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Purpose: Demonstrate steps to reproduce a working distributed reinforcement 
learning configuration on a Cray system. Platform for further exploration.

Relevance: Reinforcement learning approaches have produced many of the recent 
state of the art results for Machine Learning. Reinforcement learning is resource 
and communication intensive and is, therefore, an excellent candidate to take 
advantage of high-performance-computing. 

Results: Cray systems’ ability to support mixed node types (GPU, CPUs) and 
resource configuration flexibility make for an ideal platform to explore and push 
limits of reinforcement learning.
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Overview
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Recent Advances in AI
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Reinforcement Learning

Learning from the rewards of a given action.
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Reinforcement Learning (RL)

Image: geekshumor.com
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Reinforcement Learning (RL) Basics

Reinforcement Learning Illustration (https://i.stack.imgur.com/eoeSq.png)

https://i.stack.imgur.com/eoeSq.png
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Find the optimal Policy. 
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The Goal of RL?

The policy tells the agent how to 
act given a particular state.
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Many RL Methods

https://www.intel.ai/introducing-reinforcement-learning-coach-0-10-0/#gs.91i90q
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Distributed Reinforcement Learning

https://cdn-images-1.medium.com/max/1600/1*tYxWuyksovxA1Thu8PggPQ.jpeg
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• Explore Reinforcement Learning algorithms 
• Understand if possible to leverage existing open source frameworks
• Study nested parallelism and complex workflows 
• Distributed RL is very active area of research. Participate in research and make 

available for other Cray end-users
• Scalability is a requirement for many real-world problems. How can distributed RL 

at the scale of Cray help solve these problems?
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Motivation for Study of Distributed RL on Cray Systems
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Environments for Study
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Distributed Reinforcement Learning Generalized
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Setup and 
Configuration
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• Nested Parallelism
• Resource Scaling
• Multiple algorithms can be 

mapped
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Mapping RL to Cray XC
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• Ray is a flexible, high-performance distributed execution framework.
• Developed by RISELab at UC Berkeley
• Very active open-source project – https://ray.readthedocs.io/en/latest/index.html
• Ray has libraries for tuning and reinforcement learning
• RLlib is Ray’s reinforcement learning library
• RLlib supports many RL methods.
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What is Ray?

https://ray.readthedocs.io/en/latest/index.html
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• Allocate nodes through SLURM 
workload manager

• ccmlogin (Cluster compatible mode)

• Start a Ray head node with initial 
settings
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Deploy a Ray Cluster on Cray XC
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• Independently start Ray workers with initial settings
• Resource scaling - Increase or reduce workers/resources 
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Deploy a Ray Cluster on Cray XC
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Execute Rllib algorithms
import ray
from ray.rllib.agents.ppo import PPOAgent
from ray.tune import run_experiments

def train_fn(config, reporter):
agent1 = PPOAgent(env="CartPole-v0", config=config)
for _ in range(100000):

result = agent1.train()
result["phase"] = 1
reporter(**result)
phase1_time = result["timesteps_total"]

state = agent1.save()
agent1.stop()

if __name__ == "__main__":
ray.init(redis_address="10.128.0.225:6380")
run_experiments({

"demo": {
"run": train_fn,
"local_dir": "/lus/scratch/user/ray_results/custom/",
"config": {

"lr": 0.01,
"num_workers": 64,

},
},

})
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RL Methods and 
Results
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RL Method – Actor/Critic

https://www.cleaninginstitute.org/sites/default/files/assets/1/Photos/700x700/child-coloring-wall.jpg

Actor

Critic
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Distributed RL Method – A3C

https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

Asynchronous Advantage Actor Critic



© 2018 Cray Inc.
PROPRIETARY & CONFIDENTIAL

22

Distributed RL Method – A3C vs A2C

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#a2c
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Qbert_16W_PPO

SpaceInvader_16W_A2C

Breakout_7W_PPO

BeamRider_7W_A2C
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Multi-Node Scaling
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Distributed RL Method – Ape-X

https://openreview.net/pdf?id=H1Dy---0Z
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Distributed RL Method - IMPALA

https://arxiv.org/pdf/1802.01561.pdf

Importance Weighted Actor Learner Architecture

Observations are trajectories of experience (sequence of states, actions, and rewards) not gradients.
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IMPALA and Ape-X
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• 8 GPUs total
• Assign 1 GPU as Head 

Node
• 7 GPUs as Worker Nodes
• 9 CPU cores per Worker
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Mapping RL to Cray CS
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XC vs Dense GPU Node on CS
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• Explored Reinforcement Learning as a HPC 
workload

• Deploy a UC Berkeley’s RISElab’s Ray cluster 
on XC system

• Trained state-of-art RL agents
• UC Berkeley’s RLlib using Ray’s distributed 

execution
• IMPALA, Ape-X, PPO, A2C/A3C on Atari games 

(from gym library)
• Variety of resource configurations
• Scaled training on multi-node and single-node 

XC with mixed CPU and GPU
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Key Results
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• Explore Optimization of Ray Libraries
• Identify problems sets that map well to Distributed RL
• Comparative studies against other published results
• Explore architecture needs for computational node support and future 

network requirements

31

What’s Next?
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S A F E  H A R B O R  
S TAT E M E N T

This presentation may contain forward-looking 
statements that are based on our current 
expectations. Forward looking statements may 
include statements about our financial 
guidance and expected operating results, our 
opportunities and future potential, our product 
development and new product introduction 
plans, our ability to expand and penetrate our 
addressable markets and other statements that 
are not historical facts.

These statements are only predictions and 
actual results may materially vary from those 
projected. Please refer to Cray's documents 
filed with the SEC from time to time concerning 
factors that could affect the Company and 
these forward-looking statements. 
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@cray_inc
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