
Scalable Reinforcement Learning on Cray XC
Ananda V. Kommaraju, Kristyn J. Maschhoff, Michael F. Ringenburg, Benjamin Robbins

Cray Inc., 901 Fifth Avenue, Suite 1000
{akommaraju,kristyn,mikeri,brobbins}@cray.com

Abstract—Recent advancements in deep learning have made
reinforcement learning (RL) applicable to a much broader
range of decision making problems. However, the emergence
of reinforcement learn workloads brings multiple challenges to
system resource management. RL applications continuously train
a deep learning or a machine learning model while interacting
with uncertain simulation models. This new generation of AI
applications imposes significant demands on system resources
such as memory, storage, network, and compute.

In this paper, we describe a typical RL application work-
flow, and introduce the Ray distributed execution framework
developed at the UC Berkeley RISELab. Ray includes the RLlib
library for executing distributed reinforcement learning appli-
cations. We describe a recipe for deploying the Ray execution
framework on Cray XC systems, and demonstrate scaling of
RLLib algorithms across multiple nodes of the system. We also
explore performance characteristics across multiple CPU and
GPU node types.

Index Terms—Reinforcement Learning; Cray XC Systems;
High Performance Computing; Performance;

I. INTRODUCTION

Recent advances in deep learning and reinforcement learn-
ing (RL) have revolutionized domains such as game playing,
autonomous driving, and scientific discovery. For example,
DeepMind’s AlphaGO [1] and AlphaFold [2] demonstrate
the applicability of RL to complex game playing and protein
folding problems.

However, this new generation of AI applications imposes
significant demands on system resources such as memory, stor-
age, network, and compute. The emergence of this paradigm
brings multiple challenges to system resource management
as RL applications continuously train a deep learning or
a machine learning model while interacting with uncertain
simulation models. These simulation models are required to
execute at high speed and low latency to provide inputs to
the training models. Many of the RL algorithms are stateful
models where the state information is transferred between
training models and simulations. The stateful nature of the
computation requires substantial data storage and high speed
data transfers. In a multi-agent, multi-policy based models, the
entire computation graph can be replicated and run in parallel
while consuming multiple variants of state information. The
need for low latency enforces dynamic execution of the task
graph by scheduling tasks as soon as the dependent tasks
are completed. Given the wide range of system requirements,
we showcase that these workloads are suitable candidates to
leverage Cray technologies. These requirements motivate us to
enable RL applications on Cray systems and conduct a study
into the system resource utilization of these workloads.

The UC Berkeley RISELabs Ray framework [3] is an active
open source Python library that provides a distributed frame-
work to develop concurrent applications that are dynamic, fine
grained, and heterogeneous. Ray also provides fault-tolerance
and an in-memory object store for dynamic execution of task
graphs. The RISELabs RLlib [4] is a library built on top of
Ray, which provides an abstraction to RL application entities
such as simulation environments, actors, state, and agents.
The combination of these two frameworks provides a rich
environment to develop and run RL applications. In addition to
abstraction support for actors, state, and agents, RLlib and Ray
provide multiple techniques for policy optimization to enable
distributed training across a large set of experiences.

In the first part of the paper, we discuss distributed re-
inforcement learning. We showcase how to deploy the Ray
execution framework on Cray XC systems, and demonstrate
scaling of the framework across multiple nodes of the system.
Next, we demonstrate state of the art RLlIb algorithms on Cray
XC systems using the Ray execution framework. We demon-
strate the performance characteristics of these applications
on single node and multi-node CPU and GPU architectures.
We then provide a comparative analysis of RL algorithms
running on Cray XC single GPU nodes and Cray CS Storm
dense GPU nodes. For both platforms, we discuss the various
configurations used to evaluate these algorithms to exploit
parallelism at different levels.

II. DISTRIBUTED REINFORCEMENT LEARNING

A typical RL application consists of three entities: a simu-
lation environment, a training module (policy optimizer), and
a serving module (policy evaluator) which are part of an
agent. Figure 1 shows a typical RL application. The simulation
environment operates on actions and generates new state
information in the form of new data points. These environ-
ments are based on a Markov Decision Problem (MDP). The
training module performs policy improvement using a gradient
descent algorithm with the state and reward data generated
by the simulation environment at each step. The optimization
evaluates a value function for state and actions generated
from that state. This process trains a policy to predict the
actions for a specific state which can achieve a maximum final
reward. The serving module acts as an evaluator of the trained
model and provides feedback to the simulation environment
in the form of actions. At every step of this entire loop, these
modules perform a reward based optimization to achieve a
final optimal outcome.

Fig. 1. A Reinforcement learning loop

The state space of these environments is extremely large,
and computationally expensive for an agent to explore. In a
single node multi-CPU or a multi-GPU setting such environ-
ments can be explored in parallel by multiple actors. RLlib
provides a framework to explore these environments using
Ray actors, launching multiple instances of these environments
in workers running in parallel. Each of the workers collects
experiences with a specific policy graph, consisting of a neural
network model and a loss function. The workers use their cur-
rent policy graph to decide which action to take in the current
environment. The workers’ experiences are gathered and eval-
uated with a loss function. In some training algorithms, the loss
values are computed locally by the workers and communicated
to a centralized agent. In others, the experiences (actions and
rewards) are instead transmitted to the central agent, which
evaluates the loss function itself. The centralized agent then
performs a gradient descent optimization based on the actions
and loss values to train a global policy graph. The new policy
graph is then distributed to the workers, and the process repeats
until convergence.

RL algorithms leverage parallelism at multiple levels. These
algorithms involve deep nesting of distinct components where
these components exhibit opportunities for distributed compu-
tation. For example, multiple simulation models or environ-
ments with perturbed state variations may run in parallel to
cover a wide range of state spaces. Multiple workers running
in parallel can explore a subset of these environments using
a trained policy. Further, the trained policy or a target policy
can employ distributed deep learning.

State of the art techniques like Deep Q Networks
(DQN) [5], Importance Weighted Actor-Learner Architec-
ture (IMPALA) [6], Ape-X [7], Proximal Policy Optimizer
(PPO) [8], Advanced Actor Critic (A2C), and Asynchronous
Advanced Actor Critic (A3C) [9] have different architectures
and data flows. We discuss some of these techniques in this
paper in relation to their scalability on Cray XC systems. RLlib
captures the right abstractions and patterns of these multiple
data flow architectures. These techniques employ a variety of
communication patterns to update target policies by launching
multiple actors. In some cases, like IMPALA, multiple learners
train multiple target policies. In techniques like DQN or any
of its variants, the algorithms utilize store and replay of
experiences in order to train a centralized global policy. The
replay buffers are sampled by a centralized learner. These
complex and multiple different ways of training agents can be
challenging in terms of availability of system resources. In this
paper, we map these abstractions provided by RLlib and Ray

Fig. 2. A Reinforcement learning loop mapped onto an XC system

onto a Cray XC system and explore different RL algorithms
to understand their resource usage and performance.

For example, consider a scenario where a PPO agent is
being trained to learn to play the game Pong on a single node
of an XC system. The target policy of PPO agents is trained
though online learning without replaying experiences. Hence
during training a continuous stream of data is transferred
between workers and the driver. Multiple workers with a
single instance or multiple instances of the target environment
can be launched in parallel across the available CPUs on a
single node. These workers perform policy evaluation and
communicate the resultant states and rewards to a centralized
agent. The centralized agent’s policy optimizer can utilize the
rest of the CPUs or potentially a GPU to perform policy
optimization. Such training can be extended to multiple nodes
by collating all the resources that are available across the
nodes.

A. Reinforcement Learning - A HPC workload

RL algorithms like PPO or A3C perform policy evaluation
through multiple SGD passes over sampled data and perform
gradient optimization on a central policy. By distributing
the RL application across multiple nodes or on multiple
GPUs of a single node, significant data transfer can cause
bottlenecks leading to increase in training time due to all-
reduce operation on the policy gradients or in some algorithms
all-reduce operation on experiences. We have also observed
that sample collection, sample distribution, and optimization
incur communication overhead. Further, these agents model
the decision making policies as deep neural networks. These
neural network policies are compute and memory intensive.

In Figure 2 we show how an RL application can be mapped
onto a three node XC allocation: one head node and two
worker nodes. In this case, each XC node has a single GPU and
multiple CPU cores. The head node will perform global policy
optimization through variety of optimizers. The worker(s)
nodes perform experience gathering and replay sampling
through memory buffers. The number of workers can be easily
scaled up enabling distributed experience gathering and hence
distributed learning. In some algorithms, the experiences are
relayed back directly to a centralized policy optimizer running
on the head node. It can be noted that such operations are
all-reduce operations and therefore the performance of these
operations is dependent on the interconnect architecture. After
training a central policy, the head node updates weights on
each of the copies of the policies running on the workers.
These operations are broadcast functions over the interconnect.
RLlib provides vectorization of each worker by running multi-
ple instances of environments in each of the worker. Thus with
the availability of large number of CPU cores on a single node,
we can assign multiple CPU cores per worker. The workers can
leverage this additional level of parallel compute and launch
multiple environments.

Cray XC systems support both CPU-only nodes and hybrid
nodes with a single CPU-hosted NVIDIA GPU. Not all of the
RL algorithms require or target multiple GPUs, for example
Ape-X. These algorithms can launch the workers on nodes
with all CPU cores. The variety of node architectures on an
XC system can enable efficient resource utilization for RL
algorithms.

This hierarchical distribution of tasks with the need of high-
speed connectivity motivate us to consider RL applications are
an important HPC workload.

III. DEPLOYING A RAY CLUSTER ON THE CRAY XC
PLATFORM

The RLLib library is built on top of Ray distributed exe-
cution framework. Ray provides a framework for scheduling
workers, managing resources, parallel simulation of environ-
ments, and training policies. Ray consists of three major
components: a global control store, an in-memory distributed
object store, and a distributed scheduler. Most RL applications
are developed as distributed applications. Moreover, these
applications can be modelled as hierarchical parallel tasks. The
hierarchical model of execution of RL applications comprising
of agents, policy graphs, environments, and policy optimizer
leverage Ray’s distributed execution framework. In order to
train RL agents in a distributed environment, the first step is
to setup a Ray cluster. In this section we describe how to
deploy a Ray cluster on the XC.

A. Preliminary Steps

Ray and RLlib are python libraries which are under active
development. In our experiments, we have first created a
conda environment named ray. All the required libraries, for
example ray, gym, and tensorflow are then installed into this
environment.

$conda create -n ray pip
$source activate ray
$pip install ray
$pip install gym
$pip install tensorflow

B. Head node

The first step in setting up a Ray cluster is to initialize a
head node. A head node comprises of a single redis server
or multiple redis servers. The RL algorithms utilize head
node resources to perform global synchronization operations
like policy optimization. The redis service helps in letting
workers register and connect to the head node. On a SLURM-
based scheduler, first we allocate a single node in Cluster
Compatibility Mode (CCM). We recommend it to be allocated
as a ccm queue node in order to run interactive jobs on the
node. The IP address of the head node is written to either an
NFS location visible by other nodes or to lustre file system so
that workers can utilize this information.

For example, the following commands are run on the XC
login node of one of our internal development systems.

$salloc -N 1 -p ccm_queue -C P100 --gres=gpu --
exclusive

$module load ccm
$ccmlogin -V

This will launch into shell running on the compute node.
Once on the compute node, the following script can be
executed to activate the conda environment and start up the
Ray head node.

#!/bin/bash
source activate ray
IP=$(ip -oneline -family inet addr list ipogif0 \
| head --lines 1 | grep --perl-regexp \
--only-matching ’inet \K[\d.]+’)
echo $IP:6380 > $HOME/ray_head_node

ray start --head --node-ip-address=$IP --redis-port
=6380

The Ray cluster can also be initialized by providing number
of CPU cores, GPUs, and amount of memory available to the
workload. If no value is provided, Ray performs a node-level
system query and the maximum available resources found are
assumed to be available to the workload. The policy optimizers
in RLLib are designed to leverage wide range of resource
capabilities which include GPUs and high speed interconnect
for all-reduce and broadcast operations. Although most of
the small Atari game workloads that we experimented with
were over-provisioned in terms of number of CPUs available,
we believe the CPU-hosted GPU nodes on XC provide a
reasonable setting to train Atari games.

C. Worker nodes

The second step is to start the worker nodes. The worker
nodes can be allocated without CCM. The worker script which
starts Ray on each of the worker and connect to the head
node can be launched using srun. The workers nodes can also
be initialized with the number of CPUs and GPUs. Hence

these nodes can be utilized by other workloads in parallel.
In the RLLib application, the workers usually evaluate a pol-
icy, sample experiences, and can run multiple environments.
Thus provisioning multiple CPUs and significant memory can
enable better performance.

The following commands are run on the worker node with
the script below. This will enable nodes to join a Ray cluster
as worker nodes. The Ray cluster can be scaled according to
the requirement without tearing down the cluster.

$salloc -N 1 -C P100 --gres=gpu --exclusive
$srun sh worker.sh

#!/bin/bash
source activate ray
HEAD_IP=$(head -n 1 ray_head_node)
ray start --redis-address $HEAD_IP
while [1];
do

sleep 1
done

D. Connectivity across the nodes

On an XC system, the connectivity across the nodes is
TCP/IP socket based over Aries interconnect. We use the
TCP/IP address of the head node and workers use it to become
members of a Ray cluster. Ray run-time comprises of a local
scheduler on each node and a global scheduler on the head
node. A object store is initialized on each node and also
globally. The scheduler and object store are used by RLlib
optimizers to send and receive the data between head node
and worker nodes. The schedulers and object stores are used
to manage different components like experience replay buffers,
parameter servers, and broadcasting gradients.

E. Ray entities on XC

One of the main features of Ray is to execute python
functions remotely and asynchronously. Ray introduces actors
that are like remote services which are executed on different
nodes in parallel. The actor objects, along with local scheduler,
global scheduler and object store provide a right framework
for RL applications. For example, the RL environments which
are stateful are implemented as actors.

Here is ab example of running a Ray remote function on a
two node XC system. The total number of CPUs are 72.

def f1():
time.sleep(1)

@ray.remote
def f():

time.sleep(1)
return 1

start=time.time()
[f1() for _ in range(72)]
end=time.time()
print("Local task", end-start)
ray.init(redis_address="10.128.0.231:6380")
start=time.time()
results = ray.get([f.remote() for i in range(72)])
end=time.time()
print("Remote Ray task", end-start)

Local task 72.0748701095581
Remote Ray task 1.0508031845092773

The output is as shown below
It can be seem from the above code, that Ray enables

execution of remote functions asynchronously on a 2 node,
72 CPU XC configuration.

F. Resource scaling using a workload manager

Ray provides auto-scaling capability by dynamically con-
trolling the number of nodes used for training. During run-
time, workers join the cluster without restarting the cluster. On
XC, node allocation happens through a workload manager like
Slurm or PBS. We explored a possibility of users allocating
nodes and changing the number of workers or resources
without tearing down the cluster. We trained a PPO agent
playing Pong. We vary the number of workers every few time
steps. The checkpoint state is used to initialize a new run with
new set of workers. By combining the centralized scheduler
capability of Ray and Slurm node allocation and launching
new workers we can achieve resource scaling.

Figure 3 shows the trend of episode reward means of a PPO
agent trained on the game of Atari Qbert for 10M time-steps.
In our experiment, we set the number of workers to be 128
for first 2M time-steps, then for 5M time-steps the number of
workers is set to be 64, and for the final 5M time-steps the
number of workers is set to be 32. The other 3 plots indicate
the number of workers not changed from 0M to 10M time-
steps.

As it can be noted from the figure that the training time
when varying the number of workers is 44m, 24m, and 15m
for 32 worker phase, 64 worker phase, and 128 worker phase
respectively. Hence the total time is 1 hour 24 min, which is
close to the other non-varying runs. Also, the episode reward
mean is close to a maximum value which was achieved by
a complete run with 64 workers. Hence, it can be noted that
Ray’s efficient way of scaling resources an help achieve the
an efficient way to achieve a good reward mean.

G. Resource selection for applications

In order to achieve optimal performance and resource al-
location to RL applications, Ray provides ways to set the
available CPU cores and GPUs during initialization of the Ray
cluster. These settings enable partial allocation of resources to
workloads. This provides a significant flexibility. For example
some of the policy optimizers - Async, Shared Parameter
server and AllReduce may not use all the GPUs available on
the nodes. Similarly some of the policies like ApeX doesn’t
require all the GPUs on the worker nodes. The following
section on launching RL agents will discuss the configuration
that were used for this paper.

IV. LAUNCHING RL AGENTS

Here is an example of the a training function using Ray,
RLlib and OpenAI gym [10]. In this program, we created

Fig. 3. Episode reward means of Qbert game by changing the number of workers during the training by scaling the number of nodes required. Each
configuration indicates the range of time-steps for which the number of workers has been set

a PPO agent and trained to learn CartPole environment for
100000 time steps. The state is check-pointed. The Ray cluster
is initialized with the head node redis server and hence the
application will utilize all the available resources on the
cluster, for example, here we specified 64 workers.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import ray
from ray.rllib.agents.ppo import PPOAgent
from ray.tune import run_experiments

def train_fn(config, reporter):
agent1 = PPOAgent(env="CartPole-v0", config=

config)
for _ in range(100000):

result = agent1.train()
result["phase"] = 1
reporter(**result)
phase1_time = result["timesteps_total"]

state = agent1.save()
agent1.stop()

if __name__ == "__main__":
ray.init(redis_address="10.128.0.225:6380")
run_experiments({

"demo": {
"run": train_fn,
"local_dir": "/lus/scratch/user/

ray_results/custom/",
"config": {

"lr": 0.01,
"num_workers": 64,

},
},

})

V. HIGH THROUGHPUT RL ALGORITHMS

In this section, we demonstrate that Cray XC systems can
be used to launch two state of the art RL algorithms to
learn Atari games with multiple different configurations by
utilizing resources at different levels. We observed that high
throughput RL techniques like IMPALA, Ape-X scale well
with availability of resources.

In Ape-X, many actors use a trained policy to collect
experiences on multiple different instances of environment.
These experiences are stored in a buffer and a central policy
learns from these experiences through a prioritized experience
replay. Hence, it can be noted that Ape-X scales well with
multiple actors.

Similarly, IMPALA also launches multiple actors and col-
lects experiences with a previously trained model. Unlike,
Ape-X, the centrally located target model is trained by col-
lecting the experiences asynchronously. IMPALA also differs
from other techniques like PPO and A2C, as the sampled
experiences are transferred to a centralized policy rather than
the gradients. The centrally located learner or multiple learners
train a target policy by collected the sampled experiences. Our
results indicate that the data flow architecture of IMPALA
and Ape-X scale very well with number of worker nodes and
reduces the training times significantly. We trained IMPALA
and Ape-X agents to learn Atari games - Breakout, BeamRider,
Qbert, and SpaceInvaders. The configuration is as shown in
Table I. These training configuration indicate that we launch
multiple workers, 32 for IMPALA and 16 for ApeX.

Figure 4 shows the episode reward means over the 10M
time-steps of training with IMPALA. It can be noted that

Fig. 4. Episode reward means of Atari games learned by IMPALA agents with 32 workers

TABLE I
CONFIGURATIONS OF IMPALA AND APEX AGENTS TO TRAIN ATARI

GAMES

Name IMPALA Apex

num workers 32 16
num gpus 1 1

num cpus per worker 1 8
num envs per worker 5 8

sample batch size 50 20
train batch size 500 512

GPU P100 P100
CPU 36 Xeon Cores 36 Xeon Cores

IMPALA agents learned is less than 30 min on a 2 node
configuration of XC.

Figure 5 shows that the Ape-X agents are slower than
IMPALA as they reached the 10M timesteps in an hour.
Although Ape-X agents are slow, the reward mean is higher
than the IMPALA agents.

We also studied the performance of these agents across
multiple nodes and we observed that for these games the
agents reach a better reward mean with fewer number of CPU
cores.

A. Optimally configuring agents on XC

In addition to the algorithmic configuration of agents, we
can configure the agents to utilize the resources in multiple
different ways. RLlib provides vectorization by assigning
multiple environments to a single worker. In most of the XC
nodes, the Xeon CPU cores provide hyper-threading capability.
By selecting the right number of CPU cores we can achieve

better training times. Hence each worker can be mapped to
multiple CPUs. The table I shows the configuration parameters
used to select the number of CPUs assigned to each worker.
In our experiments, we configured head node to avail a P100
GPU and worker nodes to use K40 or K20 GPU nodes. The
underlying Tensorflow [11] models can also be configured to
launch optimally on these nodes by tuning inter-thread and
intra-thread level parallelism.

B. Using Tune for hyper-parameter optimization

Ray, RLlib provide hyper-parameter optimization using
Tune [12]. Tune can be configured to run in parallel on
multiple CPU cores provided the cluster has the availability
of the resources. For example, in most of the experiments
we trained the agents to perform grid execution of multiple
games with multiple learning rates. These trials are launched
in parallel across the cluster.

VI. CRAY XC VS DENSE GPU NODE PERFORMANCE
COMPARISON

Most of the RL algorithms leverage availability of GPUs.
For example, PPO algorithm uses multi-GPU optimization
when training localized SGDs of multiple samples that are
collected locally on each worker. Hence, we considered
comparing these algorithms between a dense GPU Cray CS
cluster node and multiple Cray XC nodes. The A2C and PPO
algorithms can be scaled by increasing the number of workers
and assigning GPUs to the workers for local computations
inside on the locally policies. We compared the performance
of PPO and A2C agents on Atari games. It can be noted that
on XC by allocating 7 worker nodes (and one node for head),
the workers can avail more number of CPU cores. In order

Fig. 5. Episode reward means of Atari games learned by Ape-X agents with 16 workers

TABLE II
CONFIGURATIONS OF PPO AGENTS RUNNING ON XC AND CS

Name CS XC

num nodes 1 8
num gpus on node 8 (P100) 1 P(100)
num cpus available 72 36

num workers 7 7
num gpus 1 1

to compare the performance, we assigned equal number i.e. 9
CPU cores to each worker. We also assign 9 environments to
each worker to avail the 9 CPU cores. The sample batch size
- 100 and train batch size - 7K remain the same between two
systems. The dense CS node consists of 8 GPUs. We assign
1 GPU to head and 7 to workers on the same node. Overall
the number of CPU cores is 64 and GPUs is 8.

Figures 6 and 7 compares Qbert and SpaceInvader games
trained by A2C and PPO agents. In both the cases, for a 10M
time-step run, agents running on CS tend to have taken more
time. For SpaceInvader, the mean episode reward is similar
across the configuration. But for Qbert, the mean episode
reward for slower runs on CS are significantly higher than
the runs on XC.

VII. SINGLE NODE PERFORMANCE

Given the flexibility of scaling the RL algorithms, a single
node on a XC system is sufficient to train a simple model
effectively. In this section we explore different configuration
on a single node. A typical XC node contains a GPU and
multiple CPU cores.

Figure 8 shows the training performance of a PPO agent on
Atari SpaceInvaders game for multiple different combinations

TABLE III
CONFIGURATIONS OF IMPALA AND APEX AGENTS TO TRAIN ATARI

GAMES ON A SINGLE NODE

num workers num cpus per worker

1 32
2 16
4 8
8 4
16 2

of workers and CPU cores available per worker. The number
of environments per workers is same as the number of CPU
cores available to the worker, hence we exploit the vectorized
parallelism of the RLlib execution. The data shows that
a 1 worker configuration is as expected is slow although
32 environments are run in parallel. The 16 worker and 8
worker configurations perform relatively similar indicating that
launching more number of environments per workers can
cause significant performance loss.

We experimented with using A2C agents and other Atari
games and observed a similar trend indicating that these
algorithms scale well with number of workers.

VIII. SCALING ON A MULTI-NODE CONFIGURATION

In this section, we discuss the experiment with training
RL agents on a multi-node configuration of XC systems. The
configuration is shown in Table IV. Each worker is assigned
a single node to utilize the P100 GPU available on each
single node. The goal is to utilize the maximum resources
available in the allocation. Therefore, we assigned as many
available CPU cores as possible to each of the worker. We also
vectorized each worker by instantiating multiple environments.

Fig. 6. Comparing the performance of Atari Qbert on XC vs dense 8 GPU node of CS.

Fig. 7. Comparing the performance of Atari SpaceInvader on XC vs dense 8 GPU node of CS.

This enabled us to increase the training batch size substantially
- in some cases close to 32000. The same Atari games were
run with this configuration.

We analyzed the scaling by training A2C and PPO agents
on Atari games. We trained these agents with large batch sizes
for 10M time-steps. Figure 9 shows the scaling of Atari-Qbert
across different node configurations. For A2C, the best reward
mean is achieved by single worker configuration running for
close to 5 hours. Compared to A2C, PPO performed extremely
well at 1,2, and 4 worker configurations. The correlation

between the training time and the episode reward mean score
can be observed for the figures.

Figure 10 shows a similar trend with respect to the wall
time for Atari-SpaceInvader. Although time to train an agent
with less number of workers is slow, the overall reward mean
is almost the same in both A2C and PPO scenarios.

The scaling trend is shown in Figure 11. The figure shows
that the trend is almost linear till 4 workers, but slowly tapers
off beyond 8 workers configuration. We have observed such a
trend is most of the games. This could indicate that the policy

Fig. 8. Single node performance of Atari-SpaceInvaders using PPO agent with different configurations

Fig. 9. Comparing multi-node performance of Atari - Qbert game across 1, 2, 4, 8 and 16 node configuration. Each worker is assigned multiple CPUs. The
x-axis indicates the wall time to train for 10M steps

optimizers are susceptible to network latency. In both these
policies experiences or locally computed gradients are sent to
the a global optimizer. Both the policies employ synchronous
updates of gradients. We explored other potential causes for
such trend, we believe in order to answer such interaction
further research might be required.

IX. CONCLUSION

State of the art reinforcement algorithms impose significant
demand on system resources like memory, storage, compute,
and network. These algorithms are designed to scale across
multiple nodes and thereby perform all-reduce operations to
train and optimize decision making policies. This motivated

TABLE IV
CONFIGURATIONS OF MULTI-NODE SCALING WITH P100 GPUS AND

XEON CPUS

workers cpus/worker gpus/worker num/worker

1 36 1 36
2 36 1 36
4 36 1 36
8 36 1 36

16 20 1 20

us to study these algorithms in depth and consider them as

Fig. 10. Comparing multi-node performance of Atari - SpaceInvader game across 1, 2, 4, 8 and 16 node configuration.

Fig. 11. Scaling Qbert with a PPO agent across 1, 2, 4, 8, and 16 nodes.
Each worker is assigned a single node and node level parallelism is utilized
by assigning multiple CPUs to each of the worker

HPC workloads.
In this paper, we trained some of these algorithms on Atari

games on Cray XC systems to analyze their resource usage
and scalability. We demonstrated that these applications are
suitable workloads to exploit the computation, communication,
and memory capacities of XC systems. We demonstrated that
distributed execution framework like Ray can be deployed
on these systems. This paved a way to execute multiple RL
environments and algorithms with multiple different configura-
tions using RLlib. We also analyzed comparative performance
study between XC and dense GPU node of a Cray CS cluster
system. Further, we explored single node performance and
single node scalability of these algorithms on an XC system.
Finally, we discussed scalability of these techniques on multi-
node configuration spanning 2 to 16 nodes. We analyzed Atari
games with various agent algorithms and demonstrated that
these algorithms scale with the number of nodes.

This work provides us with a strong foundation to exper-
iment with complex environments and use cases in scientific
discovery, self-driving cars, and game playing. Further, this
work motives us to explore RL algorithms on an exascale
system.

ACKNOWLEDGMENT

The authors would like to thank the reviewers of the paper,
Alexey Tumanov, Kai Rothauge for providing feedback on the
work carried out in this paper.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. R. Baker, M. Lai, A. Bolton, Y. Chen, T. P.
Lillicrap, F. F. C. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of go without human knowledge,”
Nature, vol. 550, pp. 354–359, 2017.

[2] R.Evans, J.Jumper, J.Kirkpatrick, L.Sifre, T.F.G.Green, C.Qin, A.Zidek,
A.Nelson, A.Bridgland, H.Penedones, S.Petersen, K.Simonyan,
S.Crossan, D.T.Jones, D.Silver, K.Kavukcuoglu, D.Hassabis, and
A.W.Senior, “De novo structure prediction with deep-learning based
scoring,” Thirteenth Critical Assessment of Techniques for Protein
Structure Prediction, 2018.

[3] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan, and I. Stoica, “Ray: A
distributed framework for emerging ai applications,” in OSDI, 2018.

[4] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Y. Goldberg,
J. Gonzalez, M. I. Jordan, and I. Stoica, “Rllib: Abstractions for
distributed reinforcement learning,” in ICML, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[6] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, and K. Kavukcuoglu,
“Impala: Scalable distributed deep-rl with importance weighted actor-
learner architectures,” in ICML, 2018.

[7] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. P. van
Hasselt, and D. Silver, “Distributed prioritized experience replay,” CoRR,
vol. abs/1803.00933, 2018.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017.

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in ICML, 2016.

[10] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker,
V. Vanhoucke, V. Vasudevan, F. B. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-
scale machine learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2015.

[12] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica,
“Tune: A research platform for distributed model selection and training,”
arXiv preprint arXiv:1807.05118, 2018.

