordination of resolution
strategies. It is also subject to a high probability of human-

1 "ServiceNow." https://www.servicenow.com/. Accessed 12 Apr. 2019.
2 "Service Cloud - Salesforce."
https://www.salesforce.com/products/service-cloud/overview/. Accessed 12
Apr. 2019.
3 "Zendesk." https://www.zendesk.com/. Accessed 12 Apr. 2019.
4 "Jira – Atlassian." https://jira.atlassian.com/. Accessed 12 Apr. 2019.

error and miscommunication, leading to increased incident
processing and problem resolution times. This method of
coordinating between the two organizations is not scalable to
larger systems with greater numbers of incidents and is not
well-suited for tracking relationships between multiple
incidents. It is important to note that these challenges are not
unique to the relationship between NERSC and Cray but
rather are relevant to Cray’s relationships with any external
customer that needs to synchronize incident management
between CrayPort and their own internal incident
management system.

To address these challenges, Cray announced plans to

develop a RESTful API for the CrayPort platform that would
enable customers to directly interact with the Cray incident
management system via HTTP POST and GET requests and
invited NERSC developers to participate in an open
collaboration on desired features and mechanics from the
alpha stage of the project. Based on this collaboration,
NERSC developers created a second API to expose their
incident management system, ServiceNow, by leveraging
components built-in on the ServiceNow framework and
customizing them in the context of the CrayPort API. The
result was an API-based bidirectional integration between
the NERSC ServiceNow and the CrayPort systems. The
NERSC development process went hand-in-hand with the
development of the CrayPort API, providing a unique
opportunity to adapt and improve the code as Cray
developers introduced additional features and new design
ideas.

The first release of the NERSC ServiceNow API with

CrayPort integration occurred in September 2018 and two
subsequent releases have been deployed since then that
include features developed through requests by staff who use
the platform. Although the existing solution is specific to
ServiceNow, and CrayPort, the technology stack and the
integration architecture is extensible to other incident
management solutions or API-capable databases, allowing
other DOE organizations to use this integration in their
workflows with modest modification to the code.

This paper describes the software design process of the

NERSC ServiceNow API and explores the ways in which
the collaboration with Cray drove the technology choices.
Section II provides the motivation for the project and
explains the challenges that exist in managing incidents
across multiple organizations. The design and
implementation of the API and the bidirectional integration
between ServiceNow and CrayPort is discussed in Section
III. Section IV highlights the key features of the integration,
while Section V reports the results observed since the
integration’s deployment. A brief conclusion is included in
Section VI.

II. CHALLENGES AND BACKGROUND IN CROSS-
ORGANIZATION INCIDENT MANAGEMENT

Customarily, in response to an issue, site-reliability

engineers at NERSC created a ServiceNow ticket - this
process involved manually filling out multiple fields,
copying information from emails, files, and logs into the
ticket, and submitting it to the ServiceNow database. Once a
NERSC ServiceNow ticket number is generated, the incident
is reported to Cray through the call center or through sending
an email with a problem description, referencing the
ServiceNow ticket number. The ServiceNow incident is
updated with the Cray case number.

During the issue resolution process, NERSC and Cray

staff who have access to both incident management systems
had to update their own ticket first before copying the
information into the other ticket system. Outside of both
systems, when additional information came through email,
logs, or any other format, that information would need to be
copied into both tickets to sync the information. Figure 2.1
provides an illustration of this workflow.

Figure 2.1 Illustration of the manual workflow

A. ServiceNow Incident Management System

ServiceNow is a Platform-as-a-Service (PaaS) offering

that provides IT, customer, and employee workflow
management tools to businesses around the globe. It is

highly-configurable for custom enterprise applications and
built for scale. At NERSC, it is utilized for its IT service
management tools, such as ticketing, asset tracking,
managing some workflows and reporting.

Following a PaaS model, ServiceNow is focused on

providing developers with the tools required to rapidly create
and deploy custom applications that meet the needs of their
organizations. Part of meeting this need is a strong focus on
programmability and extensibility. Figure 2.2 provides a
sample ecosystem of the ServiceNow Platform that can be
modularly included into custom applications. The platform
uses a MariaDB java driver and exposes the various
components to developers via standard tools and languages,
such as JavaScript, for building custom applications against
it.

Figure 2.2 Sample of ecosystem showing commonly

used components and capabilities5

B. CrayPort Incident Management System & the CrayPort
API

The CrayPort Incident Management system is a

Salesforce-based IT service management platform operated
by Cray. CrayPort is the customer support portal for Cray
and it is meant to service all of Cray’s customers over the life
cycles of their various machines. In CrayPort, incidents are
called “cases” while specific machines are referred to as
“assets.” Recently, Cray created a web-based RESTful API,
called the CrayPort API, that provides end-users with the
ability to create, access, update, and manage CrayPort cases
through HTTP POST and GET triggers.

The CrayPort API can be used to perform a number of

tasks by allowing end-users to interact with the following
objects:

1. Assets - to view asset information, such as the
name, type, and serial number of the asset.

2. Attachments - to add attachments to Cases, and to
get a specific attachment or a list of attachments for
a specific case.

5 ServiceNow Platform Technical overview:
https://community.servicenow.com/community?id=community_article&sys
_id=573d2ee5dbd0dbc01dcaf3231f9619ac
 accessed April 11, 2019

3. Cases - to view, create and update issues reported to
Cray.

4. Comments - to viewing and adding comments to
Cases.

5. Part orders - to view part order details, such as the
status, quantity, and part description.

6. Shipping details - to view shipping details of part
orders.

Attachment objects in CrayPort are represented as in the

following model. The attachment body is converted to a
Base64 encoded string.

CrayPortAttachment {
Id (string),
CaseNumber (string),
FileName (string),
Description (string),
MimeType (string),
Body (string): Base64 encoded string.
}

Supported HTTP verbs and endpoints are:
• GET by Attachment Id - Returns a specific

attachment
• GET by Case Number - Returns a list of

attachments for a specific Case
• GET Body - Returns the Attachment Body as

Base64 encoded string
• POST - Creates an attachment

Case objects in CrayPort represent database records for

issues reported to Cray, and interactions with Cases make up
the majority of our calls to the CrayPort API. Case objects
are described with the following model:

CrayPortCase {

CaseNumber (string),
Status (string),
IsClosed (string),
Subject (string),
Description (string),
ContactEmail (string),
AssignedTo (string),
Asset (string),
Type (string),
Priority (string),
PriorityChangeReason (string),
Product (string),
Component (string),
Version (string),
BugType (string),
BugNumber (string),
BugFixedIn (string),
ExternalReference (string)

}

Supported HTTP verbs for Case objects are:
• GET all cases - Return a list of all cases

• GET by Case Number - Returns a specific case
• POST - Creates a case
• PATCH - Updates case fields for a specific case

Comment objects in CrayPort API are described with a

lean and simple model, where the comment is identified by a
unique string:

CrayPortComment {

Id (string),
CaseNumber (string),
Body (string)

}

CrayPort API supports the following HTTP requests for

the Comment objects:
• GET by ID - Returns a specific comment
• GET by Case Number - Returns a list of comments

for a specific case
• POST - Creates a comment

III. NERSC SERVICENOW <-> CRAYPORT INTEGRATION

The goal of the collaboration between Cray and NERSC

was to provide a solution for the challenges faced in sharing
information between separate organizations with different
incident management systems. Toward this goal, Cray
created the CrayPort API, which served as a catalyst in
enabling this work. While the CrayPort API provided the
means for NERSC staff to interact with CrayPort via web
requests, it did not solve the issue of a human-in-the-loop
having to trigger these requests.

This work aims to make the process of sharing

information between the two incident management systems
automatic, thereby ensuring that information is synchronized
between NERSC and Cray and allowing engineers to focus
on joint resolution of the issue. To achieve this goal, NERSC
created the ServiceNow API and an architecture for the
bidirectional integration of this API with the CrayPort API.
This section details the ways in which the CrayPort API
influenced the design of the bidirectional integration,
introduces the NERSC ServiceNow API, and presents the
architectural overview of the bidirectional integration.

A. NERSC ServiceNow API

The NERSC ServiceNow API leverages the capabilities

provided by the CrayPort API, as well as those from the
ServiceNow platform. Specifically, ServiceNow provides
extensive integration capabilities through Web services,
including the ability to build and expose custom API
endpoints. In addition to utilizing the custom API endpoints,
we were also able to leverage ServiceNow’s default backend
database for the client and server functions. The ServiceNow
Platform backend is a MySQL database that uses
GlideRecord - a special Java class that can be used in

JavaScript exactly as if it was a native JavaScript class.
GlideRecord is used for database operations instead of
writing SQL queries and is essentially an ordered list
containing records and their fields. Client software was
written in JavaScript / jQuery, with web pages styled using
HTML+CSS. Server-side development was performed in
JavaScript, using extendable components of ServiceNow
PaaS. [2]

1) Interacting with the CrayPort API Webhooks

Using the GET and POST HTTP methods exposed by the

CrayPort API, NERSC developers implemented
corresponding event-driven requests for these endpoints on
the ServiceNow instance for specific actions on the instance.
Similarly, CrayPort API developers also set up a number of
webhooks for outgoing updates from CrayPort. Webhooks
enabled us to receive notifications when a monitored
CrayPort event occurs, such as when a new comment or an
attachment is added to an existing Cray case, or when an
existing Cray case is updated with new Priority, Subject, or
Description. When a CrayPort event triggers a webhook to
fire, an HTTP POST request will be sent to each configured
callback URL. A webhook would be triggered when any
existing CrayPort API object is updated or when any new
CrayPort API object is created.

2) NERSC ServiceNow API endpoints for CrayPort

incoming webhooks

To process the messages coming from CrayPort

webhooks, we configured separate callback URLs per
CrayPort API object on NERSC ServiceNow instance and
implemented logic to process the requests. We currently
have no requirement to monitor Case creation, only updates
to existing cases, so our API endpoints accept and process
requests with specific payloads for three objects:

1) CrayPortCase

a) Update
2) CrayPortComment

a) Create
b) Update

3) CrayPortAttachment
a) Create
b) Update

3) NERSC ServiceNow webhooks

To develop the ServiceNow webhooks, NERSC

engineers leveraged a ServiceNow capability, called
Business Rules. Business Rules allow developers to trigger
actions when incidents in ServiceNow are queried, updated,
inserted, or deleted, according to a series of developer-
defined rules. As part of the API development, we developed
Business Rules for server-side events, and Client Scripts and
UI Policies for client-side events. If the rule condition is met,
the code associated with it is executed. For example, when a
ServiceNow Incident linked to a Cray case has a new public

comment, a Business Rule called “Update Cray case with
new Comment” triggers associated code that submits the
new comment to CrayPort through the CrayPort API.

In the NERSC ServiceNow API, there are two types of

webhooks: fully automatic and user action triggered.

The fully automatic webhooks are as follows:

• Update Cray case with new Comment:

o Condition: When ServiceNow Incident
linked to a Cray case has a new public
comment

o Code: Calls addComment() to submit the
new comment to CrayPort through the
CrayPort API

• Update Cray case with new Attachment:
o Condition: When the ServiceNow Incident

linked to a Cray case has a new attachment
o Code: Calls addAttachment() to

submit the new comment to CrayPort
through the CrayPort API

• Update new Cray case with Comments:
o Condition: When a new Cray case is

inserted into the Cray cases table and the
Incident associated with it has public
comments

o Code: CrayPort API documentation
recommends a waiting period between
submitting a new case and submitting
other objects for it. After a waiting period,
pulls all public comments from the
ServiceNow Incident associated with the
Cray case and submits them to CrayPort
through the CrayPort API by calling
addComment()

• Update new Cray case with Attachments:
o Condition: When a new Cray case is

inserted into the Cray cases table and the
Incident associated with it has attachments

o Code: CrayPort API documentation
recommends a waiting period between
submitting a new case and submitting
other objects for it. After a waiting period,
pulls all attachments from the ServiceNow
Incident associated with the Cray case and
submits them to CrayPort through the
CrayPort API by calling
addAttachment()

See Appendix A for the source code for submitting

Comments and Attachments via a HTTP POST request to
the CrayPort API endpoints.

The user-triggered webhooks are as follows:

• Cray case priority change:

o Condition: User clicks “Change Cray Case
priority” UI button in the Incident form

o Code: Calls changePriority() to
update the Cray case record in CrayPort
through the CrayPort API. User is required
to submit a Priority Change Reason.

See Appendix B for the source code for user-triggered

webhooks.

B. Bidirectional Integration Architecture

Figure 3.1 shows the architecture of the bidirectional
integration and the interaction between the two incident
management systems as facilitated by the two new APIs.
Authentication between the two endpoints is discussed in
the following section.

Fig. 3.1 Architectural Overview of Opening a Cray case through ServiceNow using
CrayPort API

The current features enabled by this architecture include
the ability to perform the following from the ServiceNow
platform:

• Open a new Cray case and automatically link both
records

• Link an existing Cray case to an existing
ServiceNow record

• Change a Cray case priority (e.g., escalation to
Critical case)

• Perform shared bi-directional updates between
ServiceNow and CrayPort

1) Authentication

The CrayPort API uses Basic Access Authentication to

ensure that all the submitted requests are authenticated and
authorized. HTTP Basic authentication (BA) implementation
enforces access controls to web resources. It does not require
cookies, session identifiers, or login pages; rather, it uses
standard fields in the HTTP header, removing the need for
handshakes. [4] When a request is coming from NERSC
ServiceNow, it uses the credentials for a specially created
NERSC API User in CrayPort.

NERSC ServiceNow API endpoints also use Basic

Access Authentication but in combination with built-in role-
based security that is more restrictive than a normal NERSC
staff user. All this category of user can do is send HTTP
requests to ServiceNow API endpoints. Even if the credential
set is compromised, the attacker would not be able to access
any information on the ServiceNow Platform.

C. Adaptability and Extensibility

Although the existing solution is specific to the two

platforms, the technology stack and architecture of the
integration could be adapted for other incident management
solutions or an API-capable database, allowing other DOE
organizations to use this integration in their workflows with
modification to the code.

First, organizations would need to expose their own API

endpoints to act as callback URLs for CrayPort webhooks.
The callback URLs can be configured as one URL for all
CrayPort API objects, or as a separate URL per CrayPort
API object. To define and configure callback URLs, Cray
suggests that organizations work with the CrayPort API
administrator. The source code of how NERSC ServiceNow
API processes the incoming CrayPort webhooks is in
Appendix C.

Second, modifications will need to be made in order to

interact with a database that does not support GlideRecord.

The query conditions can remain the same, but the way these
queries are made will have to change for databases outside of
ServiceNow. Also, developers will need to map field names
to the ones used in their organization.

Third, the REST message framework in ServiceNow is

not pure JavaScript, but uses the Platform’s
RESTMessageV2 class. However, JavaScript can be easily
used to connect to an API with native classes, for example
XMLHttpRequest. All REST calls will need to be adapted to
use a chosen JavaScript / jQuery / AJAX framework.

The full code can be found here: http://tinyurl.com/nersc-sn-
crayport. Inquiries can be sent to sn-crayport-dev@lbl.gov.

IV. KEY FEATURES OF THE NERSC SERVICENOW –
CRAYPORT INTEGRATION

In this section, we provide an overview of the key

features enabled by this work. The current features of the
integration provide a seamless and secure API-based
workflow for incidents that require joint troubleshooting
with Cray field engineers. If the issue requires a Cray case to
be opened, a NERSC engineer can click a custom User
Interface (UI) button in the Incident form, fill out minimal
required fields and submit the Cray case.

NERSC’s custom API exposed specific endpoints of the

ServiceNow instance to CrayPort. Submitting a Cray case
through the ServiceNow interface generates a REST call to
an exposed CrayPort API endpoint, passing the necessary
information from ServiceNow in a JSON payload. The
CrayPort API will respond with a Case Number and other
information directly populated in predetermined fields in the
ServiceNow Incident. After this initial exchange, any
updates from the ServiceNow Incident will be submitted as a
comment to the Cray case using REST calls to CrayPort API
endpoints. See Appendix D for the sample source code.

Conversely, any updates made to the Cray case within

CrayPort triggers an HTTP request to the configured
webhooks to ServiceNow. Thus, all updates are to be
synchronized and shared bidirectionally between
ServiceNow Incidents and Cray cases. This new API-based
automated workflow allows NERSC engineers to submit and
continuously update Cray cases through a single interface
without duplicating information. The API also allowed us to
implement new features to improve incident management
with Cray, such as sharing attachments, updating severity
levels, and closing cases. See Figure 4.1 for a graphic of the
new submission workflow.

Figure 4.1 Demonstrates the new submission workflow.

Additional Features Beyond Incident Reporting

After the Cray case is linked to a ServiceNow Incident by

either opening a new Cray case or linking an existing Cray
case to a ServiceNow Incident, certain updates between them
are shared. From CrayPort, this includes Priority, Subject
and Description updates, new case Comments, and new
Attachments. From ServiceNow, it includes new Incident
public comments and case Priority updates.

1) Changing Cray Case Priority from ServiceNow

NERSC engineers are able to change Cray case Priority

via the “Change Case priority” UI button, and the new
priority is sent to CrayPort API via an HTTP PATCH
request.

2) Changing Cray Case Priority in CrayPort

When Cray engineers change Cray case Priority, the new

priority and the Priority Change reason are sent to a
ServiceNow API endpoint, saved in the Cray case record and
posted in the ServiceNow Incident.

3) Case details updated in CrayPort are propagated to

ServiceNow

When Cray engineers make changes to case Subject or

Description in CrayPort, this information is sent to a
ServiceNow API endpoint, saved in the Cray case record and
posted in the ServiceNow Incident.

4) Bidirectional Comment Updates (public comments)

Once a ServiceNow Incident is linked to CrayPort case,

all public comments are propagated across both platforms. If
the Cray case is opened from within ServiceNow, the first
comment becomes the case description and all subsequent
comments becomes comments in the Cray Case. If a
ServiceNow incident is linked to an existing Cray case, all
comments are sent to CrayPort as comments.

5) Linking an existing Cray case to a ServiceNow
Incident

If a Cray case has been created directly in the CrayPort

web interface, it would not be associated with a ServiceNow
Incident automatically. A NERSC engineer needs to use the
“Link Cray case” UI button in the ServiceNow platform to
make that connection by entering the Cray case number in a
pop-up window. The Cray case number goes through a
validation script: first to check that the case is not a duplicate
one and a record with the same number does not already
exist in the ServiceNow Cray cases table; second to send an
HTTP GET request to the CrayPort API to check that the
case exists. Then, if the case number is valid, the Cray cases
table is updated with that ServiceNow Incident number and
details received in the response to the GET request during
the validation stage.

V. RESULTS

This new workflow has demonstrated the following

results:

• Streamlined and minimized the need for human-

based data entry and duplicating of information
which is a process that took the most time and is the
most error-prone. In 2018, NERSC opened 674
Cori cases and 230 Edison cases. Based on 15
minutes to open and verify a case (open in
ServiceNow, notify Cray call center and obtain a
Cray case number) having this integration in place
for the entire year could have saved 180 hours of
staff time. It currently takes two minutes to open a
new case because NERSC can provide the Cray
case number prior to the phone call.

• Real-time, automated record updating to both

platforms keeping them in sync.

• Reduced incident response time - A Cray engineer

is notified of an incident twenty minutes sooner
with the new workflow.

• Improved communication between engineering

teams - Copy and pasting to ensure all
communication (Slack, e-mail, phone, in-person) is

updated in two platforms can cause issues when not
in sync. The automatic syncing process of the
integration allows an engineer to only update one
platform and be confident that they will be in sync
preventing any misunderstanding of status, closed
cases and tracking on-going issues.

• Facilitated reporting and incident review - Having a

view into both platforms, allows us to correlate
reports. For example, previously staff would need
to engage with Cray to get monthly reports like how
many critical cases were opened per month and for
which asset. The integration allows us to create
those reports from within the ServiceNow platform
rather than getting them from Cray. Further, we can
correlate them with other information available like
incidents, Cray cases with priority, when they were
reported, what is the current status.

• The collaborative nature of this solution has created

a template for potential future interactions with
Cray or other vendors on other areas moving
forward as described in section III – adaptability
and extensibility. When presented at the Cray
Quarterly Business Review in January 2019, the
software garnered interest from other data centers
with Cray systems, as well as centers that work
closely with third-party vendors that provide an API
for their customer service platform.

VI. CONCLUSION

This innovative ServiceNow CrayPort integration allows

real-time, automated record updating between two separate
and disparate service management platforms. There is
significant time reduction in reporting Cray cases, a more
efficient process to keep information in sync, the process has
improved communication between both organization’s staff
and there is a potential to share this new process with other
organizations.

ACKNOWLEDGMENT
The authors would like to acknowledge the following

staff at Cray, Inc.:
Development Team:

• Chris Solin, IT Developer
• Johnathan Miller, IT Developer
• Jason Flackey, Director, Application Systems &

Architecture

Cray Site Team:

• Mark Green, Site Service and Support Manager
• Wendy Stresau, District Service Manager

This research used resources of the National Energy Re-

search Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC02- 05CH11231.

REFERENCES

[1] ServiceNow Platform Technical overview:

https://www.servicenow.com/content/dam/servicenow-
assets/public/en-us/doc-type/resource-center/white-
paper/wp-sn-platform-technical-overview.pdf accessed
April 11, 2019

[2] ServiceNow Glide documentation
docs.servicenow.com/bundle/geneva-servicenow-
platform/page/script/general_scripting/reference/r_Glid
eStack.htm Accessed April 11, 2019

[3] ServiceNow Platform Technical overview:
https://www.servicenow.com/content/dam/servicenow-
assets/public/en-us/doc-type/resource-center/white-
paper/wp-sn-platform-technical-overview.pdf Accessed
April 11, 2019

[4] ServiceNow Platform Technical overview:
https://community.servicenow.com/community?id=com
munity_article&sys_id=573d2ee5dbd0dbc01dcaf3231f
9619ac Accessed April 11, 2019

APPENDIX A: NERSC SERVICENOW API SOURCE CODE FOR AUTOMATIC WEBHOOKS
addComment: function(caseNumber, comment) {
 // Trying to submit a CrayPortComment to CrayPort API
 try {

// Create a new REST message for HTTP POST request
var r = new sn_ws.RESTMessageV2('x_ners2_crayport.Comments', 'POST new comment');
// Check ServiceNow instance info - use debug values for test and dev

 this._checkInstance(r);

 // Populate case number
 r.setStringParameterNoEscape('case', caseNumber);
 // Populate comment body
 r.setStringParameterNoEscape('comment', this._escapeQuotes(comment));

// Send the REST message
 var response = r.execute();
 // Get a JSON response and parse it to get response body
 var responseBody = response.getBody();
 // Parse response to get HTTP status code
 var httpStatus = response.getStatusCode();
 // If not “success”, log error
 if (!(httpStatus == "200" || httpStatus == "201"
 || httpStatus == "202" || httpStatus == "204"))
 gs.error(httpStatus + " - " + responseBody);
 // No need to do anything if “success”

// If try fails, log exception and error message
 catch(ex) {
 var message = ex.getMessage();
 gs.error(message);
 }
},

addAttachment: function(caseNumber, mimeType, body, fileName, description) {
 gs.info("Adding attachment: " + fileName);

// Trying to submit a CrayPortAttachment to CrayPort API
 try {

// Create a new REST message for HTTP POST request
var r = new sn_ws.RESTMessageV2('x_ners2_crayport.Attachments', 'POST new attachment');

 // Check ServiceNow instance info - use debug values for test and dev
 this._checkInstance(r);

 // Populate attachment payload
 r.setStringParameterNoEscape('number', caseNumber);
 r.setStringParameterNoEscape('mimetype', mimeType);
 r.setStringParameterNoEscape('body', body);
 r.setStringParameterNoEscape('filename', fileName);
 r.setStringParameterNoEscape('description', description);

 // Send the REST message
 var response = r.execute();

// Get a JSON response and parse it to get response body
 var responseBody = response.getBody();

// Parse response to get HTTP status code
 var httpStatus = response.getStatusCode();

// If not “success”, log error
 if (!(httpStatus == "200" || httpStatus == "201"
 || httpStatus == "202" || httpStatus == "204"))
 gs.error(httpStatus + " - " + responseBody);

// No need to do anything if “success”

 }

// If try fails, log exception and error message
 catch(ex) {
 var message = ex.getMessage();
 gs.error(message);
 }},

APPENDIX B: NERSC SERVICENOW API SOURCE CODE FOR USER-TRIGGERED WEBHOOKS
changePriority: function() {
 // Get Cray case ID from the Cray cases table
 var case_sysID = this.getParameter('sysparm_case_sysID');
 // Get the new case priority
 var priority = this.getParameter('sysparm_priority');
 // Get Priority Change Reason
 var reason = this.getParameter('sysparm_reason');

 // Get the Cray case record by ID
 var cr = new GlideRecord('x_ners2_crayport_cray_case');
 cr.get(case_sysID);

// Get the Incident record by ID
 var gr = new GlideRecord('incident');
 gr.get(cr.parent);

 try {
 // Create a new REST message for HTTP POST request

var r = new sn_ws.RESTMessageV2('x_ners2_crayport.Cases', 'Update case PATCH');
 // Check ServiceNow instance info - use debug values for test and dev
 this._checkInstance(r);
 // Populate the new priority

r.setStringParameterNoEscape('priority', this._priorityToString(priority));
 // Populate case number
 r.setStringParameterNoEscape('case', cr.cray_case_number);
 // Populate priority change reason
 r.setStringParameterNoEscape('reason', this._escapeQuotes(reason));

 // Send the REST message
 var response = r.execute();

// Get a JSON response and parse it to get response body
 var responseBody = JSON.parse(response.getBody());

// Parse response to get HTTP status code
 var httpStatus = response.getStatusCode();

 // If “success”
 if (httpStatus == "200" || httpStatus == "201"
 || httpStatus == "202" || httpStatus == "204") {

 // Update case priority in the ServiceNow Cray case record
 cr.priority = priority;
 cr.update();
 // Put a note in the linked Incident on priority change
 gr.work_notes = "[code]Priority changed for Cray Case #" +
 gr.cray_case_number +
 ":

<blockquote>New Priority: " +
 cr.priority.getDisplayValue() +
 "
Priority Change Reason: " + reason +
 "</blockquote>[/code]";
 // Update the Incident record
 gr.update();
 // Show success message to user

gs.addInfoMessage("Successful priority change for case "+ cr.cray_case_number + ".
New Priority: " + cr.priority.getDisplayValue());

 }
 // If not “success”, log error message and response
 else {
 gs.error(httpStatus + " - " + responseBody);
 gs.addErrorMessage("ERROR: Cray case Priority was NOT changed!");
 }

}
 catch(ex) {
 var message = ex.getMessage();
 gs.error(message);
 gs.addErrorMessage("ERROR: Cray case Priority was NOT changed!");
 }},

APPENDIX C: NERSC SERVICENOW API PROCESSES THE INCOMING CRAYPORT WEBHOOKS

 (function process(/*RESTAPIRequest*/ request, /*RESTAPIResponse*/ response) {
 // Gathering information from the request body that comes from CrayPort
 var requestBody = request.body;
 var requestData = requestBody.data;
 var commentObj = requestData.CrayPortComment;
 var comment = commentObj.Body;
 var caseNumber = commentObj.CaseNumber;
 var author = commentObj.MetaData.CreatedByName;
 if (!(author.match(/nersc api/i) || comment.includes("Priority Change Reason") ||
comment.includes("Case Close Reason"))) {
 // Querying Incident table to find Cray case that the comment update is for
 var gr = new GlideRecord('incident');
 gr.addQuery('x_ners2_crayport_has_cray_case', 'true');
 gr.addQuery('u_vendor_sr', caseNumber);
 gr.query();
 while (gr.next()) {
 // Publish the new comment and update the Incident record
 gr.work_notes = "[code]" + author +
 " updated Cray Case #" + caseNumber +
 " with a new comment:

<blockquote>" +
 comment + "</blockquote>[/code]";
 gr.update();
 }
 }
})(request, response);

APPENDIX D: NERSC SOURCE CODE FOR USING REST CALLS TO CRAYPORT API ENDPOINTS

submit: function() {
 // Get Incident ID from the Incident table
 var inc_sysID = this.getParameter('sysparm_inc_sysID');
 // Get Cray case ID from the Cray cases table
 var case_sysID = this.getParameter('sysparm_case_sysID');

 // Trying to submit a CrayPortCase to CrayPort API
 try {
 // Get the Incident record by ID
 var gr = new GlideRecord('incident');
 gr.get(inc_sysID);

 // Get the Cray case record by ID
 var cr = new GlideRecord('x_ners2_crayport_cray_case');
 cr.get(case_sysID);

 // Sleep for 10 seconds
 var util = new global.MyGlobalScopeUtils();
 util.sleep(10000);

 // Create a new REST message for HTTP POST request
 var r = new sn_ws.RESTMessageV2('x_ners2_crayport.Cases', 'POST new case');
 // Populate case subject

r.setStringParameterNoEscape('subject', this._escapeQuotes(cr.cray_case_subject));
 // Populate case type

r.setStringParameterNoEscape('type', 'General Inquiry');
// Populate case asset (serial number)

 r.setStringParameterNoEscape('asset', cr.cray_asset.serial_number);
 // Populate case description
 r.setStringParameterNoEscape('description', this._escapeQuotes(cr.description));
 // Populate case priority
 r.setStringParameterNoEscape('priority',
cr.priority.getDisplayValue().toLowerCase());
 // Populate external reference field in CrayPort with SN Incident number
 r.setStringParameterNoEscape('inc', gr.number);

 // Get email of the user who clicked the Open Cray Case button
 var email = gs.getUser().getEmail();
 // If user is in Operations Technology Group (OTG)
 if (gs.getUser().isMemberOf('OTG'))
 // Use operator email instead of the user’s personal email for OTG
 email = 'operator@nersc.gov';
 // Populate contact email

r.setStringParameterNoEscape('email', email);

 // Check ServiceNow instance info - use debug values for test and dev
 this._checkInstance(r);

 // Send the REST message
 var response = r.execute();
 // Get a JSON response and parse it to get response body
 var responseBody = JSON.parse(response.getBody());
 // Parse response to get HTTP status code
 var httpStatus = response.getStatusCode();

 // If “success”
 if (httpStatus == "200" || httpStatus == "201"
 || httpStatus == "202" || httpStatus == "204") {
 // Get Case Number from the response
 var caseNumber = responseBody.CaseNumber;
 // Put it in the Cray case table
 cr.cray_case_number = caseNumber;

 // Update the case record in the Cray case table
 cr.update();

 // Populate fields in the Incident record
 gr.u_vendor_sr = caseNumber;
 gr.u_vendor_notified = cr.opened_at;
 gr.x_ners2_crayport_u_cray_case = case_sysID;
 gr.x_ners2_crayport_has_cray_case = true;
 gr.work_notes = "[code]Opened Cray Case #" + caseNumber +
 ":

<blockquote>Subject: " +
cr.cray_case_subject +
 "
Asset: " + cr.cray_asset.name +
 "
Description: " + cr.description +
 "
Priority: " + cr.priority.getDisplayValue() +
 "</blockquote>[/code]";
 gr.state = 10;
 //Update the Incident record
 gr.update();

 // Show success message to user
 gs.addInfoMessage('Cray case ' + caseNumber + ' has been submitted. Please
RELOAD the page!');
 }
 // If not “success”, log error
 else {
 gs.error(httpStatus + " - " + responseBody);
 gs.addErrorMessage("ERROR: Cray case was NOT submitted!");
 }
 }
 // If try fails, log exception and error message
 catch(ex) {
 var message = ex.getMessage();
 gs.error(message);
 gs.addErrorMessage("ERROR: Cray case was NOT submitted!");
 }
 },

