
This project has received funding from the European
Union’s Horizon 2020 research and innovation
program through grant agreement 801101.

Dynamically Provisioning Cray DataWarp Storage
François Tessier, Maxime Martinasso, Matteo Chesi, Mark Klein, Miguel Gila

Swiss National Supercomputing Centre, ETH Zurich, Lugano, Switzerland

Cray User Group Meeting 2019
Montréal, Canada

Context

● Workloads with specific needs of data movement
○ Big data analysis, machine learning, checkpointing, in-situ, co-located

processes, …
○ Multiple data access pattern (model, layout, data size, frequency)

2

Institution Scientific domain Workflows Data size (real & projection)

European Centre for
Medium-Range Weather Forecasts
(ECMWF)

Weather Forecast Ensemble forecasts, data
assimilation,...

12PB/year

Paul Scherrer Institute (PSI) Synchrotron imaging X-ray spectroscopy, high
resolution microscopy,...

10-20PB/year

Cherenkov Telescope Array (CTA) Astrophysics Gamma Rays & Cosmic
Sources,...

25PB/year

Complex workflows or frameworks in various scientific
domains have increasing I/O needs

Context
● But I/O performance is decreasing!

● Mitigating the I/O bottleneck from an hardware perspective leads to an
increasing complexity and a diversity of the architectures
○ Node-local storage (PCIe, SATA)
○ Burst buffers like Cray DataWarp, DDN Infinite Memory Engine

3

Criteria 2007 2017 Relative Inc./Dec.
Name, Location BlueGene/L, USA Sunway TaihuLight, China N/A
Theoretical perf. 596 TFlops 125,436 TFlops ✕ 210
#Cores 212,992 10,649,600 ✕ 50
I/O bw 128 GBps 288 GBps ✕ 2.25
I/O bw/core 600 kBps 27 kBps ÷ 22.2
I/O bw/TFlop 214 MBps 2.30 MBps ÷ 93.0

Context
● But I/O performance is decreasing!

● Mitigating the I/O bottleneck from an hardware perspective leads to an
increasing complexity and a diversity of the architectures
○ Node-local storage (PCIe, SATA)
○ Burst buffers like Cray DataWarp, DDN Infinite Memory Engine

4

System Specs TITAN SUMMIT FRONTIER
Peak Performance 27 PF 200 PF >1.5 EF (✕ 7.5)
Storage 32 PB, 1 TB/s

Lustre file-system
250 PB, 2.5 TB/s
GPFS

2-4x performance and capacity of Summit’s
I/O subsystem. Frontier will have near node
storage like Summit.

Source: https://www.olcf.ornl.gov/frontier/

NEW!

Context

● Data management inside a workflow usually relies on a global shared parallel
file system
○ Unique data access semantic (POSIX)
○ Performance variability

● Workflow specific data managers are installed on a use case basis

5

Scientific domains require more and more often varied data
managers (object-based storage, database, …)

Limited support and
reduced capacity

Specialized and
expensiveOR

Context

6

● On the HPC center side, not feasible to support a large variety of data management
systems

● … and hard to provide dedicated storage resources
○ Usually, data resources are shared while compute resources are exclusive
○ Shared storage resources are subject to contention and high unexpected

performance decrease

● On the HPC center side, not feasible to support a large variety of data management
systems

● … and hard to provide dedicated storage resources
○ Usually, data resources are shared while compute resources are exclusive
○ Shared storage resources are subject to contention and high unexpected

performance decrease

Context

7

Contention!

Raise your
hand, please

Dynamic Resource Provisioning

● Provisioning of storage system at job level:
○ Storage available during the job lifetime
○ Storage resources dedicated to a job (isolation)

● Dynamically supply a data management system on top of those resources
○ Several types supported: file system, object-based storage, database
○ Containerized data management services
○ Deployment fully integrated at a job scheduler level

8

Our Approach

● Repurposing Cray DataWarp nodes
● Get an allocation of intermediate storage nodes along with compute nodes
● Deploy a well-sized BeeGFS across disks on DataWarp nodes
● Configure the compute nodes to act as clients of the BeeGFS instance

9

Accessing DataWarp Nodes

Standard implementation of DataWarp
● Projection of DataWarp storage onto the compute node (through DVS)

Repurposing
● System customization to reconfigure the nodes

○ From hidden service nodes to standard compute nodes
○ Mapping of a compute node image to boot with

● Setup the local NVMe storage
○ XFS file system
○ Mount point with permissions granted to any user

● New SLURM constraint: storage

10

On-demand containerized BeeGFS

● BeeGFS: POSIX-compliant parallel file system based on a client-server
architecture
○ Server-side: management, monitoring, metadata, storage
○ Client-side: kernel-space client, monitoring visualization

● Servers bundled in a Docker container
and deployed with Sarus, a container
runtime system
○ 1 metadata and 2 storage servers per

DataWarp node
● Mount point on clients (compute nodes)

○ Kernel module required
○ Special privileges to mount BeeGFS

11

Limitations

● Kernel-space file system such as BeeGFS implies special privileges
○ Load/unload kernel module: modprobe [-r] beegfs
○ Mount BeeGFS on compute nodes: mount -t beegfs [...] $HOME/beegs [...]
➢ Module pre-installed on nodes?
➢ Prolog script for file-system creation and mount point?

● Fresh data manager provisioned meaning no data available
➢ Stage-in/stage-out phase, such as on native DataWarp?
➢ Should this step be counted in the allocation time?

● Trade-off between capacity and capability
○ Better I/O bandwidth implies more disks and possibly capacity wasted

12

Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) VS Lustre file system (Sonexion 1600, 2 OSTs)
● IOR benchmark: independent I/O, 10 runs

13

Single shared file File per process

Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) VS Lustre file system (Sonexion 1600, 2 OSTs)
● IOR benchmark: independent I/O, 10 runs

14

Single shared file File per processLustre variability
Cache effect?

Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) VS Lustre file system (Sonexion 1600, 2 OSTs)
● IOR benchmark: independent I/O, 10 runs

15

Single shared file File per process
Peak write bandwidth:

● +70% FPP vs SSF
● 93% of the peak bandwidth measured

Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) VS Lustre file system (Sonexion 1600, 2 OSTs)
● IOR benchmark: independent I/O, 10 runs

16

Single shared file File per process
Not enough memory on DW nodes
(64GB) for the caching mechanism

Performance Evaluation
● Dom, Cray XC50 system with DataWarp at CSCS

○ Test and development system of Piz Daint (27PFlops)
○ 8 nodes with two 18-cores Intel Broadwell CPU and 64GB of DRAM
○ 4 DataWarp nodes each with three 5.9TB PCIe SSD

● On demand-BeeGFS (2 DW nodes) versus global Lustre file system (2 OSTs)
● mdtest benchmark

17

BeeGFS Lustre

Target Operation Ops L/B

Directory

Creation 8276.43 37222.57 ✕ 4.5

Stat 5301788.76 182330.42 ÷ 29.1

Removal 12967.02 38732.00 ✕ 3.0

File

Creation 6618.37 22916.15 ✕ 3.5

Stat 144410.46 169140.32 ✕ 1.2

Read 22541.08 45181.55 ✕ 2.0

Removal 8431.71 35985.96 ✕ 4.3

Tree
Creation 2183.40 3310.42 ✕ 1.5

Removal 125.23 1298.55 ✕ 10.4

Performance Evaluation

18

● Small-scale study of… scalability
● IOR from 8 compute nodes (36 ppn)

○ 256MB written/read per process
● Dynamically provisioned BeeGFS

○ From 1 to 4 nodes
○ Ratio metadata:storage server per

node kept to 1:2
● Reasonable scalability overall

○ Except SSF - write

Performance Evaluation

19

● Small-scale study of… scalability
● IOR from 8 compute nodes (36 ppn)

○ 256MB written/read per process
● Dynamically provisioned BeeGFS

○ From 1 to 4 nodes
○ Ratio metadata:storage server per

node kept to 1:2
● Reasonable scalability overall

○ Except SSF - write

Performance Evaluation - HACC-IO

● I/O part of a large-scale cosmological
application simulating the mass evolution of
the universe with particle-mesh techniques

● Each process manages particles defined by 9
variables (38 bytes)
○ XX, YY, ZZ, VX, VY, VZ, phi, pidandmask

● Single shared checkpointing file with data in an
array of structure data layout

● Average and standard deviation on 10 runs

20

Credits: Silvio Rizzi and Joe Insley, Argonne
National Laboratory

Performance Evaluation - HACC-IO

● HACC-IO from 8 compute nodes, 36 ppn
● BeeGFS (2 DW) vs Lustre (2 OSTs)

● BeeGFS peak write bandwidth: 5.3GBps
 read bandwidth: 9.1GBps

● As expected (previous work), BeeGFS
highly outperforms Lustre
○ Single shared file and array of structure

data layout is a bad combination on
Lustre

21

Portability

● Ault, testbed platform at CSCS allowing for
prototyping experimental services and platforms
○ Various types of hardware
○ Safe privileged-access level for researchers

● Ault11, compute node with a 22-core Intel Xeon
Gold 6152 CPU
○ 16 3D NAND NVMe disks

● Dynamically provisioned BeeGFS
○ 1 disk for management and monitoring
○ 2 disks for metadata
○ 5 disks for storage

● Peak read bandwidth: 20.36GBps
● Peak write bandwidth: 13.70GBps
● In line with values communicated by the vendor

22

Portability For Fun

23

How to give a second lease of life
to HPC conference USB Keys?

Conclusion

24

● Proof of concept of a mechanism to dynamically provision data managers on top of
intermediate storage resources
○ Focused on containerized BeeGFS + DataWarp

● Promising performance and scalability with IOR and the I/O kernel of a real application
● Portability on different types of hardware and systems
● Next steps

○ Integration within the job scheduler (prolog/epilog scripts)
○ Configurable system for deployment: architecture’s description, data

manager-specific settings, …
○ Extends to other data managers packaged in a unique container

● This work is part of the MAESTRO EU Project
● 3-year European project, started in September 2018
● Middleware library that automates data movement across diverse memory systems
● https://www.maestro-data.eu/

Acknowledgment

https://www.maestro-data.eu/

25

Conclusion

Thank you for your attention!
francois.tessier@cscs.ch

26

