Cray Programming Environments within containers on Cray XC systems

Maxime Martinasso, Miguel Gila, William Sawyer, Rafael Sarmiento, Guilherme Peretti-Pezzi, Vasileios Karakasis
Swiss National Supercomputing Centre, ETH Ziirich, Lugano, Switzerland
{firstname}.{lastmame} @cscs.ch

Abstract—We present a methodology to enable the complete
software development life cycle on Cray XC systems within a
container which can hold any version of the Cray Programming
Environment (CPE). The installation of the CPE inside a
container facilitates many aspects of the typical HPC support
and operation workloads of managing Cray XC systems such
as testing new CPEs, comparing CPE performances or keeping
software built with an old CPE running on updated systems.
The procedure for creating a container with a CPE inside
consists of three steps: The creation of a container holding
the targeted CPE, the compilation of the desired software
within such containers, and the packaging of the resulting
binaries, libraries and dependencies within a second lightweight
container. We show case the methodology by fulfilling a user
requirement of running a 2-years old version of the COSMO
model built with an old CPE 16.11 on today’s system.

Keywords-Containers; Reproducible experiments; Cray Pro-
gramming Environment;

I. INTRODUCTION

Container technologies have received a great deal of
attention over the recent years and arguably have changed
the way software is deployed and packaged. Thanks to the
Linux kernel capabilities, containers were initially developed
to provide isolation of processes at runtime. Lately, contain-
ers have been used to achieve many interesting objectives,
which would be otherwise cumbersome to attain, like the
portability and the packaging of systems and software stacks
in order to enable the possibility of seamlessly running
software on different environments.

In the High-Performance Computing (HPC) community,
containers have been welcomed mainly as a way to package
software stacks into supercomputer facilities and to manage
large ecosystems of interdependent applications. Container
frameworks [1] [2] have been developed specifically for HPC
to fulfill requirements such as bringing native accelerator
performance inside the container or disabling the usage of
root to prevent privileged escalation on a shared file system.
However, the exploitation of containers on HPC systems is
still in an early stage, and it is foreseeable that new use
cases will come to benefit from their many advantages. For
instance, on the side of HPC users, one often finds the use of
containers as a tool for ensuring portability of applications
and reproducible research [3].

For managing HPC applications ecosystem, containers are
useful where changes to the programming environment (PE)
may affect both performance and the calculation results of

applications. Although easy to spot through regression tests,
such issues typically are very hard to solve, in particular
on complex programming environments, where applications
have many dependencies including a number of scientific
libraries and system-specific libraries such as the CUDA
Toolkit in the case of system with Nvidia GPUs. Such
performance and variability in results arise on a production
system when CPEs are updated and user expectations need to
be addressed. For instance on the Cray XC systems which
are targetted in this paper, CPE updates generally involve
completely rebuilding the supported scientific libraries and
applications. These updates often can be disruptive to the
applications or workflows directly maintained by the end
users.

In this work we present a methodology to containerize
any version of the CPE in order to enable the complete
software development life cycle on Cray XC systems within
containers. A container with the CPE inside offers the
possibility of testing an application’s deployment and perfor-
mance on upcoming CPE versions ahead of system updates,
thus minimizing the need of changes in the physical systems
(test or production) and reducing the time required to test
new releases. Similarly, CPE in containers allows old and
recent CPE versions to co-exist in the same system with
lower installation and maintenance effort without affecting
software already installed and running in production. Our
methodology allows the design of more powerful continuous
integration pipelines and a more efficient planning of system
updates, as well as granting more resilience to the transitions
between CPE versions.

The key contributions of our work are:

e to create a container holding any version of a Cray
Programming Environment;

o to explain the usage of such container to build and to
run HPC applications;

« to showcase the usefulness of containerized CPE on a
concrete use case based on a complex and difficult-to-
build scientific application.

II. CRAY PROGRAMMING ENVIRONMENT INSIDE A
CONTAINER

Our methodology is based on building a CPE inside a
container image (or CPE container) and then using bespoke
container as an environment for software development and
maintenance. It consists of three main parts: the creation

of a container image holding a CPE, the compilation of
software within such container, and the packaging of the
resulting binaries, libraries and dependencies in general
within lightweight container images.

A. Creating containers holding the CPE

Before building a CPE container we need to setup di-
rectories on the local machine (which has Docker installed,
like a laptop) to hold the CPE and related packages. The
CPE is downloaded from CrayPort' as an ISO file. The
ISO file is named after a Cray Development Toolkit image
(CDT), and we mount it locally on a directory named
after its version (such as volume/CDT-18.10-03PRE).
To enable the CUDA Toolkit, we also copy Cray-provided
CUDA packages to a local directory named cuda.

The main step consists of building a Docker [4] con-
tainer which holds the CPE. The Listing 2 shows the
Dockerfile used to create a CPE container.

As a base image for this container, we use a Cray eLogin
image of Piz Daint, and we convert it to a container image
with the help of SquashFS tools. This eLogin image contains
the same Cray Linux Environment available on any eLogin
node, without any CPE installed yet. Such a newly created
container image is used as a base image denoted by the
FROM keyword.

Then we set build arguments to default values. These
arguments are used to select the CPE version and other
related required parameters. One can change their value at
the command line when building the container with the
requirement that the corresponding version of the CDT
should be mounted in the local directories together with the
CUDA packages. Then we setup a user pe_user who will
be used to build software packages inside the CPE container.

The next step on the Dockerfile is to copy the
content of volume and cuda folders which holds the Cray
packages to install. Copying these files can be avoided by
using the ——mount option of docker run command.
However, this command works only with Docker version
17.06 and newer, and as per today it is not a generic solution.

Once the packages are copied, we follow the Cray-
supported procedure of installing a CPE [5]. We first setup
a configuration file with the aforementioned build argument
values and then execute a Cray-provided script to install the
CPE. Extra packages such as the CUDA Toolkits are also
installed in that step. Cray packages are provided as RPM. We
have observed that some CDT versions don’t always install
all required packages. In that case, an extra line is added
to install the missing packages making the Dockerfile
specific to a version of a CDT.

Finally we set the container for the pe_user and we
setup his environment (MODULEPATH) to enable access of
CPE through the modules system. Once inside the container,

Uhtpp://crayport.cray.com

CDT version ISO file size CPE container size
16.11-07 4.5 GB 34 GB
17.08-06 4.2 GB 32 GB
18.10-03 6.1 GB 50 GB

Table 1

SIZE OF ISO FILE AND CPE CONTAINERS FOR VARIOUS VERSION OF
CDT (INCLUDING THE CUDATOOLKIT PACKAGE).

the environment is identical to the one of a Cray HPC
platform. The procedure to build a binary inside the CPE
container is identical to the one used on a Cray XC platform.

The whole process to create a CPE container takes a
couple of hours depending on the local machine and the
size of the CDT ISO file. The size of the resulting container
image is rather large (several tens of GB), which might be
not convenient to manipulate, deploy or copy. Therefore,
such image is not suitable to execute on a HPC platform,
and binaries built with a CPE container should be packaged
differently.

To summarize, Listing 1 displays the list of commands
required to build a CPE container.

B. Building software within a CPE container

Once the image with the CPE is ready, it is possible to
build applications within it. This can be done by running the
container interactively or by creating a new Dockerfile
with RUN statements. In any case, we recommend to use the
container interactively beforehand to setup a packaging tool
such as EasyBuild [6] or Spack [7].

As mentioned before, due to the CPE container size, it is
not practical and useful to bundle the CPE container with
the software being built. Table I presents the different sizes
of CPE container versus their ISO file sizes. Therefore,
we create two directories in the CPE container, the first
one serves as recipient of the source code (named input
directory in the rest of the paper), and the second one
contains the generated binaries after compilation (named
output directory). These directories are mounted from the
local machine into the container.

C. Packaging binaries and dependencies on a lightweight
image

At this point, the applications are built and accessible
from outside the CPE container. However, many depen-
dencies of the application are referring to libraries inside
the CPE container, preventing the software to run from
outside the container. In order to copy the required CPE
dependencies into the output directory, we created a python
script (1dd_parser). This script uses a combination of
Linux tools such as 1dd and strings to identify the
dependencies. The script is applied recursively on all de-
pendencies and returns a list of libraries. Common Linux li-

Listing 1. List of commands to build and to run a CPE container

build and import the base image

$ sudo unsquashfs -f -d unsquashfs elogin_prod_up07_20181205160931.squashfs
$ sudo tar -C unsquashfs -c . | docker import - elogin_prod:up07_20181205160931

#directory structure
$ 1s .

Dockerfile

cuda

volume

$ 1s cuda/
cray-cudatoolkit7.
cray-cudatoolkit8.
cray-cudatoolkit9.
cray-cudatoolkit9.

= oow
|
o oo

cray-nvidia-libcuda-390.46_3.1.30-6
cray-nvidia-libcuda-390.46_3.1.32-6.
cray-nvidia-libcuda-396.44_3.1.31-6.0.
cray-nvidia-libcuda-396.44_3.1.33-6

$ 1s volume/16.11-07/

TRANS.TBL conf docs installer packages release_info

build the CPE container

8.1__gdB80efc5.x86_64.rpm
7.1__g899857c.x86_64.rpm
4.1__geB802626.x86_64.rpm
.1 g2eb7c52.x86_64.rpm
cray-cudatoolkit9.2-9.2.148_3.19-6.0.7.1_2.1__g3d9%acc8.x86_64.rpm
_24.8__g83596c3.ari.x86_64.rpm
_6.1__gl5a0cc2.ari.x86_64.rpm
_2.1__g97ab0cf.ari.x86_64.rpm
3.2__gacOldaf.ari.x86_64.rpm

$ docker build --build-arg CDT_VERSION=16.11-07 --build-arg CUDATOOLKIT=8.0 \

-t craype:cdtl6.11-07.haswell.pascal.cudatoolkit8.0 .

start the container interactively

$ docker run -v /Users/maximem/dev/docker/my_source:/home/pe_user/sources \
-v /Users/maximem/dev/pe_container/my_binaries:/home/pe_user/install \
—--rm -it craype:cdtl6.11-07.haswell.pascal.cudatoolkit8.0 /bin/bash

braries like 1ibpthread.so, 1ibdl.so or librt.so
are discarded as they might conflict with the ones that are
installed on the Cray system.

For complex applications, one major difficulty is to iden-
tify libraries that are dynamically opened inside the code by
the use of the d1sym mechanism. To help in that task, the
script will parse the text section of the binaries by using the
strings command to identify the usage of dlsym and
to find the names of the loaded libraries. Listing 3 shows
an output of the script. To run the application and find all
the libraries at runtime, it is then necessary to preempt the
LD_LIBRARY PATH environment variable with the folder
which holds all the dependencies. Thus, binaries compiled
for a specific CPE can be executed on Cray system without
having that specific CPE installed.

Instead of copying the output directory to the XC system
where the binaries will be run and to manually set up the en-
vironment, an alternative approach is to bundle the binaries
and their dependencies within a lightweight container image.
This can be done with a simple Dockerfile which may
use any light Linux distribution as a base image. Doing this,
applications can be shipped on images which typically take
only hundreds of MB.

IITI. LIMITATIONS AND BEST PRACTICES

By using this methodology to build a large number of
CPE containers we have identified a set of limitations and
best practices:

« As mentioned previously, the Cray-provided installation

system is not robust over all CDT ISO images. We have

seen that some packages are not installed by default
(even the Cray compiler) in certain CDTs. Neverthe-
less, recent CDT versions seem more consistent. As a
solution, one can start the CPE container as root and
install the missing packages. By switching from root
to the pe_user one can easily progress to build the
required software by installing the missing packages.
Finally, these missing commands can be integrated into
a CDT version-specific Dockerfile.

A CPE in a container raises the question of the right
to distribute the CPE. Already today any user on a
system could copy part of the CPE outside of the
HPC facility, CPE containers accentuate that possibility.
After informing Cray about this work initiative and
asking about the possibility to use a CPE in a container,
they stipulated that such container must be executed on
a targeted Cray machine associated to the downloaded
ISO file. However, Cray allows to prepare container
images and building codes that target a specific Cray
(for example Piz Daint) offline from the Cray machine.
CSCS intention is not to provide such CPE container
capability as a service for the end users but instead
to utilize it as an internal service for well-defined use
cases: regression testing for upgrades, reproducibility
experiments or performance analysis across CPE ver-
sions. One requirement is to provide a server with large
disk capacity on which Docker is running inside a
virtual machine for security reasons.

The 1dd_parser script is helpful to identify de-
pendencies but is not a completely reliable solution.

Listing 2. CPE container Dockerfile
FROM elogin_prod:up07_20181205160931
ARG CDT_VERSION=18.10-03PRE
ARG CPU_TARGET=haswell
ARG ACCELERATORS=PASCAL
ARG CUDATOOLKIT=9.2

Setup directories and pe user
RUN mkdir /root/${CDT_VERSION} && \
mkdir /root/cuda && \
mkdir /root/logs && \
useradd -ms /bin/bash pe_user && \
mkdir /home/pe_user/sources && \
mkdir -p /home/pe_user/install/craype_runtime && \
echo "CrayPe Version: cdt:${CDT_VERSION} cpu:${CPU_TARGET} acc:${ACCELERATORS} cudatoolkit:${CUDATOOLKIT}"\
> /home/pe_user/install/craype_runtime/craype_version.txt

COPY volume/${CDT_VERSION} /root/${CDT_VERSION}
COPY cuda/ /root/cuda/

One could use the mount option of ‘RUN' to avoid the copy but that works only
with specific version of docker
#RUN --mount=target=/root/${CDT_VERSION}, type=bind, source=volume/${CDT_VERSION} \

Edit configuration and install packages
RUN cd /root/${CDT_VERSION}/installer && \
rpm —-ivh craype-installer-«*.rpm --upgrade && \
cp /opt/cray/craype-installer/default/conf/install-cdt.yaml /root && \
sed -1 -e "s/LOGS_DIR([[:space:]]=*:[[:space:]]*NEED-TO-SPECIFY/LOGS_DIR : \/root\/logs/" \

—e "s/ISO_MOUNT_DIR[[:space:]]x:[[:space:]]*«NEED-TO-SPECIFY/ISO_MOUNT_DIR : \/root\/${CDT_VERSION}/" \

—e "s/INSTALL_PGI_LIBRARIES[[:space:]]*:[[:space:]]*NO/INSTALL_PGI_LIBRARIES : YES/" \

—-e "s/INSTALL_INTEL_LIBRARIES([[:space:]]*:[[:space:]]*NO/INSTALL_INTEL_LIBRARIES : YES/" \

-e "s/CRAY_CPU_TARGET([[:space:]]*:[[:space:]]+*NEED-TO-SPECIFY/CRAY_CPU_TARGET : ${CPU_TARGET}/" \

—-e "s/ACCELERATORS|[[:space:]]*:[[:space:]]*NONE/ACCELERATORS : ${ACCELERATORS}/" /root/install-cdt.yaml && \

cd /root/ && \
/opt/cray/craype—installer/default/bin/craype—installer.pl —--install —-—install-yaml-path install-cdt.yaml \
--network ari && \
rpm -ivh /root/cuda/cray-cudatoolkit${CUDATOOLKIT}-*.rpm \
/root/cuda/cray-nvidia-libcuda-396.44_3.1.33-6.0.7.1_3.2__gacOldaf.ari.x86_64.rpm

USER pe_user
WORKDIR /home/pe_user/sources

ENV MODULEPATH /opt/cray/pe/perftools/default/modulefiles:/opt/cray/pe/craype/default/modulefiles:
/opt/cray/pe/modulefiles:/opt/cray/modulefiles:/opt/modulefiles:/opt/cray/ari/modulefiles:
/opt/cray/craype/default/modulefiles

Listing 3. Output of the 1dd_parser script
$ ldd_parser --binaries /opt/cray/pe/cce/8.7.3/cce/x86_64/1ib/libfi.so
/opt/cray/pe/gcc-libs/libstdc++.50.6
/opt/cray/pe/gcc-libs/libgfortran.so.3
/opt/cray/pe/cce/8.7.3/cce/x86_64/1ib/libf.so.1
/opt/cray/pe/cce/8.7.3/cce/x86_64/1ib/libcsup.so.1l
/opt/cray/pe/cce/8.7.3/cce/x86_64/1ib/libu.so.1
/opt/cray/pe/cce/8.7.3/cce/x86_64/1ib/libcraymath.so.1
Duplicated reference of libraries:
/opt/cray/pe/cce/8.7.3/cce/x86_64/1ib/libguadmath.so.0
/opt/cray/pe/gcc-libs/libgcc_s.so.1
/opt/gcc/6.2.0/snos/1ib/../1ib64/1libgcc_s.so.1
/opt/gcc/6.2.0/snos/1ib/../1ib64/1libquadmath.so.0
dlsym libraries:
libmemkind.so.0
libnuma.so

A manual intervention is unavoidable, especially for
libraries opened with d1open, whose locations are not
known at compilation time.

o EasyBuild or any package manager should not be
installed inside the container but rather be accessed
from the input directory. In that way, the container does
not need to be re-created for a version change of the
package manager or an update of the list of recipes.

IV. USE CASE: REPRODUCIBLE EXPERIMENTS

The COSMO [8] (Consortium for Small-scale Modeling)
model for regional numerical weather forecasting is com-
plex scientific applications widely used in the climate and
weather community. It is run daily by different institutions
in the world like MeteoSwiss, and, it is also used at climate
research departments such as the Institute for Atmospheric
and Climate Science at the Swiss Federal Institute of Tech-
nology (IAC-ETHZ) to explore climate effects.

COSMO is the first weather and climate application that
has been ported to GPU. It consists of different compo-
nents written in different languages such as the physics
computation in Fortran with OpenACC directives and the
atmospheric dynamics solver using C++ and the CUDA
library. These components are built and combined together
in a single binary by using a complex Cmake build system.

For climate researchers it is important to ensure repro-
ducible experiments over 2 to 4 years time due to publication
requirements. To that end, IAC-ETHZ has asked CSCS
to help them to ensure such reproducible experiments on
Piz Daint. Their current procedure is to build the same
(outdated) COSMO version for every update of the CPE on
the Piz Daint systems. It becomes for them time-consuming
activity to successfully build and run their COSMO version
with each new CPE. Another large portion of their time is
dedicated to re-validate the obtained scientific results.

To be more specific, IAC-ETHZ requires the COMSO-
OPCODE version of COSMO which has had very few
commits since 2015 (mostly to fix CPE update issues), built
with the CDT 16.11-07 for which it has been validated. CDT
16.11-07 has been released around November 2016. Today
Piz Daint has CDT 18.09 installed and soon CDT 19.03.
While several CDT versions can be installed in the same
system, the sheer size of the CDT and the subsequent CPE
image projected to the compute and elogin nodes makes
it impractical to install every single version available. For
reference, the current CPE image on Piz Daint is in the
order of 140GB with 5 CDTs installed.

In order to enable reproducible experiments with
COSMO-OPCODE, we have built a CPE container with
version CDT 16.11-07 and the CUDA Toolkit 8.0. Once
the container was created, we successfully built COSMO-
OPCODE following the build instructions. This task was
not straightforward and it led to a list of missing packages
to install and to changes in the environment. By creating a

lightweight container and identifying all the dependencies
(35 libraries) of the COSMO-OPCODE built, we were able
to run the regression of COSMO-OPCODE on Piz Daint.
All test passed.

V. USE CASE: PERFORMANCE OVER CPE VERSIONS

In this use case, we are investigating the performance
variability of software compiled with different CPEs. As a
target application, we have selected the application CP2K [9]
which is a Quantum Chemistry and Solid-state Physics
software package. CP2K is commonly used by the HPC
community and it has been ported to GPUs [10]. We have
set CP2K to the version 6.1.

Thanks to our methodology, we have created two CPE
containers, one using a CDT version 17.08 (July 2017) with
the CUDA Toolkit 8.0 and one using a more recent version:
CDT version 18.08 (July 2018) with the CUDA Toolkit
9.1. We have compiled CP2K inside those containers and
extracted the binaries and dependencies. Our target platform
is Piz Daint and both versions of CP2K have been executed
on different number of nodes. We used the model H20-256
which is part of CP2K’s set of benchmark models.

Figure 1 presents the performance values of both CP2K
versions. For a small number of nodes, performance is
similar for both CDTs, however, for a larger number of
nodes, CDT 17.08 seems to perform around 10% better than
CDT 18.08. This result confirms that upgrading a CPE does
not necessarily imply better performance.

The CPE container methodology allows us to build our
set of reference applications with different CDT ISO images
and to evaluate their performance. By doing so, we can, on
the one hand, investigate performance discrepancies, and, on
the other hand, manage user expectations. It also becomes
interesting to keep an application built with a specific CPE
if it runs faster.

\ CDT 17.08, cuda 8.0
107 7 CDT 18.08, cuda 9.1

Elapsed time [s]

102 TT T T T T
24 8 16 32 64

Number of nodes

Figure 1. Performance comparison of CP2K, model H20-256. CDT 17.08
with CUDA 8.0 performs 10% better at 64 nodes than a most recent CDT
18.08 with CUDA 9.1.

VI. RELATED WORK

Usage of containers comes from the Enterprise and
microservices community. This community has developed
a large experience in building software using containers.
For instance, they have introduced the twelve factor apps
methodology [11] for which containers fit naturally [12].
One of the principles of this methodology is to separate
the build and run phase when developing and deploying
software. This motivates us to deploy applications outside
of a CPE container.

Today, this community remains very active. It provides
very advanced tools for the automation of building soft-
ware inside containers. For instance, Binder [13] creates
Jupyter notebooks inside containers from a github repository.
This allows applications to be immediately reproducible by
anyone, anywhere. Such tool could be investigated to help
reproducible experiments in the HPC community.

Containers in general are being studied for scientific
reproducibility experiments [14] [3]. Docker has proven to
simplify outstanding issues for these experiments, for exam-
ple, software dependencies, software version management
and software distribution.

VII. FUTURE WORK

In this work, we have developed a methodology to con-
tainerize any CPE version. A CPE container allows the
recreation of a Cray environment on any machine and to
compile any application with it. Once built, an application
is packaged on a lightweight container and run on an
HPC system. As we have presented in this paper, this
methodology could be used to ensure portability of code
over different CPE updates on a system for improving the
capability to reproduce scientific experiments. It also allows
the comparison of performance variation over CPE versions
of key HPC applications.

As a future work, we will use the CPE container method-
ology to test and validate new CPEs before they are installed
on a system. This will allow us to capture early on issues
and to start pro-active discussion with Cray instead of a
being in a reactive situation where more minor updates
of CPE are installed to fix user issues. We will integrate
such methodology in our tool sets to automate testing over
different CPE versions.

All the procedure and scripts are available on request to
CSCS. We plan to open source this work in a near future.

REFERENCES

[1] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen,
M. Mustafa, J. Porter, and V. Tsulaia, “Shifter: Containers
for HPC,” Journal of Physics: Conference Series, vol. 898,
p- 082021, 10 2017.

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, no. 5, pp. 1-20, 05 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0177459

(3]

(4]

(5]

[6]

[7]

(8]

(91

[10]

(11]

[12]

[13]

[14]

C. Boettiger, “An introduction to Docker for reproducible
research,” ACM SIGOPS Operating Systems Review, vol. 49,
no. 1, pp. 71-79, 2015.

D. Merkel, “Docker: Lightweight linux containers for
consistent development and deployment,” Linux J., vol.
2014, no. 239, Mar. 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2600239.2600241

Cray Inc., “XC series software installation and configuration
guide (CLE 7.0.UP00) s-2559 rev c,” https://pubs.cray.com/
content/S-2559, 2019-03-08.

K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt,
“EasyBuild: Building software with ease,” in Proceedings
of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, ser. SCC *12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 572-582.
[Online]. Available: https://doi.org/10.1109/SC.Companion.
2012.81

T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and S. Futral, “The
Spack package manager: bringing order to HPC software
chaos,” in SCI5: International Conference for High-
Performance Computing, Networking, Storage and Analysis.
Los Alamitos, CA, USA: IEEE Computer Society, nov 2015,
pp- 1-12. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1145/2807591.2807623

B. Rockel, A. Will, and A. Hense, “The regional climate
model COSMO-CLM (CCLM),” Meteorologische Zeitschrift,
vol. 17, no. 4, pp. 347-348, 2008.

J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele,
“CP2K: atomistic simulations of condensed matter systems,”
Wiley Interdisciplinary Reviews: Computational Molecular
Science, vol. 4, no. 1, pp. 15-25, 2014. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.1159

O. Schiitt, P. Messmer, J. Hutter, and J. VandeVondele, GPU-
Accelerated Sparse Matrix-Matrix Multiplication for Linear
Scaling Density Functional Theory. John Wiley & Sons,
Ltd, 2016, ch. 8, pp. 173-190. [Online]. Available: https://
onlinelibrary.wiley.com/doi/abs/10.1002/9781118670712.ch8

A. Wiggins, “The twelve-factor app,” The Twelve-Factor App,
2011.

K. Matthias and S. P. Kane, Docker: Up & Running: Shipping
Reliable Containers in Production. O’Reilly Media, Inc.,
2015.

Jupyter Project, M. Bussonnier, J. Forde, J. Freeman,
B. Granger, T. Head, C. Holdgraf, K. Kelley, G. Nalvarte,
A. Osheroff, M. Pacer, Y. Panda, F. Perez, B. Ragan-Kelley,
and C. Willing, “Binder 2.0-reproducible, interactive, sharable
environments for science at scale,” in Proceedings of the 17th
Python in Science Conference, 2018, pp. 113-120.

R. Chamberlain and J. Schommer,
Docker to support reproducible research,’
https://doi.org/10.6084/m9.figshare. 1101910, 2014.

“Using
DOI:

