
Scaling Results From the First Generation of Arm-based Supercomputers

Simon McIntosh-Smith, James Price, Andrei Poenaru, Tom Deakin
Department of Computer Science

University of Bristol
Bristol, UK

Email: S.McIntosh-Smith@bristol.ac.uk

Abstract—In this paper we present the first scaling results
from Isambard, the first production supercomputer to be based
on Arm CPUs that have been optimised specifically for HPC.
Isambard is a Cray XC50 ‘Scout’ system, combining Marvell
ThunderX2 Arm-based CPUs with Cray’s Aries interconnect.
The full Isambard system was delivered in late 2018 and
consists of a full cabinet of 168 dual-socket nodes, for a total
of 10,752 heavyweight Arm cores. In this work, we build on
the single-node results we presented at CUG 2018, and present
scaling results for the full system. We compare Isambard’s
scaling results with XC systems based on the Aries interconnect
and x86 CPUs, including Intel Skylake and Broadwell. We focus
on a range of applications and mini-apps that are important
to the UK national HPC service, ARCHER, and to Isambard
project partners.

Keywords-XC50; Arm; ThunderX2; benchmarking; scaling;

I. INTRODUCTION

The development of Arm processors has been driven by
multiple vendors for the fast-growing mobile space, resulting
in rapid innovation of the architecture, greater choice for
consumers, and competition between vendors. 2018 saw the
delivery of the first generation of competitive HPC systems,
including the ‘Astra’ system1 at Sandia National Laboratory,
the first Arm-based supercomputer to achieve a listing in the
Top500. High-performance Arm server CPUs are starting to
emerge from more vendors, and in 2019 we expect to see
Arm-based HPC server CPUs ship from Marvell, Fujitsu,
Ampere and Huawei.

In response to these developments, the ‘Isambard’ system2

has been designed as the first Arm-based Cray XC50 (Scout)
system. Based on Marvell ThunderX2 32-core CPUs, Isam-
bard is different from most of the other early Arm systems
since it is intended to be a production service, rather than
a prototype or testbed machine — Isambard is available to
any researcher funded by the UK’s Engineering and Physical
Sciences Research Council (EPSRC) as part of the UK na-
tional HPC ecosystem3. ThunderX2 CPUs are noteworthy in
their focus on delivering class-leading memory bandwidth:
each 32-core CPU uses eight DDR4 memory channels
to deliver STREAM triad memory bandwidth of around

1https://share-ng.sandia.gov/news/resources/news releases/top 500/
2http://gw4.ac.uk/isambard/
3http://www.hpc-uk.ac.uk/facilities/

250GB/s. The Isambard system represents a collaboration
between the GW4 Alliance (the universities of Bristol, Bath,
Cardiff and Exeter), the UK’s Met Office, Cray, Arm and
Marvell, with funding coming from EPSRC. We chose CUG
2018 as the venue to disclose the first Isambard single
node results, based on early-access, “white box” nodes. In
the CUG 2018 single node paper, we demonstrated that,
at least at the node level, Arm-based HPC systems were
performance-competitive with the best x86-based systems
at the time [1]. This year we have chosen CUG 2019 to
disclose system scalability results for the first time. The
full Isambard system arrived in November 2018, and so this
paper will present early scaling results. These results will be
among the first ‘at scale’ performance results published for
any Arm-based supercomputer, and the first results showing
how well ThunderX2 performs in co-operation with Cray’s
Aries interconnect.

A selection from the top ten most heavily used codes
that are run on the UK’s national supercomputer, ‘Archer’
(a Cray XC30 system), along with a set of mini-apps,
have been chosen to provide representative coverage of the
types of codes used by citizens of today’s HPC commu-
nity [2]. Being a standard XC50 system, Isambard presents
a unique opportunity for comparative benchmarking against
XC50 machines based on mainstream x86 CPUs, including
Broadwell and Skylake processors. With near-identical Cray
software stacks on both the Arm and x86 XC50 machines,
and with a consistent Aries interconnect, Isambard enables
as close an ‘apples-to-apples’ comparison between Arm and
x86-based processors as possible.

II. ISAMBARD: SYSTEM OVERVIEW

The Isambard system is a full cabinet of XC50 ‘Scout’
with Marvell ThunderX2 CPUs, delivering 10,752 high-
performance Armv8 cores. Each node includes two 32-core
ThunderX2 processors running at a base clock speed of
2.1 GHz, and a turbo clock speed of 2.5GHz. The processors
each have eight 2666 MHz DDR4 channels, yielding a
measured STREAM triad bandwidth of 246 GB/s per node.
The XC50 Scout system integrates four dual-socket nodes
into each blade, and then 42 such blades into a single
cabinet. One blade of four nodes is reserved to act as head
nodes for the rest of the system, leaving 164 compute nodes,

or 10,496 compute cores. Pictures of a Scout blade and an
XC50 cabinet are shown in Figure 1.

The results presented in this paper are based on work
performed since April 3rd 2019, when an upgrade to Isam-
bard’s hardware and software was completed. Specifically,
Isambard’s Marvell ThunderX2 CPUs were upgraded to
B2 silicon stepping, the latest version of CLE based on
SLES 15 was installed, as was new firmware which enabled
the ThunderX2’s turbo mode for the first time. The Cray
Programming Environment includes Arm versions of all
the software components we needed for benchmarking the
ThunderX2 CPUs: the Cray Compiler CCE, performance
libraries, and analysis tools. In addition to Cray’s compiler,
we also used Arm’s Clang/LLVM-based HPC Compiler, and
the most recent versions of GCC. It should be noted that
all of these compilers and libraries are still relatively early
in their support for HPC-optimised Arm CPUs, and we
continue to observe significant performance improvements
with each new release of these tools. On the x86 platforms
we also used the latest Intel compiler, and Intel MKL for
BLAS and FFT routines. Details of which versions of these
tools were used are given in Table II.

III. BENCHMARKS

A. Mini-apps

In this section we give a brief introduction to the mini-
apps used in this scaling study. The mini-apps themselves
are all performance proxies for larger production codes,
encapsulating important performance characteristics such as
floating-point intensity, memory access and communica-
tion patterns of their parent applications, but without the
complexities that are often associated with ‘real’ codes.
As such, they are useful for performance modelling and
algorithm characterisation, and can demonstrate the potential
performance of the latest computer architectures.

STREAM: McCalpin’s STREAM has long been the gold-
standard benchmark for measuring the achievable sustained
memory bandwidth of CPU architectures [3]. The bench-
mark is formed of simple element-wise arithmetic operations
on long arrays (vectors), and for this study we consider the
Triad kernel of a(i) = b(i) + αc(i). The achieved memory
bandwidth is easily modelled as three times the length of
the arrays divided by the fastest runtime for this kernel.
Arrays of 225 double-precision elements were used in this
study, with the kernels run 200 times. While STREAM only
enables node-level performance comparisons, we include it
in this study to characterise the node-level memory band-
width of the various systems in our test. This is especially
important for Isambard since the node-level performance has
increased since the recent upgrades to both hardware and
software.

CloverLeaf: this hydrodynamics mini-app solves Eu-
ler’s equations of compressible fluid dynamics, under a
Lagrangian-Eulerian scheme, on a two-dimensional spatial

regular structured grid [4]. These equations model the con-
servation of mass, energy and momentum. The mini-app is
an example of a stencil code and is known to be memory
bandwidth–bound. CloverLeaf is regularly used to study
performance portability on many different architectures [5].
The bm_256 test case that we used here consists of a grid
of 15360× 15360 cells and is suitable for strong-scaling up
to a system the size of Isambard. CloverLeaf is a member
of the Mantevo suite of mini-apps from Sandia National
Laboratory [6].

TeaLeaf: this heat diffusion mini-app solves the linear
heat conduction equation on a spatially decomposed regular
grid, utilising a five point finite difference stencil [7]. A
range of linear solvers are included in the mini-app, but the
baseline method we use in this paper is the matrix-free con-
jugate gradient (CG) solver. TeaLeaf is memory bandwidth–
bound at the node level, but, at scale, the solver can become
bound by communication. We used the bm_5 input deck
for the strong-scaling tests in this paper, which represents
the largest mesh size that is considered to be scientifically
interesting for real-world problems (as discussed in [7]).
This utilises a 4000 × 4000 spatial grid, running for ten
timesteps. Like CloverLeaf, TeaLeaf is also a member of
the Mantevo mini-app suite [6].

SNAP: this is a proxy application for a modern deter-
ministic discrete ordinates transport code [8]. As well as
having a large memory footprint, this application has a
simple finite difference kernel which must be processed
according to a wavefront dependency, which introduces
associated communication costs. SNAP is unique in the
applications in this study in that parallelism is exposed in
two levels: spatially with MPI and over the energy domain
utilising OpenMP. As such, and as is common within the
transport community, we have opted to explore the weak
scalability of this application. We have used a problem size
of 1024 × 12 × 12 cells per MPI rank, with 32 energy
groups and 136 angles per octant, chosen to fit within the
memory capacity of our baseline Broadwell system. We run
with one MPI rank per socket, and use OpenMP threads to
saturate all cores of the socket. This configuration differs
from our previous analysis of this mini-app on ThunderX2
processors [1], but is representative of running at scale where
spatial concurrency becomes limited.

B. Applications

The Isambard system has been designed to explore the
feasibility of an Arm-based system for real HPC workloads
on national services, such as ARCHER, the UK’s National
Supercomputer for researchers funded by the Engineering
and Physical Sciences Research Council (EPSRC) [9]. As
such, it is important to ensure that the most heavily used
codes from these national systems are tested and evaluated.
To that end, a number of real applications have been selected
for this study taken from the top ten most used codes

(a) An XC50 Scout blade (b) An XC50 cabinet

Figure 1. Isambard hardware. Pictures © Simon McIntosh-Smith, taken at SC’17.

on ARCHER, The applications we have selected represent
over 30% of the usage of the whole ARCHER system,
in terms of node hours. Therefore, the performance of
these codes on any architecture captures the interests of a
significant fraction of UK HPC users, and any changes in the
performance of these codes directly from the use of different
architectures is important to quantify. The test cases were
chosen by the group of core application developers and key
application users who came to two Isambard hackathons held
in October 2017 and February 2018; details of the attendees
are found in the Isambard paper from CUG 2018, which
focused on single node performance [1]. Given that we wish
to focus on scaling across the full Isambard system, we had
to choose test cases that were of scientific merit, yet that
could be scaled from a single node up to the full Isambard
system of 164 nodes (10,496 cores).

GROMACS4: this widely-used molecular dynamics
package is used to solve Newton’s equations of motion. Sys-
tems of interest, such as proteins, can contain up to millions
of particles. It is thought that GROMACS is usually bound
by the floating-point performance at low node counts, while
becoming communication bound at higher node counts. The
FLOP/s–bound nature of GROMACS at low node counts
motivated the developers to handwrite vectorised code using
compiler intrinsics in order to ensure an optimal sequence
of these operations [10]. This approach unfortunately results
in GROMACS not being supported by some compilers—
such as the Cray Compiler—because they do not implement
all of the required intrinsics. For each supported platform,
computation is packed so that it saturates the native vector
length of the platform, e.g. 256 bits for AVX2, 512 bits for
AVX-512, and so on. For this study, we used a 42 million

4http://www.gromacs.org

atom test case from the ARCHER benchmark suite [11],
running for 800 timesteps. On the ThunderX2 processors,
we used the 128-bit ARM_NEON_ASIMD vector imple-
mentation, which is the closest match for the underlying
Armv8.1-A architecture. We note that, within GROMACS,
this NEON SIMD implementation is not as mature as the
SIMD implementations targeting x86. For this study we run
a one MPI rank per core, using OpenMP for SMT.

NEMO: the Nucleus for European Modelling of the
Ocean5 (NEMO) code is one ocean modelling framework
used by the UK’s Met Office, and is often used in conjunc-
tion with the Unified Model atmosphere simulation code.
The code consists of simulations of the ocean, sea-ice and
marine biogeochemistry under an automatic mesh refinement
scheme. As a structured grid code, the performance-limiting
factor is typically memory bandwidth at the node level, how-
ever communication overheads start to significantly impact
performance at scale. The benchmark we used was derived
from the GYRE_PISCES reference configuration, with a 1⁄12

◦

resolution and 31 model levels, resulting in 2.72M points,
running for 720 time-steps. We used a pre-release of NEMO
version 4.0, and we ran with one MPI rank per core for all
platforms, without using SMT.

OpenFOAM: originally developed as an alternative to
early simulation engines written in Fortran, OpenFOAM is a
modular C++ framework aiming to simplify writing custom
computational fluid dynamics (CFD) solvers [12]. In this
paper, we use the simpleFoam solver for incompressible,
turbulent flow from version 1712 of OpenFOAM6, the most
recent release at the time we began benchmarking the
Isambard system. The input case is based on the RANS
DrivAer generic car model, which is a representative case

5https://www.nemo-ocean.eu
6https://www.openfoam.com/download/install-source.php

of real aerodynamics simulation and thus should provide
meaningful insight of the benchmarked platforms’ perfor-
mance [13]. The decomposed grid consists of approximately
64 million cells. OpenFOAM is memory bandwidth–bound,
at least at low node counts.

OpenSBLI: this is a grid-based finite difference solver7

used to solve compressible Navier-Stokes equations for
shock-boundary layer interactions. The code uses Python to
automatically generate code to solve the equations expressed
in mathematical Einstein notation, and uses the Oxford
Parallel Structured (OPS) software for parallelism. As a
structured grid code, it should be memory bandwidth–
bound under the Roofline model, with low computational
intensity from the finite difference approximation. We used
the ARCHER benchmark for this paper8, which solves a
Taylor-Green vortex on a grid of 1024× 1024× 1024 cells
(around a billion cells). We ran with one MPI rank per core,
without using SMT.

VASP: the Vienna Ab initio Simulation Package9 (VASP)
is used to model materials at the atomic scale, in particular
performing electronic structure calculations and quantum-
mechanical molecular dynamics. It solves the N-body
Schrödinger equation using a variety of solution techniques.
VASP includes a significant number of settings which affect
performance, from domain decomposition options to maths
library parameters. Previous investigations have found that
VASP is bound by floating-point compute performance at
scales of up to a few hundred cores. For bigger sizes, its
heavy use of MPI collectives begins to dominate, and the
application becomes bound by communication latency [14].
The benchmark utilised is known as PdO, because it simu-
lates a slab of palladium oxide. It consists of 1392 atoms,
and is based on a benchmark that was originally designed by
one of VASP’s developers, who found that (on a single node)
the benchmark is mostly compute-bound; however, there
exist a few methods that benefit from increased memory
bandwidth [15]. We ran with one MPI rank per core, without
using SMT.

IV. RESULTS

A. Platforms

The full ‘Phase 2’ part of the Isambard system was used
to produce the Arm results presented in this paper. Each of
these Cray XC50 Arm nodes houses two 32-core Marvell
ThunderX2 processors running at 2.1 GHz base clock speed,
and a 2.5 GHz turbo clock speed. We should note that, in
our testing, all the Isambard CPUs appeared to run at the
2.5GHz turbo speed all of the time, no matter what code
or benchmark we ran, including HPL. Each node includes
256 GB of DDR4 DRAM clocked at 2400 MHz, slightly

7https://opensbli.github.io
8http://www.archer.ac.uk/community/benchmarks/archer/
9http://www.vasp.at

below the 2666 MHz maximum memory speed that Thun-
derX2 can support. On May 7th 2018, Marvell announced
the general availability of ThunderX2, with an RRP for the
32c 2.2GHz part of $1,795 each. The ThunderX2 processors
support 128-bit vector Arm Advanced SIMD instructions
(sometimes referred to as ‘NEON’), and each core is capable
of 4-way simultaneous multithreading (SMT), for a total
of up to 256 hardware threads per node. The processor’s
on-chip data cache is organised into three levels: a private
L1 and L2 cache for each core, and a 32 MB L3 cache
shared between all the cores. Finally, each ThunderX2 socket
utilises eight separate DDR4 memory channels running at up
to 2666 MHz.

The Cray XC40 supercomputer ‘Swan’ was used for
access to Intel Broadwell and Skylake processors, with an
additional internal Cray system, ‘Horizon’, providing access
to a more mainstream SKU of Skylake:

• Intel Xeon Platinum 8176 (Skylake) 28-core @
2.1 GHz, dual-socket, with 192 GB of DDR4-2666
DRAM. RRP $8,719 each.

• Intel Xeon Gold 6148 (Skylake) 20-core @ 2.4 GHz,
dual-socket, with 192 GB of DDR4-2666 DRAM. RRP
$3,078 each.

• Intel Xeon E5-2699 v4 (Broadwell) 22-core @
2.2 GHz, dual-socket, with 128 GB of DDR4-2400
DRAM. RRP $4,115 each.

The recommended retail prices (RRP) were correct at
the time of writing for the single-node performance paper
we published at CUG 2018 (May 2018), and taken from
Intel’s website at that time10. The Skylake processors pro-
vide an AVX-512 vector instruction set, meaning that each
FP64 vector operation processes eight elements at once; by
comparison, Broadwell utilises AVX2, which is 256 bits
wide, simultaneously operating on four FP64 elements at
a time, per SIMD instruction. The Xeon processors all have
three levels of on-chip (data) cache, with an L1 and L2
cache per core, along with a shared L3. This selection of
CPUs provides coverage of both the state-of-the-art and the
status quo of current commonplace HPC system design. We
include high-end models of both Skylake and Broadwell in
order to make the comparison as challenging as possible for
ThunderX2. It is worth noting that in reality, most Skylake
and Broadwell systems will use SKUs from much further
down the range, of which the Xeon Gold part described
above is included as a good example. This is certainly true
for the current Top500 systems.

A summary of the hardware used, along with peak
floating-point and memory bandwidth performance, is shown
in Table I, while a chart comparing key hardware charac-
teristics of the main CPUs in our test (the three near-top-
of-bin parts: Broadwell 22c, Skylake 28c, and ThunderX2
32c) is shown in Figure 2. There are several important

10https://ark.intel.com/

Processor Cores Clock TDP FP64 Bandwidth
speed Watts TFLOP/s GB/s
GHz

Broadwell 2× 22 2.2 145 1.55 154
Skylake Gold 2× 20 2.4 150 3.07 256
Skylake Platinum 2× 28 2.1 165 3.76 256
ThunderX2 2× 32 2.1 (2.5) 175 1.13 320

Table I
HARDWARE INFORMATION (PEAK FIGURES)

characteristics that are worthy of note. First, the wider
vectors in the x86 CPUs give them a significant peak
floating-point advantage over ThunderX2. Second, wider
vectors also require wider datapaths into the lower levels
of the cache hierarchy. This results in the x86 CPUs having
an L1 cache bandwidth advantage, but we see the advantage
reducing as we go up the cache levels, until once at external
memory, it is ThunderX2 which has the advantage, due to its
greater number of memory channels. Third, as seen in most
benchmark studies in recent years, dynamic voltage and
frequency scaling (DVFS) makes it harder to reason about
the percentage of peak performance that is being achieved.
For example, while measuring the cache bandwidth results
shown in Figure 2, we observed that our Broadwell 22c
parts consistently increased their clock speed from a base
of 2.2 GHz up to 2.6 GHz. In contrast, our Skylake 28c
parts consistently decreased their clock speed from a base
of 2.1 GHz down to 1.9 GHz, a 10% reduction in clock
speed. By comparison, during all our tests, Isambard’s
ThunderX2 CPUs ran at a consistent 2.5 GHz, their turbo
speed, which was 19% faster than their base clock speed of
2.1GHz. At the actual, measured clock speeds, the fraction
of theoretical peak bandwidth achieved at L1 for Broadwell
22c, Skylake 28c, and ThunderX2 32c, was 57%, 55%, and
51%, respectively.

In order to measure the sustained cache bandwidths as
presented in Figure 2, we used the methodology described
in our previous work [16]. The Triad kernel from the
STREAM benchmark was run in a tight loop on each
core simultaneously, with problem sizes selected to ensure
residency in each level of the cache. The bandwidth is then
modelled using the array size, number of iterations and the
time for the benchmark to run. This portable methodology
was previously shown to attain the same performance as
hand-written benchmarks which only work on their target
architectures [17].

We are currently in the process of evaluating the three
major compiler families available for ThunderX2: GCC, the
LLVM-based Arm HPC Compiler, and Cray’s CCE. The
Isambard node-level performance paper at CUG 2018 was
the first study to date that has compared all three of these
compilers targeting Arm [1]. The compiler that achieved the
highest performance in each case is used in the results graphs

Benchmark ThunderX2 Broadwell Skylake

STREAM GCC 8.2 Intel 2019 CCE 8.7
CloverLeaf CCE 8.7 Intel 2019 Intel 2019

TeaLeaf CCE 8.7 Intel 2019 Intel 2019
SNAP CCE 8.7 Intel 2019 Intel 2019

GROMACS GCC 8.2 GCC 8.2 GCC 8.2
NEMO CCE 8.7 CCE 8.7 CCE 8.7

OpenFOAM GCC 7.3 GCC 7.3 GCC 7.3
OpenSBLI CCE 8.7 Intel 2019 CCE 8.7

VASP GCC 7.3 Intel 2019 Intel 2019

Table II
COMPILERS USED FOR BENCHMARKING

displayed below. Likewise, for the Intel processors we used
GCC, Intel, and Cray CCE. Table II details which compiler
was used for each benchmark on each platform. This data is
still changing at the time of writing, and we are even finding
cases where, for a given code, one compiler might be fastest
up to a certain number of nodes, then another compiler is
faster at higher node counts.

Most of the scaling results we show in the rest of this
paper scale up to 64 nodes. This limit was imposed by
the x86 node counts in the Swan and Horizon systems that
we compare to. With the exception of SNAP (which has
very high memory usage), all of the results are produced
by strong-scaling a single input problem. In most cases we
begin scaling from a single node, however for GROMACS,
OpenFOAM and OpenSBLI we start from either two or four
nodes due to memory and runtime constraints.

B. Mini-apps

CloverLeaf: The normalised results for the CloverLeaf
mini-app in Figure 3a are consistent with those for STREAM
on low node counts. CloverLeaf is a structured grid code
and the majority of its kernels are bound by the available
memory bandwidth. It has been shown previously that the
memory bandwidth increases from GPUs result in propor-
tional improvements for CloverLeaf [5]. The same is true
on the processors in this study, with the single-node im-
provements on ThunderX2 coming from its greater memory
bandwidth. Therefore, for structured grid codes, we indeed
see that the runtime is proportional to the external memory
bandwidth of the system, and the ThunderX2 provides the
highest bandwidth out of the processors tested. At higher
node counts, the relative performance changes slightly due to
the impact of communication overheads, with the end result
being that both SKUs of Skylake and the ThunderX2 CPUs
all perform similarly well at scale; the parallel efficiency
graph in Figure 3b shows how both the x86 and Arm-based
platforms scale similarly for CloverLeaf. There is a slight
drop-off in parallel efficiency for CloverLeaf relative to the
other platforms, which is currently under investigation.

TeaLeaf: Figure 4a compares the performance of the
TeaLeaf mini-app between the four systems up to 64 nodes.

Cor
es

TFL
OPS

/s

L1
ba

nd
widt

h

(ag
g.

TB/s)

L2
ba

nd
widt

h

(ag
g.

TB/s)

L3
ba

nd
widt

h

(ag
g.

GB/s)

M
em

or
y

ba
nd

-

widt
h

(G
B/s)

0

0.5

1

1.5

2

2.5

44 1.55 6.31 2.23 726 131.2

56

3.76

11.18

3.57

767.2

214.9

64

1.13

3.46

2.14

537.6

244.1

R
el

at
iv

e
fig

ur
es

of
m

er
it

(n
or

m
al

iz
ed

to
B

ro
ad

w
el

l)
Broadwell 22c Skylake 28c ThunderX2 32c

Figure 2. Comparison of properties of Broadwell 22c, Skylake 28c and ThunderX2 32c. Results are normalized to Broadwell.

The relative performance results on a single node are similar
to those presented in [18], with small differences arising
from the use of newer compilers and a different platform
for ThunderX2. TeaLeaf is largely dominated by DRAM
memory bandwidth on a single node, which is reflected
in these results wherein ThunderX2 is 80% faster than
Broadwell and up to 10% faster than Skylake. At scale,
however, Isambard is unable to sustain this performance
advantage for the problem that we are using.

As shown in Figure 4b, all platforms achieve super-linear
scaling behaviour up to around 16 nodes which, as observed
in [7], is due to cache effects of strong-scaling over a
relatively small data-set. The super-linear improvement is
much less pronounced on ThunderX2 than with the x86
systems, which is primarily due to the much smaller ratio
of DRAM to L3 cache bandwidth (as shown in Figure 2)
and a smaller L3 cache capacity. In addition, the overheads
of some of the MPI communication routines such as the
halo exchange and MPI_AllReduce operations appear to
be greater on ThunderX2, further impacting scalability. As
a result of this, Isambard ends up at around 2× slower than
the x86 systems when using 64 nodes. This issue is currently
under investigation.

SNAP: Running the weak scaling setup described in
Section III-A, the runtimes at all scales are similar across
all the architectures tested, as seen in Figure 5a, with the
advantage initially seen on Skylake reducing at higher node
counts. Our earlier analysis of the scalability of SNAP
showed that, even at relatively modest node counts such
as those used in this study, the runtime is dominated by
network communications [19]. Therefore, a similar level of
performance can be seen at modest scale irrespective of the
architecture. Figure 5b also shows that each system has a
very similar parallel efficiency up to 8 nodes and follows
a similar trend to our previous work [19]. While the x86
systems we were using in these tests only had 64 nodes, we
were able to scale up the SNAP run to a higher node count
on Isambard. At these higher node counts, the ThunderX2
scaling efficiency settles at around 80%.

C. Applications

GROMACS: Figure 6a shows that at low node counts,
GROMACS performance for this benchmark correlates to
floating-point throughput and L1 cache bandwidth. At two
nodes, Skylake Platinum is 1.66× faster than Broadwell,
while ThunderX2 is 1.23× slower. As the node count

Figure 3. CloverLeaf scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

1 2 4 8 16 32 64
0

0.5

1

1.5

1 1 1 1 1 1 1

1.57 1.56 1.56 1.57 1.57 1.58 1.54
1.62 1.63 1.61 1.63 1.62

1.68 1.65
1.76 1.74 1.73 1.73 1.71 1.7

1.59

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

1 2 4 8 16 32 64
0

20

40

60

80

100

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

increases, the performance becomes increasingly affected
by communication costs. Figure 6b shows that the scaling
efficiency drops to below 40% for Skylake Platinum at
64 nodes, with MPI communications accounting for 72%
of the total runtime. Since the node-level performance is
lower, ThunderX2 is able to achieve a scaling efficiency of
70% for 64 nodes. As a result of this, Isambard achieves
performance almost on par with both Skylake SKUs at 64
nodes, making up for the lower floating-point throughput
and cache bandwidth.

NEMO: Figure 7b shows the scaling efficiency of the
NEMO benchmark up to 64 nodes. This benchmark pro-

duces super-linear scaling behaviour up to eight nodes on
the x86 systems since the working data starts fitting into
the caches. As also observed with the TeaLeaf results, the
ThunderX2 processors benefit from caching effects much
less than the x86 processors, and while some individual
components do experience super-linear scaling behaviour,
the overall efficiency does not. On a single node, ThunderX2
is 1.45× faster than Broadwell and around 1.14× faster
than Skylake Gold, while just a 1.03× slower than the
Skylake Platinum system (see Figure 7a). Due to the scaling
behaviour described above, the performance at scale is less
competitive, dropping to around half the performance of the

Figure 4. TeaLeaf scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

1 2 4 8 16 32 64
0

0.5

1

1.5

2

1 1 1 1 1 1 1

1.65
1.72

1.65

0.86

1.24
1.3

0.88

1.75
1.89

2.23

1.36
1.47

1.24

0.93

1.82

1.66

1.38

0.59 0.61
0.52 0.49

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

1 2 4 8 16 32 64
0

100

200

300

400

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

Broadwell and Skylake systems (which all achieve similar
performance from eight nodes onwards).

OpenFOAM: The OpenFOAM results shown in Fig-
ure 8a start off following the STREAM behaviour of the
three platforms closely, confirming that memory bandwidth
is the main factor that influences performance at low node
counts. With its eight memory channels, ThunderX2 yields
the fastest result, at 1.83× the Broadwell performance on
four nodes, compared to 1.58× and 1.65× on Skylake 20c
and 28c, respectively. At higher node counts, other factors
come into play, where in Figure 8b we see Broadwell scaling
the best of all the platforms, Skylake also maintaining good

scaling, and ThunderX2 scaling the least well, with parallel
efficiency dropping to below 80%. From early investigations,
we suspect this is the same issue as with TeaLeaf, and related
to how Cray’s MPI collective operations are implemented on
ThunderX2. At the time of writing we are investigating this
with Cray.

OpenSBLI: The scaling efficiency for OpenSBLI, shown
in Figure 9b, is similar across the four systems tested. Each
system sustains efficiency above 85% up to 64 nodes, with
some slight super-linear scaling behaviour observed due to
caching effects. At low node counts, performance of the
OpenSBLI benchmark is dominated by bandwidth to DRAM

Figure 5. SNAP scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1 1 1 1 1 1

1.26 1.25 1.26 1.26 1.28 1.28
1.34

1.3 1.27 1.28 1.28

1.15
1.09 1.08

1.01 1.01 1.02 1.03

0.93
0.99

1.07

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

1 2 4 8 16 32 64
0

20

40

60

80

100

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

and L3 cache. The Skylake Platinum system is the fastest at
four nodes, beating both ThunderX2 and Skylake Gold by
around 25% (see Figure 9a). This lead diminishes at higher
node counts as communication costs begin to take their toll.
At 64 nodes, Isambard achieves 30% higher performance
than the Broadwell system, and is competitive with the two
SKUs of Skylake.

VASP: The scaling efficiency for VASP, shown in Fig-
ure 10b, is similar across the four systems tested. At 16
nodes, the ThunderX2 and Skylake systems are all below
50% efficiency, with up to half of the total runtime consumed
by the MPI communication. The remainder of the runtime is

split between DGEMM and 3D-FFT routines, which favour
the higher floating-point throughput and cache bandwidth
of the x86 processors with their wider vector units. The net
result (shown in Figure 10a) is that, at 16 nodes, Isambard is
a 1.2× slower than the Broadwell system, and 1.32−1.52×
slower than the Skylake systems.

Performance Summary: Overall, the results presented
in this section demonstrate that the Arm-based Marvell
ThunderX2 processors are able to execute a wide range of
important scientific computing workloads with performance
that is competitive with state-of-the-art x86 offerings. At
lower node counts, the ThunderX2 processors can provide

Figure 6. GROMACS scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

2 4 8 16 32 64
0

0.5

1

1.5

1 1 1 1 1 1
1.1

1.27
1.36 1.35

1.28 1.29

1.66

1.51
1.6

1.55

1.27 1.23

0.81

0.99
1.08

1.17
1.09

1.22

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

2 4 8 16 32 64
0

20

40

60

80

100

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

significant performance improvements when an application’s
performance is limited by external memory bandwidth, but
are slower in cases where codes are compute-bound. At
higher node counts, the differences between node-level peak
bandwidth or FLOP/s becomes less significant, with often
the network becoming the limiting factor. Given that, by
design, all the systems in our comparison are Aries-based
XC machines, one would expect to see performance between
the systems converge, and this is indeed what we observe
in most cases. The important conclusion is that Arm-based
supercomputers can perform as well as x86-based ones at
scale. The fact that the Arm-based processors may be sig-

nificantly more cost effective than x86-based ones therefore
makes them an attractive option.

For the codes where we observed that the Arm-based
system does not scale as well as the x86-based ones, such
as TeaLeaf and OpenFOAM, our investigations indicate that
specific issues in the implementation of Cray’s current MPI
collective operations are the likely cause. These issues are
currently being pursued.

V. REPRODUCIBILITY

With an architecture such as Arm which is new to
mainstream HPC, it is important to make any benchmark

Figure 7. NEMO scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

1 2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 1 1 1 1 1

1.27

1.1

0.94
0.88

0.97 0.96 0.95

1.49

1.35

1.25

1.04 1.05
0.96

0.84

1.45

1.01

0.76 0.74 0.72

0.61

0.47

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

1 2 4 8 16 32 64
0

50

100

150

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

comparisons as easy to reproduce as possible. To this end,
the Isambard project is making all of the detailed informa-
tion about how each code was compiled and run, along with
the input parameters to the test cases, available as an open
source repository on GitHub11. The build scripts will show
which compilers were used in each case, what flags were
set, and which math libraries were employed. The run scripts
will show which test cases were used, and how the runs were
parameterised. These two sets of scripts should enable any
third party to reproduce our results, provided that they have

11https://github.com/UoB-HPC/benchmarks/releases/tag/CUG-2019

access to similar hardware. The scripts do assume a Cray-
style system, but should be easily portable to other versions
of Linux on non-Cray systems.

VI. CONCLUSIONS

The results presented in this paper demonstrate that Arm-
based processors are now capable of providing levels of
performance competitive with state-of-the-art offerings from
the incumbent vendors, while significantly improving Perfor-
mance per Dollar. We found that, even in cases where x86-
based CPUs with higher peak floating point performance
would beat ThunderX2 at low node counts, at realistic scales

Figure 8. OpenFOAM scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

4 8 16 32 64
0

0.5

1

1.5

2

1 1 1 1 1

1.58 1.57 1.54

1.41

1.23

1.65 1.67 1.68
1.58

1.4

1.83 1.79
1.67

1.36

1.06

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

4 8 16 32 64
0

20

40

60

80

100

120

140

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

appropriate for real science runs, ThunderX2 often become
even more competitive, due to its greater memory bandwidth
benefiting communication performance. We also saw that
most codes scaled similarly between x86 and ThunderX2,
the first time this has been demonstrated between systems
with the same interconnect and near identical software
stacks. The majority of our benchmarks compiled and
ran successfully out-of-the-box, and no architecture-specific
code tuning was necessary to achieve high performance.
This represents an important milestone in the maturity of the
Arm ecosystem for HPC, where these processors can now
be considered as viable contenders for future procurements.

Overall, these results suggest that Arm-based server CPUs
that have been optimised for HPC are now genuine options
for production systems, offering performance at scale com-
petitive with best-in-class CPUs, while potentially offering
attractive price/performance benefits.

ACKNOWLEDGMENTS

As the world’s first production Arm supercomputer, the
GW4 Isambard project could not have happened without
support from a lot of people. First, the co-investigators at the
four GW4 universities, the Met Office and Cray who helped
to write the proposal, including: Prof James Davenport

Figure 9. OpenSBLI scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

4 8 16 32 64
0

0.5

1

1.5

1 1 1 1 1

1.38
1.43

1.28 1.25 1.26

1.69 1.73

1.5 1.5
1.41

1.35
1.46 1.42 1.4

1.3

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

4 8 16 32 64
0

20

40

60

80

100

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

(Bath), Prof Adrian Mulholland (Bristol), Prof Martyn Guest
(Cardiff), Prof Beth Wingate (Exeter), Dr Paul Selwood
(Met Office) and Adrian Tate (Cray). Second, the operations
group who designed and now run the Isambard system,
including: Steven Chapman and Roshan Mathew (Bath),
Christine Kitchen and James Green (Cardiff); Dave Acre-
man, Rosie Rowlands, Martyn Brake and John Botwright
(Exeter); Simon Burbidge and Chris Edsall (Bristol); David
Moore, Guy Latham and Joseph Heaton (Met Office); Steven
Jordan and Jess Jones (Cray). And finally, to the attendees
of the first two Isambard hackathons, who did most of the
code porting that underpins the results in this paper, and

to Federica Pisani from Cray who organised these events.
For the lists of attendees of the hackathons in November
2017 and March 2018, please see the Isambard CUG 2018
paper [1].

Access to the Cray XC40 supercomputers ‘Swan’ and
‘Horizon’ was kindly provided though Cray Inc.’s Marketing
Partner Network. The Isambard project is funded by EPSRC,
the GW4 alliance, the Met Office, Cray and Arm. This
research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

Figure 10. VASP scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 1 1 1 1

1.36 1.36
1.31

1.17
1.11

1.57
1.48

1.39
1.3 1.28

1.04
0.97 0.94 0.91

0.84

(a
)

Pe
rf

or
m

an
ce

(r
el

at
iv

e
to

B
ro

ad
w

el
l)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

1 2 4 8 16
0

20

40

60

80

100

Nodes

(b
)

Sc
al

in
g

ef
fic

ie
nc

y
(%

)

Broadwell 22c Skylake 20c Skylake 28c ThunderX2 32c

The Isambard project is funded by EPSRC research grant
number EP/P020224/1. Further Isambard-related research
was funded by the ASiMoV EPSRC prosperity partnership
project, grant number EP/S005072/1.

REFERENCES

[1] S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru,
“Comparative benchmarking of the first generation of HPC-
optimised Arm processors on Isambard.” in Cray User Group
meeting (CUG), 2018.

[2] A. Turner and S. McIntosh-Smith, “A survey of application
memory usage on a national supercomputer: An analysis of

memory requirements on ARCHER,” in High Performance
Computing Systems. Performance Modeling, Benchmarking,
and Simulation, S. Jarvis, S. Wright, and S. Hammond, Eds.
Cham: Springer International Publishing, 2018, pp. 250–260.

[3] J. D. McCalpin, “Memory bandwidth and machine balance in
current high performance computers,” IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19–25, Dec 1995.

[4] A. Mallinson, D. Beckingsale, W. Gaudin, J. Herdman,
J. Levesque, and S. Jarvis, “CloverLeaf: Preparing hydrody-
namics codes for exascale,” in The Cray User Group, May
2013.

[5] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price, “On
the performance portability of structured grid codes on many-
core computer architectures,” Supercomputing, vol. 8488, pp.
53–75, 2014.

[6] M. Heroux, D. Doerfler et al., “Improving Performance via
Mini-applications,” Sandia National Laboratories, Tech. Rep.
SAND2009-5574, 2009.

[7] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak,
W. Gaudin, P. Garrett, W. Liu, R. Smedley-Stevenson, and
D. Beckingsale, “TeaLeaf: A mini-application to enable
design-space explorations for iterative sparse linear solvers,”
in 2017 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, sep 2017, pp. 842–849. [Online].
Available: http://ieeexplore.ieee.org/document/8049027/

[8] R. J. Zerr and R. S. Baker, “SNAP: SN (discrete ordinates)
application proxy - proxy description,” LA-UR-13-21070, Los
Alamos National Labratory, Tech. Rep., 2013.

[9] A. Turner and S. McIntosh-Smith, “A survey of application
memory usage on a national supercomputer: An analysis of
memory requirements on ARCHER,” in High Performance
Computing Systems. Performance Modeling, Benchmarking,
and Simulation, S. Jarvis, S. Wright, and S. Hammond, Eds.
Cham: Springer International Publishing, 2018, pp. 250–260.

[10] S. Páll and B. Hess, “A flexible algorithm for calculating
pair interactions on SIMD architectures,” Computer Physics
Communications, vol. 184, no. 12, pp. 2641 – 2650, 2013.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0010465513001975

[11] A. Turner, “Single node performance comparison report,” Mar
2019.

[12] H. Jasak, A. Jemcov, Z. Tukovic et al., “OpenFOAM:
A C++ library for complex physics simulations,” in
International workshop on coupled methods in numerical
dynamics, IUC Dubrovnik, Croatia, September 2007, pp.
1–20. [Online]. Available: http://powerlab.fsb.hr/ped/kturbo/
openfoam/papers/CMND2007.pdf

[13] A. I. Heft, T. Indinger, and N. A. Adams, “Introduction
of a new realistic generic car model for aerodynamic
investigations,” SAE Technical Paper, Tech. Rep., 2012.
[Online]. Available: https://doi.org/10.4271/2012-01-0168

[14] R. Catlow, S. Woodley, N. D. Leeuw, and A. Turner,
“Optimising the performance of the VASP 5.2.2 code
on HECToR,” HECToR, Tech. Rep., 2010. [Online].
Available: http://www.hector.ac.uk/cse/distributedcse/reports/
vasp01/vasp01 collectives/

[15] Z. Zhao and M. Marsman, “Estimating the performance
impact of the MCDRAM on KNL using dual-socket Ivy
Bridge nodes on Cray XC30,” in Cray User Group Meeting
(CUG 2016), 2016.

[16] T. Deakin, J. Price, and S. McIntosh-Smith, “Portable meth-
ods for measuring cache hierarchy performance (poster),” in
Supercomputing, Denver, Colorado, 2017.

[17] J. Hofmann, G. Hager, G. Wellein, and D. Fey, “An
analysis of core- and chip-level architectural features in four
generations of Intel server processors,” ser. Lecture Notes in
Computer Science, J. M. Kunkel, R. Yokota, P. Balaji, and
D. Keyes, Eds. Cham: Springer International Publishing,
2017, vol. 10266, pp. 294–314. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-58667-0http:
//link.springer.com/10.1007/978-3-319-58667-0{\ }16

[18] S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru,
“A performance analysis of the first generation of HPC-
optimized Arm processors,” Concurrency and Computation:
Practice and Experience, vol. 0, no. 0, p. e5110, e5110
cpe.5110. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.5110

[19] T. Deakin, S. McIntosh-Smith, and W. Gaudin, “Many-
Core Acceleration of a Discrete Ordinates Transport
Mini-App at Extreme Scale,” in High Performance
Computing: 31st International Conference, ISC High
Performance 2016, Frankfurt, Germany, June 19-
23, 2016, Proceedings, M. J. Kunkel, P. Balaji,
and J. Dongarra, Eds. Cham: Springer International
Publishing, 2016, pp. 429–448. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-319-41321-1 22

