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Context

● Workloads with specific needs of data movement
○ Big data analysis, machine learning, checkpointing, in-situ, co-located 

processes, …
○ Multiple data access pattern (model, layout, data size, frequency)
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Institution Scientific domain Workflows Data size (real & projection)

European Centre for 
Medium-Range Weather Forecasts 
(ECMWF)

Weather Forecast Ensemble forecasts, data 
assimilation,...

12PB/year

Paul Scherrer Institute (PSI) Synchrotron imaging X-ray spectroscopy, high 
resolution microscopy,...

10-20PB/year

Cherenkov Telescope Array (CTA) Astrophysics Gamma Rays & Cosmic 
Sources,...

25PB/year

Complex workflows or frameworks in various scientific 
domains have increasing I/O needs



Context
● But I/O performance is decreasing!

● Mitigating the I/O bottleneck from an hardware perspective leads to an 
increasing complexity and a diversity of the architectures
○ Node-local storage (PCIe, SATA)
○ Burst buffers like Cray DataWarp, DDN Infinite Memory Engine
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Criteria 2007 2017 Relative Inc./Dec.
Name, Location BlueGene/L, USA Sunway TaihuLight, China N/A
Theoretical perf. 596 TFlops 125,436 TFlops ✕ 210
#Cores 212,992 10,649,600 ✕ 50
I/O bw 128 GBps 288 GBps ✕ 2.25
I/O bw/core 600 kBps 27 kBps ÷ 22.2
I/O bw/TFlop 214 MBps 2.30 MBps ÷ 93.0
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System Specs TITAN SUMMIT FRONTIER
Peak Performance 27 PF 200 PF >1.5 EF (✕ 7.5)
Storage 32 PB, 1 TB/s

Lustre file-system
250 PB, 2.5 TB/s
GPFS

2-4x performance and capacity of Summit’s 
I/O subsystem. Frontier will have near node 
storage like Summit.

Source: https://www.olcf.ornl.gov/frontier/

NEW!



Context

● Data management inside a workflow usually relies on a global shared parallel 
file system
○ Unique data access semantic (POSIX)
○ Performance variability

● Workflow specific data managers are installed on a use case basis
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Scientific domains require more and more often varied data 
managers (object-based storage, database, …)

Limited support and 
reduced capacity

Specialized and 
expensiveOR



Context
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● On the HPC center side, not feasible to support a large variety of data management 
systems

● … and hard to provide dedicated storage resources 
○ Usually, data resources are shared while compute resources are exclusive
○ Shared storage resources are subject to contention and high unexpected 

performance decrease
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Context

7

Contention!

Raise your 
hand, please



Dynamic Resource Provisioning

● Provisioning of storage system at job level:
○ Storage available during the job lifetime
○ Storage resources dedicated to a job (isolation)

● Dynamically supply a data management system on top of those resources
○ Several types supported: file system, object-based storage, database
○ Containerized data management services
○ Deployment fully integrated at a job scheduler level
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Our Approach

● Repurposing Cray DataWarp nodes
● Get an allocation of intermediate storage nodes along with compute nodes
● Deploy a well-sized BeeGFS across disks on DataWarp nodes
● Configure the compute nodes to act as clients of the BeeGFS instance
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Accessing DataWarp Nodes

Standard implementation of DataWarp
● Projection of DataWarp storage onto the compute node (through DVS)

Repurposing
● System customization to reconfigure the nodes

○ From hidden service nodes to standard compute nodes
○ Mapping of a compute node image to boot with

● Setup the local NVMe storage
○ XFS file system
○ Mount point with permissions granted to any user

● New SLURM constraint: storage 
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On-demand containerized BeeGFS

● BeeGFS: POSIX-compliant parallel file system based on a client-server 
architecture
○ Server-side: management, monitoring, metadata, storage
○ Client-side: kernel-space client, monitoring visualization

● Servers bundled in a Docker container 
and deployed with Sarus, a container 
runtime system
○ 1 metadata and 2 storage servers per 

DataWarp node
● Mount point on clients (compute nodes)

○ Kernel module required
○ Special privileges to mount BeeGFS
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Limitations

● Kernel-space file system such as BeeGFS implies special privileges
○ Load/unload kernel module: modprobe [-r] beegfs
○ Mount BeeGFS on compute nodes: mount -t beegfs [...] $HOME/beegs [...]
➢ Module pre-installed on nodes?
➢ Prolog script for file-system creation and mount point?

● Fresh data manager provisioned meaning no data available
➢ Stage-in/stage-out phase, such as on native DataWarp?
➢ Should this step be counted in the allocation time?

● Trade-off between capacity and capability
○ Better I/O bandwidth implies more disks and possibly capacity wasted
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Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) VS Lustre file system (Sonexion 1600, 2 OSTs)
● IOR benchmark: independent I/O, 10 runs
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Single shared file File per process
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Single shared file File per processLustre variability
Cache effect?
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Single shared file File per process
Peak write bandwidth:

● +70% FPP vs SSF
● 93% of the peak bandwidth measured
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Single shared file File per process
Not enough memory on DW nodes 
(64GB) for the caching mechanism



Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) versus global Lustre file system (2 OSTs)
● mdtest benchmark
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BeeGFS Lustre

Target Operation Ops L/B

Directory

Creation 8276.43 37222.57 ✕ 4.5

Stat 5301788.76 182330.42 ÷ 29.1

Removal 12967.02 38732.00 ✕ 3.0

File

Creation 6618.37 22916.15 ✕ 3.5

Stat 144410.46 169140.32 ✕ 1.2

Read 22541.08 45181.55 ✕ 2.0

Removal 8431.71 35985.96 ✕ 4.3

Tree
Creation 2183.40 3310.42 ✕ 1.5

Removal 125.23 1298.55 ✕ 10.4



Performance Evaluation
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● Small-scale study of… scalability
● IOR from 8 compute nodes (36 ppn)

○ 256MB written/read per process
● Dynamically provisioned BeeGFS

○ From 1 to 4 nodes
○ Ratio metadata:storage server per 

node kept to 1:2
● Reasonable scalability overall

○ Except SSF - write
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Performance Evaluation - HACC-IO

● I/O part of a large-scale cosmological 
application simulating the mass evolution of 
the universe with particle-mesh techniques

● Each process manages particles defined by 9 
variables (38 bytes)
○ XX, YY, ZZ, VX, VY, VZ, phi, pidandmask

● Single shared checkpointing file with data in an 
array of structure data layout

● Average and standard deviation on 10 runs
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Credits: Silvio Rizzi and Joe Insley, Argonne 
National Laboratory



Performance Evaluation - HACC-IO

● HACC-IO from 8 compute nodes, 36 ppn
● BeeGFS (2 DW) vs Lustre (2 OSTs)

● BeeGFS peak write bandwidth: 5.3GBps
                        read bandwidth: 9.1GBps

● As expected (previous work), BeeGFS 
highly outperforms Lustre
○ Single shared file and array of structure 

data layout is a bad combination on 
Lustre
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Portability

● Ault, testbed platform at CSCS allowing for 
prototyping experimental services and platforms
○ Various types of hardware
○ Safe privileged-access level for researchers

● Ault11, compute node with a 22-core Intel Xeon 
Gold 6152 CPU
○ 16 3D NAND NVMe disks

● Dynamically provisioned BeeGFS
○ 1 disk for management and monitoring
○ 2 disks for metadata
○ 5 disks for storage

● Peak read bandwidth: 20.36GBps
● Peak write bandwidth: 13.70GBps
● In line with values communicated by the vendor
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Portability For Fun
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How to give a second lease of life 
to HPC conference USB Keys?



Conclusion
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● Proof of concept of a mechanism to dynamically provision data managers on top of 
intermediate storage resources
○ Focused on containerized BeeGFS + DataWarp

● Promising performance and scalability with IOR and the I/O kernel of a real application
● Portability on different types of hardware and systems
● Next steps

○ Integration within the job scheduler (prolog/epilog scripts)
○ Configurable system for deployment: architecture’s description, data 

manager-specific settings, …
○ Extends to other data managers packaged in a unique container

● This work is part of the MAESTRO EU Project
● 3-year European project, started in September 2018
● Middleware library that automates data movement across diverse memory systems
● https://www.maestro-data.eu/ 
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Conclusion

Thank you for your attention!
francois.tessier@cscs.ch
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