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Abstract—The emerging pre-exascale/exascale systems are
composed of innovative components that evolved from exist-
ing petascale systems. One of the most exciting evolutions is
ongoing in processor architecture. In this study, we present
performance results of a test suite consisting of HPC bench-
marks (e.g., HPGMG, and NEKBONE) and HPC applications
(e.g., GAMESS, LAMMPS, QMCPACK, and Qbox) on several
processor architectures (e.g., Intel Xeon, Intel Xeon Phi, ARM,
and NVIDIA GPU). For the baseline performance, we employ
the Argonne Leadership Computing Facility (ALCF)’s Theta
system, a Cray XC40 system that has 4,392 Intel Xeon Phi
7230 processors with a peak of 11.69 PF. We perform roofline
performance analysis for the tests in the test suite and calculate
their computational intensities (CI). Based on the CI values
and the corresponding achievable performance peaks from the
rooflines, we determine their performance efficiencies on the
processor architectures.

Index Terms—high performance computing; performance ef-
ficiency; roofline performance analysis; x86 processor; Arm
processor; GPU;

I. INTRODUCTION

The emerging pre-exascale/exascale systems are composed
of many innovative components that evolved from existing
petascale systems. One of the most exciting evolutions is
ongoing in processor architecture. Intel and AMD continue
to develop x86-based highly scalable processors for HPC
platforms, and ARM has joined the server-class market with
a RISC (Reduced Instruction Set Compute) architecture. In
addition, the accelerator-based HPC platforms are dominating
the TOP500 list in 2019.

In this study, we present performance test results of a
test suite consisting of HPC (High Performance Comput-
ing) benchmarks (e.g., HPGMG, and NEKBONE) and HPC
applications (e.g., GAMESS, LAMMPS, QMCPACK, and
Qbox) on several processor architectures (e.g., Intel Xeon,
Intel Xeon Phi, ARM, and NVIDIA GPU). For the baseline
performance, we employ the Argonne Leadership Computing
Facility (ALCF)’s Theta system, a Cray XC40 system that has
4,392 Intel Xeon Phi 7230 processors with a peak of 11.69
PF. In addition, Intel Xeon Platinum Skylake 8180M Scalable
processor and ARM Marvell ThunderX2 processor are selected

for the current generation of CPUs, and NVIDIA V100 GPU
is used to represent the state-of-the-art accelerators for HPC
platforms.

We first perform roofline performance analysis for the
test suite and then categorize them according to their com-
putational intensities (CI) (i.e., a ratio of FLOP over data
movement). Based on the CI values and the corresponding
achievable performance peaks from the rooflines of the proces-
sor architectures, we calculate the roofline-based performance
efficiencies of the applications in the test suite.

This paper is organized as follows: Section II presents the
detailed information about test-bed nodes. In Section III, we
provide benchmarking results of all applications as well as the
detailed build/runtime environments. Section IV presents the
roofline-based performance efficiencies of all codes on test-bed
nodes. In Section V, we summarize our work in this study.

II. EMPLOYED PROCESSOR ARCHITECTURES

In this study, we employed four types of compute nodes
- a single socket Intel Xeon Phi 7230 processor (KNL), a
dual socket Intel Xeon Platinum Skylake 8180M Scalable
processors (SKX), a dual socket ARM Marvell ThunderX2
processors (TX2), and a single NVIDIA V100 GPU (V100).
The following subsections present the detailed information
about the processor architectures as well as the measured peak
flop-rates and peak memory bandwidths of the nodes.

A. Intel Xeon Phi processor - KNL

The KNL processor is architected to have up to 72 compute
cores with multiple versions available containing either 64 or
68 cores as shown in Figure 1. For this paper the 64 core
7230 KNL variant is used. On the KNL chip the 64 cores
are organized into 32 tiles, with 2 cores per tile, connected
by a mesh network and with 16 GB of in-package multi-
channel DRAM (MCDRAM) memory. The core is based on
the 64-bit Silvermont microarchitecture with 6 independent
out-of-order pipelines, two of which perform floating point
operations. Each floating point unit can execute both scalar and
vector floating point instructions including earlier Intel vector



extensions in addition to the newer AVX-512 instructions. The
peak instruction throughput of the KNL architecture is two
instructions per clock cycle, and these instructions may be
taken from the same hardware thread. Each core has a private
32 KB L1 instruction cache and 32 KB L1 data cache. Other
key features include:

Fig. 1: KNL Processor (Credit Intel)

1) Simultaneous Multi-Threading (SMT) via four hardware
threads

2) Two independent 512-bit wide floating point units, one
unit per floating point pipeline that allow for eight
double precision operations per cycle per unit.

3) AVX-512 vector instructions that leverages 512-bit wide
vector registers with arithmetic operations, conflict de-
tection, gather/scatter, and special mathematical opera-
tions.

4) Dynamic frequency scaling independently per tile. The
fixed clock “reference” frequency is 1.3 GHz on 7230
chips. Each tile may run at a lower “AVX frequency” of
1.1 GHz or a higher “Turbo frequency” of 1.4-1.5 GHz
depending on the mix of instructions it executes.

Two cores form a tile and share a 1 MB L2 cache. The tiles
are connected by the Network-on-Chip with mesh topology.
With the KNL, Intel has introduced on chip in-package high-
bandwidth memory (IPM) comprised of 16 GB of DRAM
integrated into the same package with the KNL processor. In
addition to on-chip memory, two DDR4 memory controllers
and 6 DDR4 memory channels are available and allow for up
to 384 GB of off-socket memory. The two memories can be
configured in multiple ways as shown in Figure 2:

• Cache mode - the IPM memory acts as a large direct-
mapped last-level cache for the DDR4 memory

• Flat mode - both IPM and DDR4 memories are directly
addressable and appear as two distinct NUMA domains

• Hybrid mode - one half or one quarter of the IPM
configured in cache or flat mode with the remaining
fraction in the opposite mode
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Fig. 2: Memory Modes of KNL processor

B. Intel Xeon Platinum Skylake 8180M Scalable processor -
SKX

Intel Xeon Skylake Platinum 8180M, shown in Figure 3, is a
64-bit 28-core x86 multi-socket microprocessor introduced by
Intel in mid-2017. The Platinum 8180M is based on the server
configuration of the Skylake microarchitecture and contains 2
AVX-512 FMA units which allows 8-wide double precision
vectors. The processor supports up to two hyperthreads per
core and operates at 2.5 GHz with a TDP of 205 W and has a
turbo boost frequency of up to 3.8 GHz. Six-channel DDR4-
2666 ECC memory is supported along with up to 768GB of
DDR4 memory for the standard models and up to 1.5TB for
the enhanced ”M” models. 38.5MB of last level L3 cache is
provided along with 1 MB of L2 cache per core and 32 KB
of L1 cache per core. The cores are connected by a mesh
interconnect.

Fig. 3: SKX Microarchitecture (Credit Intel)



C. Arm Marvell ThunderX2 processor - TX2

The Marvell ThunderX2 CN9975, shown in in Figure 4, is
an ARM v8.1 processor announced by Cavium in May 2018.
It is available with up to 32 cores and supports 1 or 2 socket
configurations. This paper utilized the 28-core variant in a 2-
socket configuration. The CN9975 operates between 1.8 GHz
and 2.4 GHz and supports up to eight-channel of DDR4-2666
memory.

The cores in a socket are connected by a bidirectional
ring bus. Each core supports out-of-order (OOO) executions
and uses fully pipelined execution units. Two NEON 128-
vectors engines are available per core. Additionally two 128-
bit load/store units exist which can be used to either load
2x128-bit or load 1x128 and store 1x128 per instruction. The
CN9975 can support Simultaneous Multi-Threading (SMT) of
up to four hardware threads. The microprocessors in this study
were configured to use two hardware threads per core.

The CN9975 has a 32 KB L1 instruction and data cache
along with a 256KB L2 per core. The L2 cache can load
or store two cache lines simultaneously. The 32MB-L3 cache
is distributed and coherent across sockets. The two sockets
are connected via the Cavium Coherent Processor Interconnect
technologies.

Fig. 4: Arm Marvell ThunderX2 Processor (Credit Arm)

D. NVIDIA V100 GPU - V100

The Nvidia V100 GPU, shown in Figure 5, is composed
of 80 Streaming Multiprocessors (SMs), each with 32 FP64
CUDA cores which can compute 1 double-precision FMA per
cycle, for a theoretical peak of 5120 double precision floating
point operations per cycle. At a max clock rate of 1.53 GHz,
the V100 can compute 7.8 TFlops per second. Each SM also
has 64 FP32 single-precision and 64 INT32 CUDA cores, as

well as 8 tensor cores, which can execute mixed precision
computations, including on FP16 and FP32 values.

Threads are scheduled to run on the CUDA cores via two
warp schedulers per SM. Each SM has a combined shared
local memory and L1 cache of 128 KB. All 80 SMs share a
6 MB L2 cache and share 8 memory controllers. Each pair of
memory controllers services a stack of HBM2, for a total of
4 stacks of HBM2 (32 GB) per V100.

Fig. 5: Nvidia V100 GPU [1]

In this work a SuperMicro SuperServer 1029GQ-TVRT was
used which consisted of a dual-socket Skylake Intel Xeon
Gold 6152 with 4 NVIDIA Tesla V100 SXM2 attached. The
4 GPUs are connected to each other with Nvidia’s NVLink
interconnect, and connected to the CPUs with PCIe 3.0. The
two Xeon sockets are connected with three UPI links. [1]

E. Measured Peak Performance

The Empirical Roofline Tool (ERT) [2] was used to measure
peak performance of the employed processor architectures. Ta-
ble I shows peak flop-rates and memory bandwidths measured
on an Intel Xeon Phi 7230 processor (KNL), dual Intel Xeon
Platinum Skylake 8180M Scalable processors (SKX), dual
Arm Marvell ThunderX2 processors (TX2), and an NVIDIA
V100 GPU (V100). The peak flop-rate for the dual TX2
processors was measured via a DGEMM benchmark, since
the ERT reported an unreasonable value for it. The ERT
failed to report the L1 bandwidth of the V100 GPU and
the L3 cache bandwidth of the TX2 processors. The L1
bandwidth of the V100 GPU in Table I is the theoretical peak
bandwidth. The LLC data of the KNL processor represents
the measured bandwidth of MCDRAM in Table I, while the
LLC data of the SKX processors is the L3 cache bandwidth.
The DRAM data for the V100 GPU represents the measured
peak HBM2 bandwidth, not the DRAM bandwidth of the host
processor. Figure 6 presents rooflines of the peak flop-rates,
L1 cache bandwidths and DRAM bandwidths on the employed
processors. The following compiler flags were used for the
ERT measurements:

• ERT CFLAGS for KNL: -O3 -fno-alias -fno-fnalias -
xMIC-AVX512 -DERT INTEL

• ERT CFLAGS for SKX: -O3 -fno-alias -fno-fnalias -
xCORE-AVX512 -qopt-zmm-usage=high -DERT INTEL



• ERT CFLAGS for TX2: -Ofast -mcpu=thunderx2t99 -
fsimdmath

• ERT CFLAGS for V100: -O3
• ERT GPU CFLAGS for V100: -x cu

TABLE I: Measured Peak Flop-rates and Peak Bandwidths on
an Intel Xeon Phi 7230 processor (KNL), dual Intel Xeon
Platinum Skylake 8180M Scalable processors (SKX), dual
Arm Marvell ThunderX2 processors (TX2), and an NVIDIA
V100 GPU (V100) - V100 L1 is the theoretical peak

Processor Flop-rate L1 L2 LLC DRAM
(TF/s) (TB/s) (TB/s) (GB/s) (GB/s)

Single KNL 2.13 6.46 1.911 373 78.5
Dual SKX 3.55 15.91 4.55 209
Dual TX2 0.953 3.37 2.63 1091 224

Single V100 7.83 14.336 3.35 779

Fig. 6: Measured rooflines on an Intel Xeon Phi 7230 proces-
sor (KNL), dual Intel Xeon Platinum Skylake 8180M Scalable
processors (SKX), dual Arm Marvell ThunderX2 processors
(TX2), and an NVIDIA V100 GPU (V100) - V100 L1 is the
theoretical peak

III. BENCHMARK/APPLICATION PERFORMANCE

We tested two HPC benchmarks (i.e., HPGMG-FV, NEK-
BONE) and four production-level HPC applications (i.e.,
GAMESS, LAMMPS, QMCPACK, Qbox) on the processors
described in the previous section. From this point, KNL,
SKX, TX2 and V100 represent a single KNL 7230 processor,
dual Skylake 8180M processors, dual ThunderX2 CN9975
processors, and a single V100 GPU, respectively. This section
presents the detailed build/runtime environments of codes on
test-beds, numerical results, and performance data as well as
quick introduction of codes.

A. HPGMG-FV

HPGMG [3] is an effort for HPC performance benchmark-
ing based on geometric multi-grid methods with emphasis on
community-driven development process, long- term durability,

scale-free specification and scale-free communication. It pro-
vides two implementations, Finite Element (HPGMG-FE) and
Finite Volume (HPGMG-FV) implementations; HPGMG-FE
is compute-intensive and cache-intensive, while HPGMG-FV
is memory bandwidth- intensive. HPGMG-FV has been used
for the official list.

HPGMG-FV solves an elliptic problem on isotropic Carte-
sian grids with fourth-order accuracy in the max norm. It
calculates a flux term on each of the 6 faces on every cell
in the entire domain. The fourth-order implementation [4]
requires 4 times the floating-point operations, 3 times the
MPI messages per smoother and 2 times the MPI message
size without additional DRAM data movement compared to
the second-order implementation [5] proposed originally. The
solution process employs the Full Multi-grid (FMG) F-cycle
that is a series of progressively deeper geometric multi-grid
V-cycles. There are several dozen stencils that vary in shape
and size, sweep per step, and the grid sizes vary exponentially.
Coarse grid solution process can occur on a single core of a
single node, and then the coarse grid solution is propagated
to every thread in the system.

HPGMG has shared a MPI+OpenMP version for CPUs [6]
as well as a MPI+CUDA version for NVIDIA GPUs [7] with
HPC community. Both versions have been actively employed
to analyze performance of modern HPC systems [8].

1) Building HPGMG-FV: A MPI+OpenMP version (com-
mit: a0a5510) in [6] is used for KNL, SKX, and TX2, while
a MPI+CUDA version (commit: 5ad473d) in [7] is employed
for V100. To build HPGMG-FV codes on each processor, the
following compilers and optimization flags are used:

• KNL:
Compiler: Intel 19.0.3.199 20190206
FLAGS: -O3 -fno-alias -fno-fnalias -xMIC-AVX512 -
fopenmp

• SKX:
Compiler: Intel 19.0.3.199 20190206
FLAGS: -O3 -xCORE-AVX512 -qopt-zmm-usage=high -
fopenmp

• TX2:
Compiler: Arm Compiler version 19.0
FLAGS: -Ofast -fopenmp -mcpu=native

• V100:
Compiler: CUDA V10.0.130
FLAGS: -O3 -x cu

2) Inputs and runtime configurations: We tested HPGMG-
FV with 643 to 10243 finite-volumes. The corresponding
degrees-of-freedom and their accuracy (i.e., numerical errors)
are presented in Table II. The optimal MPI+OpenMP and
MPI+CUDA configurations for the best performance depends
on the processor architecture. After several numerical experi-
ments, we used the optimal configurations presented in Table
III.

3) Results: Table IV shows how many degrees-of-freedom
HGPGMG-FV solves in a second for the given inputs and
processor architectures. As reported in [8], HPGMG-FV per-
formance linearly increases as the input size grows, and then



TABLE II: HPGMG-FV input information in detail

Number of Multi-grid Degrees-of- Numerical
Finite-Volumes Levels Freedom Errors

643 6 2.62E+05 6.93E-05
1283 7 2.10E+06 7.45E-06
2563 8 1.68E+07 5.14E-07
5123 9 1.34E+08 4.15E-08
10243 10 1.07E+09 5.15E-09

TABLE III: HPGMG-FV runtime configurations

Number of
Processor Number of Threads Total

MPI ranks per MPI rank Threads
KNL 64 1 64
SKX 16 7 112
TX2 16 7 112
V100 1 7 all GPU cores

it converges to certain values (see Figure 7). On KNL, we
tested two memory types; one is with DRAM and the other
is only with MCDRAM by using ”numactl -m 1”. Due to
the limited memory sizes, HPGMG-FV could not solve 10243

finite-volumes on KNL-MCDRAM (i.e., 16GB) and V100
(i.e., 32GB), while others (i.e., KNL-DRAM, SKX and TX2)
could solve it. For all inputs, V100 shows the best performance
among all employed processors. For the largest problem (i.e.,
10243), SKX shows the best performance among CPUs, while
TX2 shows the best performance for the smallest problem (i.e.,
643). For 5123, KNL only with MCDRAM shows almost 3x
performance of KNL with DRAM.

B. NEKBONE

Nekbone [9] is a mini-app derived from the Nek5000 [10]
CFD code which is a high order, incompressible Navier-Stokes
CFD solver based on the spectral element method. It exposes
the principal computational kernels of Nek5000 to reveal the
essential elements of the algorithmic-architectural coupling
that are pertinent to Nek5000. Nekbone solves a standard
Poisson equation in a 3D box domain with a block spatial
domain decomposition among MPI ranks. The volume within

Fig. 7: HPGMG-FV performance (DOF/s) on KNL, SKX,
TX2, and V100

a rank is then partitioned into high-order quadrilateral spectral
elements. The solution phase consists of conjugate gradient
iterations that invoke the main computational kernel which
performs operations in an element-by-element fashion. Over-
all, each iteration consists of invoking routines performing
vector operations, matrix-matrix multiply operations, nearest-
neighbor communication, and MPI Allreduce operations. The
code is written in Fortran and C, where C routines are used
for the nearest neighbor communication and the rest of the
routines are in Fortran. It uses hybrid parallelism implemented
with MPI and OpenMP. Nekbone is highly scalable and can
accommodate a wide range of problem sizes, specified by
setting the number of spectral elements and the number of grid
points within the elements. Nekbone may be run using MPI
ranks, OpenMP threads, or a combination of the two. OpenMP
threading in Nekbone is coarse grained with only one parallel
region spanning the entire solver. Compute load is distributed
across threads in the same manner that it is done across ranks.
In every iteration, a fixed set of elements to be updated are
assigned to threads or ranks. Thus, the compute load and the
amount of synchronization performed by OpenMP threads is
nearly identical to that of MPI ranks. The number of elements
per rank or thread may be load balanced by ensuring that
the configured run contains a number of elements perfectly
divisible by the number of ranks and threads.

For this analysis Nekbone was run with a problem consist-
ing of a total of 8960 spectral elements and 12 gridpoints in
each direction within an element. On multi-socket systems one
MPI rank per socket was used and on single socket systems
a single MPI rank was utilized. The number of threads was
specified such that two threads per core was used on each
processor. This setup produces a problem of the same size
on each system with potentially a different decomposition of
the work across MPI ranks and threads. Table V shows the
Nekbone solver time for each processor along with the number
of ranks and threads used.

C. GAMESS

GAMESS (General Atomic and Molecular Electronic Struc-
ture System) is a general quantum chemistry and ab initio
electronic structure code.[11], [12] It has a large variety of
capabilities and methods, including ab initio SCF energies
(e.g. RHF and MCSCF), force fields (e.g., the Effective Frag-
ment Potential), perturbative corrections to Hartree-Fock (e.g.,
MP2 and RI-MP2), near-linear scaling fragmentation methods
(e.g., Fragment Molecular Orbital (FMO) method), ab initio
gradients, hessians, and geometry optimizations. The majority
of the code is written in Fortran, with a parallelization li-
brary which wraps MPI communication (called the Distributed
Data Interface (DDI) library) written in C, and an optional
C++ library with rei-mplementations of certain methods using
OpenMP for CPU cores and CUDA for GPU accelerators. The
original Fortran also contains OpenMP parallelism for certain
methods.

When GAMESS is launched, the number of MPI ranks re-
quested is split into two groups: half of the MPI processes are



TABLE IV: HPGMG-FV performance (DOF/s) on KNL, SKX, TX2, and V100

# of FVs
Processor 643 1283 2563 5123 10243

KNL-DRAM 1.48E+07 2.73E+07 3.48E+07 3.72E+07 3.68E+07
KNL-MCDRAM 1.64E+07 4.69E+07 8.74E+07 1.11E+08

SKX 8.61E+06 3.05E+07 1.10E+08 1.23E+08 1.25E+08
TX2 2.47E+07 5.13E+07 7.55E+07 9.04E+07 8.85E+07
V100 2.66E+07 1.06E+08 2.35E+08 3.25E+08

TABLE V: Nekbone Solver Time (s)

Processor Solver Time (s) Ranks Thds/Rank El./Rank
KNL 17.11 1 128 8960
SKX 20.15 2 56 4480
TX2 22.07 2 56 4480

”compute processes” which perform the chemistry algorithms,
and half are ”data servers” which handle distributed memory
and dynamic load-balancing. A typical way to run MPI-only
GAMESS is to over-subscribe the cores so that each core is
running one compute process and one data server.

1) Input information: Of the methods in GAMESS, we
select three to investigate: RHF (energy), MP2 (energy),
and RI-MP2 (energy). For benchmarking on GPUs, we
only consider RI-MP2 energy. The uracil input is from the
GAMESS Performance Benchmarks (https://github.com/gms-
bbg/performance), with the change that ”NPUNCH=0” was
added to the $SCF group in the input to decrease file I/O.

2) Build information: The GAMESS calculations were
done using commit 43d24fd of the development branch of
GAMESS.

For SKX, we used Intel 2019 compilers and MPI
(19.0.3.199). The standard GAMESS build procedure was
used, with GMS DEBUG FLAGS=-xCOMMON-AVX512,
and the MKL math library was linked in. Due to com-
piler errors, only the ‘-O0‘ flag was passed during com-
pilation for files mpcgrd.src and mpcmsc.src. For OpenMP
runs, we also compiled with ”-qopenmp”. For MPI,
flags ”I MPI PIN PROCESSOR LIST=all:map=scatter and
I MPI HYDRA ENV=all” were used for MPI-only runs,
and for ”I MPI PIN=enable and I MPI HYDRA ENV=all
I MPI PIN DOMAIN=omp” MPI+OpenMP runs. The MPI-
only runs were launched with 56 compute processes and 56
data servers (112 MPI ranks), and the MPI+OpenMP runs
were launched with 1 compute process, 1 data server, and
112 OpenMP threads.

For KNL, the standard GAMESS build procedure was
used, with cray-xc as the target architecture. The -xMIC-
AVX512 flag is used during compilation by default. We used
Intel 2018 compilers (18.0.0.128) and the MKL math library.
For MPI, we used Cray MPI (version 7.7.3). On Theta,
the following modules were loaded: craype/2.5.15, PrgEnv-
intel/6.0.4, craype-mic-knl, and cray-mpich/7.7.3, and the node
was booted into cache-quad mode. The MPI-only runs were
launched with 64 compute processes and 64 data servers,
and the MPI+OpenMP runs were launched with 1 compute
process, 1 data server, and 256 OpenMP threads.

For TX2, we used Arm Allinea Studio 19.1. The build
scripts were modified to compile DDI with armclang,
and to compile the Fortran source of GAMESS with
armflang. For armflang, we used the flags ”-i8 -O3 -
mcpu=native” and statically linked with the Arm Performance
library with ”$ARMPL DIR/lib/libarmpl ilp64.a” in
the link line. For OpenMP runs, we also compiled
with ”-fopenmp”. For MPI, we used MVAPICH2
version 2.3 with flags ”MV2 USE BLOCKING=1,
MV2 USE THREAD WARNING=0,
MV2 ENABLE AFFINITY=0” for MPI-only runs and
”MV2 ENABLE AFFINITY=0” for MPI+OpenMP runs.

For all OpenMP runs, the stack size of the threads
created by the OpenMP runtime were set with
”OMP STACKSIZE=20M”.

For V100, we built GAMESS with libcchem, using GNU
4.8.5 and CUDA 9.0.176. The RI-MP2 file was modified
slightly to use libcchem as the RI-MP2 method.

For detailed changes from the released version of the
GAMESS compilation scripts, contact the authors.

3) Benchmarks and Results: Table VI shows the time to
solution for RHF, MP2, and RI-MP2 for the test input (uracil).

TABLE VI: GAMESS time to solution (s) on various archi-
tectures

Method KNL SKX TX2 V100
RHF (MPI-only) 467.0 127.1 169.7 -
MP2 (MPI-only) 753.3 209.4 302.8 -

RI-MP2 (MPI-only) 539.7 146.2 217.4 -
RI-MP2 (MPI+OpenMP) 506.1 106.7 177.0 85.2

Using a binary instrumentation tool, we measured the FLOP
on SKX for the MPI+OpenMP RI-MP2 calculation that is
9618.88 Gflops.

4) Discussion: As shown in Table VI, the time-to-solution
on TX2 is about 1.3x to 1.6x slower than on SKX.

For the MPI-only runs, we note that because of how MPI
is used in GAMESS (typically oversubscribed with half of
the MPI ranks as ”compute processes” and the other half as
”data servers”), the specific MPI and available flags in that
MPI can have an effect on performance. In Intel MPI 2019,
the flag I MPI WAIT MODE was removed. This flag has an
effect on GAMESS performance when oversubscribing cores,
since it allows the data servers to wait for messages instead
of polling the fabric. When Intel MPI 2017 was used, we see
the following timings in Table VII.



TABLE VII: GAMESS performance comparison of Intel MPI
2017 and Intel MPI 2019 on SKX

Method Time (s) with % of Intel
Intel 2017 2019 time

RHF (MPI-only) 77.3 60.82%
MP2 (MPI-only) 127.6 60.94%

RI-MP2 (MPI-only) 89.7 61.35%
RI-MP2 (MPI+OpenMP) 102.1 95.69%

D. LAMMPS

LAMMPS is a molecular simulation code commonly used
for modeling various states of matter (liquids, surfaces, solids,
biopolymers) and supports multiple physical models, parti-
cle types, and sampling methods.[13], [14] LAMMPS is a
highly modular and extensible code written in C/C++ and
parallelized with MPI+X, where X includes multiple options
and is incorporated as a set of add-on packages separate
from the core LAMMPS code. MPI parallelization is en-
abled via spatial domain decomposition whereby the simulated
system is partition into separate sub-domains assigned to
MPI ranks. Additional parallelism via programming model X
(OpenMP, CUDA/OpenCL, Kokkos, explicit vectorization) is
then used to further reduce the time-to-solution typically via
parallelization over particles within a sub-domain (e.g. force-
decomposition methods).

1) Building LAMMPS: An unaltered version of LAMMPS,
19Feb19, was downloaded as a tarfile from the LAMMPS
website and used for analysis of the reactive forcefield ReaxFF
using the DOE CORAL-2 LAMMPS benchmark.

a) CPU Architecture: To enable simulations with
ReaxFF models, the base USER-REAXC package was in-
stalled along variants from the USER-OMP and KOKKOS
packages for additional performance. The Makefiles packaged
with LAMMPS were used with appropriate modifications for
the respective hardware. For KNL, the Makefile available in
src/MAKE/OPTIONS/Makefile.knl was used as-is. For refer-
ence, the following compiler optimization flags were used:
’-xMIC-AVX512 -O2 -fp-model fast=2 -no-prec-div -restrict
-DLAMMPS MEMALIGN=64’ For SKX, the same Makefile
could be used replacing the instruction set flag with -xCORE-
AVX512 and adding -qopt-zmm-usage=high. For TX2, the
following compiler flags were used: ’-Ofast -fopenmp -
mcpu=native’. For builds with Kokkos, the KOKKOS ARCH
variable was set to ’KNL’, ’SKX’, and ’ARMv8-TX2’ for
the respective hardware and KOKKOS DEVICE was set to
’OpenMP’.

b) GPU Architecture: The ReaxFF model in LAMMPS
is only supported on GPUs via the KOKKOS package.
To compile LAMMPS with Kokkos for V100, the base
Makefile src/MAKE/OPTIONS/Makefile.kokkos cuda mpi
was updated to set KOKKOS ARCH as ’Volta70’ and
KOKKOS DEVICE as ’Cuda,OpenMP’.

c) LAMMPS Inputfile: The LAMMPS ReaxFF use-case
examined here is the same HNS input provided as a CORAL-
2 benchmark. The number of particles selected for this study
was 36,480 (∼ 300 particles per thread; 6x5x4 replica of input

configuration) and is representative of weak-scaled science
runs that utilize substantial fractions of Theta at ALCF. The
same system was used for runs on all hardware investigated.

2) LAMMPS Results: For the CPU runs on KNL, SKX,
and TX2, both the OpenMP and Kokkos parallelized variants
of the reax/c model were used in a series of runs with
various combinations of MPI ranks and OpenMP threads-
per-rank. Because of additional optimizations in the USER-
OMP package for reax/c, the multi-threaded version even
with a single thread generally has reduced time-to-solutions
compared to the MPI-only version. For the GPU runs, the
reax/c model is only enabled using Kokkos (via the CUDA
backend) and there is generally not a benefit (today) for having
multiple MPI ranks per GPU (though we still tested multiple
ranks per GPU). For each type of hardware examined, the
run that yielded the best (smallest) time-to-solution has been
reported. For KNL, 32 MPI ranks with 4 OpenMP threads per
rank yielded the best time-to-solution of 220.70 ms/step. For
SKX, 28 MPI ranks with 4 OpenMP threads per rank resulted
in the best time-to-solution of 98.50 ms/step, roughly a factor
of 3x faster than KNL. For TX2, 14 MPI ranks with 8 OpenMP
threads returned the best time-to-solution of 172.78 ms/step,
which is ∼28% improvement compared to KNL. In general,
using two hardware threads per core for the CPU runs yielded
the lowest time-to-solution compared to using one (or more)
hardware threads.

On V100, the lowest time-to-solution was achieved using 1
MPI ranks at 50.42 ms/step. We have also measured FLOP on
SKX and KNL architectures.

Table VIII shows the time-to-solution for Reax/c model for
Pure HNS crystal.

TABLE VIII: Time per step (ms) on various architectures for
LAMMPS runs with ReaxFF

Model KNL SKX TX2 V100
Reax/C 220.70 98.50 172.78 50.42

3) LAMMPS Discussion: In this study we have looked at
the performance in terms of time to solution of reactive force
field within LAMMPS application. Currently, one can use
both MPI with OpenMP threading on CPU architecture or use
KOKKOS with CPU or CUDA backend with USER REAXC
package. Our results indicated that overall among plain CPU
(using MPI with OpenMP threading) KOKKOS with CPU
backend and KOKKOS with CUDA backend, KOKKOS with
CUDA backend is about 10% compare to time on SKX. One
of the most time consuming segments of molecular dynamic
simulations in LAMMPS is time spent in pair and neighbor
list calculations. We have list the time per second on each
architecture for comparison. As it is shown in Table IX pair
calculations takes about 123 millisecond per step on TX2
while it takes 16.70 millisecond on V100. The same trend
is observed for Neighbor list formation. If one compare the
time for pair calculations vs neighbor list on each architecture,
pair calculations is more expensive.



TABLE IX: Time per step (millisecond) on various architec-
tures for Pair and Neighbor calculations - LAMMPS

Kernel KNL SKX TX2 V100
Pair 151.72 64.71 123.69 16.70

Neighbor list 4.70 1.57 2.49 0.92

E. QMCPACK

QMCPACK (https://qmcpack.org/) [15] is an open source
quantum Monte Carlo package for ab-initio electronic struc-
ture calculations. It supports calculations of metallic and
insulating solids.

QMCPACK uses a Metropolis Monte Carlo algorithm which
generates samples sequentially via a random walk along a
Markov chain. Each OpenMP thread execute independent
Markov chains or walkers. After each walker has completed a
number of steps, the simulation is completed. Hence, the more
worker you have, the more computation you do.

Our figure of merit (FOM) measures how many walkers
have be moved in one second.

In a case of dual socket systems (i.e., SKX and TX2), the
FOM is computed on one socket and multiplied by two. This
is done to avoid any NUMA effect and to reduce the time
needed by a binary instrumentation tool to collect the FLOP
count.

1) Compilation: QMCPACK v3.7.0 is used. CMake options
were used to enable timers (–DENABLE TIMERS=1) and
enable support for Instrumentation and Tracing Technology
(ITT) API (-DUSE VTUNE API=1). Other than that, default
option was used.

For SKX and KNL, we compiled the code using icc 2019
with ‘-O3 -xCOMMON-AVX‘ flags. For TX2, we used arm-
clang with ‘-O3 -mcpu=native -ffast-math‘ flags. Both were
linked against the optimized math libraries from the vendor
(Arm Performance Libraries for Arm and Intel Math Kernel
Library for Intel).

2) Input: The QMCPACK manual can be found at https:
//docs.qmcpack.org/qmcpack manual.pdf.

The simulated system is known as S32 and consist of a
32 repeats of a NiO primitive cell leading to 128 atoms
and 1536 electrons. The system is a part of the QMC-
PACK standard benchmark suite (see section 3.9.3 of the
manual). The input file used can be found directly in
the QMCPACK repository qmcpack/tests/performance/NiO/
sample/dmc-a128-e1536-cpu/NiO-fcc-S32-dmc.xml. We dis-
abled that last DMC block for this papers.

3) Threading: One thread per core is used where used
for all the architecture. This is achieved by using numactl,
OMP PLACES and OMP PROC BIND with the adequate
option. ‘lstopo‘ and the QMCPACK binary ‘qmc-check-
affinity‘ were used to verify the correctness of the binding.

4) Result: When QMCPACK is run with the ‘–enable time-
fines‘ option, multiple timers are presented in the output. We
report the time spend in the ‘DMC‘ section. Indeed, in real
world usage, this section takes the vast majority of the runtime.

TABLE X: QMCPACK FOM measurement

DMC Time Walker Socket FOM
KNL 65.01 64 1 0.98
SKX 16.173 28 2 3.43
TX2 57.52 28 2 0.97

In Table X, TX2 shows similar performance to KNL.
SKX shows around 3x speed-up compared to KNL and TX2.
The FLOP counts in Table XI correspond to DMC part of
QMCPACK.

TABLE XI: QMCPACK FLOP measurements

Walker GFLOPS GFLOPS/walker
KNL 64 19233.86 300.5

SKX/TX2 28 8326.73 297.4

5) Effect of SoA (Structure-of-Array): The performance of
QMCPACK has been improved by adopting SoA instead of
AoS (Array-of-Structure). Since the SoA approach improves
data cache hit ratio, the performance gain by SoA depends
on the data cache performance. Table XII shows QMCPACK
DMC time with AoS (without SoA) and the speed-up of
SoA over AoS on SKX and TX2. The speedup by SoA
is much higher on SKX than on TX2, because the data
cache performance of SKX is much better than the cache
performance of TX2, as seen in Table I.

TABLE XII: QMCPACK DMC Time with AoS and Speed-up
of SoA over AoS

Walker DMC Time (AoS) SpeedUp of SoA over AoS
SKX 28 53.35 3.3×
TX2 28 82.23 1.43×

F. Qbox

Qbox (http://qboxcode.org) is a C++ MPI/OpenMP scalable
parallel implementation of first-principles molecular dynamics
based on the plane-wave, pseudopotential density functional
theory formalism. It uses FFTW for 3D Fast Fourier Transfor-
mation and ScaLAPACK for parallel dense linear algebra. The
code has been running at large scale (10k - 100k) on various
supercomputers, including ALCF Mira and Theta, NERSC
Cori.

1) Setup of the benchmarks: In this study, we focus on
the performance at a single node level on SKX, KNL, and
TX2. The benchmarks are based on rel1 66 2 public release
of Qbox (https://github.com/qboxcode/qbox-public). We built
Qbox with the following compiler flags.

• SKX: mpiicc -xCORE-AVX512 -align -fp-model fast=2
-no-prec-div -g -qopenmp -O3

• KNL: CC -xMIC-AVX512 -align -fp-model fast=2 -no-
prec-div -g -qopenmp -O3

• TX2: mpicxx -g -Ofast -mcpu=native
We linked the code to the vendor provided libraries for
FFT and ScaLAPACK: MKL on SKX and KNL, and Arm
Performance library on TX2.

https://qmcpack.org/
https://docs.qmcpack.org/qmcpack_manual.pdf
https://docs.qmcpack.org/qmcpack_manual.pdf
qmcpack/tests/performance/NiO/sample/dmc-a128-e1536-cpu/NiO-fcc-S32-dmc.xml
qmcpack/tests/performance/NiO/sample/dmc-a128-e1536-cpu/NiO-fcc-S32-dmc.xml


The physical system we choose for our benchmarks is a
silicon carbide periodic solid which contains 64 atoms (32
silicon and 32 carbon atoms) and 256 electrons. We perform
the ground state calculation using PBE0 hybrid functional. In
order to guarantee the same work load across different runs,
we fix the total number of self-consistent iterations to be 5.

We set OMP NUM THREADS=1, and 1 MPI rank per core
on all the architectures. MPI processes are arranged in a two
dimensional array (8× 7 on SKX and TX2, 8× 8 on KNL).

On KNL, we used the cache-quadrant memory mode. On
TX2, we specified -bind-to socket.

2) Results and discussion: Table XIII shows the time-
to-solution including breakup time spent on the three major
functions. The dominant function is exc which computes
the Hartree-Fock exact exchange between pairs of electrons.
This involves N2 of small 3D Fourier transformations (on a
66×66×66 grid in this case), where N is the number of orbitals
(N=128 in this case). As one could see the performance ratio
between SKX, KNL and TX2 is 1:0.56:0.89.

TABLE XIII: Qbox time to solution (second) on various
architectures

Kernel KNL SKX TX2
exc 24.15 16.76 19.278
hpsi 2.06 0.47 0.74

wf update 1.63 0.40 0.38
Total Walltime 33.76 18.94 21.32

The FLOP is measured to be 997.18 GFlops.

G. Per-node/per-watt performance comparison

Figure 8 presents per-node application performance on
KNL, SKX, TX2 and V100 over KNL application performance
data. The performance on V100 is the best in all applications
executed on V100 (i.e., HPGMG, GAMESS, LAMMPS).
Among CPU architectures, SKX shows the best performance
for all applications except NEKBONE.

Figure 9 provides per-watt application performance on
KNL, SKX, TX2 and V100 over KNL data. Thermal Design
Power (TDP) data in Table XIV were used as reference
powers for the employed processor architectures. For highly
vectorized proxy applications (i.e., HPGMG and NEKBONE),
it turns out the per-watt performance on KNL is better than
on SKX and TX2. Due to the high power efficiency of GPUs,
the performance difference between V100 and CPUs becomes
more significant in Figure 9 than in Figure 8. Because of lower
power consumption of TX2 than SKX, the difference in per-
watt performance between SKX and TX2 comes to be less
than in per-node performance.

TABLE XIV: Thermal Design Powers (TDPs) of KNL, SKX,
TX2 and V100

Watt/socket Watt/node
KNL 215 215
SKX 205 410
TX2 170 340
V100 250

IV. ROOFLINE-BASED PERFORMANCE EFFICIENCY

The roofline analysis model [16] is a powerful tool for HPC
code developers since it provides visually intuitive plots for the
performance of their applications and kernels in terms of com-
putational intensity (CI) and flop-rate. Intel Advisor started
providing a useful cache-aware roofline analysis model [17]
in a handy way since its version 2017 update 2; however, it is
not widely compatible with other compilers (e.g., PGI, CRAY,
GNU, ARM, LLVM) and other processor-architectures (e.g.,
AMD, ARM, GPU), so general roofline analysis technique
has been investigated [18] [19]. In this study, we measured
FLOP with a binary instrumentation tool, and it was verified
with manually calculated FLOP data from NEKBONE. The
difference between the measured data and the calculated data
was less than 4%. The data transfers were measured with
hardware performance counters via the Linux perf command
[20].

TABLE XV: Measured FLOP and data transfer, and compu-
tational intensity

Memory Memory-based
GFLOP Read/Write Computational

(GiB) Intensity
HPGMG-FV 13303.9 13440.0 0.99
NEKBONE 2666.6 3838.0 0.69
GAMESS 9618.9 548.1 17.55
LAMMPS 4997.3 32075.7 0.16

QMCPACK 16653.5 3038.8 5.48
Qbox 997.2 2913.2 0.34

Table XV shows the measured FLOP and memory
read/write data as well as the corresponding memory-based
computational intensities (CIs). Figures 10a,10b and 10c are
applications’ flop-rates and CIs under rooflines of KNL, SKX
and TX2. Using the CIs, the roofline-based peak flop-rates
of all applications were computed as presented in Table XVI.
The performance efficiencies in Table XVI are the ratio of
measured flop-rates over roofline-based peak flop-rates. For
KNL, we used MCDRAM bandwidth to compute roofline-
based peak flop-rates of applications. Since HPGMG-FV and
NEKBONE are well-optimized for MCDRAM that is smaller
but faster than DRAM, their performance efficiencies on KNL
are much higher than other production-level applications (i.e.,
GAMESS, LAMMPS, QMCPACK and Qbox).

Table XVII and Figure 11 show relative performance effi-
ciency based on KNL performance efficiency. While HPGMG-
FV and NEKBONE show relatively similar performance ef-
ficiencies on KNL, SKX and TX2, GAMESS shows higher
efficiency on TX2, and LAMMPS, QMCPACK and Qbox
show higher efficiency on SKX.

V. CONCLUDING REMARKS

We executed performance tests for two HPC benchmarks
and four production-level HPC applications on compute nodes
with a single Intel Xeon Phi 7230 processor (KNL), dual
Intel Skylake 8180M processors (SKX), dual Arm Marvell
ThunderX2 processors (TX2), and a single NVIDIA V100
GPU (V100).



Fig. 8: Per-node application performance comparison on KNL, SKX, TX2 and V100

Fig. 9: Per-watt application performance comparison on KNL, SKX, TX2 and V100

(a) KNL (b) SKX (c) TX2

Fig. 10: Roofline Performance Analyses on KNL, SKX and TX2

We first investigated the optimal configurations for bench-
mark/application codes based on the best wall times on each
test-bed node. With the optimal configurations, we compared
per-node application performances on KNL, SKX, TX2, and
V100. As shown in Figure 12a, V100 performance is the best
among all processors, and SKX performance is the best among
all CPU processors. In per-watt performance comparison on
average in Figure 12b, the performance gap between V100 and
SKX becomes more notable than in Figure 12a, while the per-
watt performance difference between SKX and TX2 becomes
less significant than the difference in per-node performance.

For roofline performance analysis on CPUs (i.e., KNL,
SKX and TX2), we measured the peak flop-rates and peak
memory bandwidths of the CPU nodes. FLOP and data
transfers of six HPC benchmarks/applications were measured
via a binary instrumentation tool and hardware performance
counters, respectively. Using the performance data (i.e., FLOP

and data transfer) of each application, we computed compu-
tational intensity of each application. The roofline-based peak
performance of each application was calculated based on the
CI value. The roofline-based performance efficiency of each
application was evaluated by the ratio of the measured flop-rate
over the roofline-based peak flop-rate. The HPC benchmark
codes such as HPGMG-FV and NEKBONE show relatively
similar performance efficiency on KNL, SKX and TX2, while
production-level codes show relatively higher performance
efficiencies on either SKX or TX2. On average, the roofline-
based performance efficiency on SKX and TX2 are similar to
each other, as shown in Figure 12c.

In this study, we evaluated performance characteristics of
the current generation of processor architectures with six
important HPC benchmark/application codes. It turns out
the roofline-based performance efficiency provides us with
interesting performance features of applications on multiple



TABLE XVI: Roofline-based performance efficiency on KNL, SKX and TX2

KNL SKX TX2
FLOP-rates Peak Efficiency FLOP-rates Peak Efficiency FLOP-rates Peak Efficiency
(GFLOP/s) (GFLOP/s) (%) (GFLOP/s) (GFLOP/s) (%) (GFLOP/s) (GFLOP/s) (%)

HPGMG-FV 191.5 369.2 51.9% 186.0 206.9 89.9% 176.9 221.7 79.8%
NEKBONE 155.9 259.2 60.1% 132.3 145.2 91.1% 120.8 155.6 77.6%
GAMESS 19.0 2130.0 0.9% 90.1 3550.0 2.5% 54.3 953.0 5.7%
LAMMPS 7.5 58.1 13.0% 16.9 32.6 51.9% 9.6 34.9 27.6%

QMCPACK 295.86 2044.2 14.5% 1029.7 1145.4 89.9% 289.5 953.0 30.4%
Qbox 29.5 127.7 23.1% 52.6 71.5 73.6% 46.8 76.7 61.0%

Fig. 11: Relative Roofline-based Performance Efficiency over KNL Efficiency

TABLE XVII: Relative Roofline-based Performance Efficiency
over KNL Efficiency

KNL SKX TX2
HPGMG-FV 1.00 1.73 1.54
NEKBONE 1.00 1.52 1.29
GAMESS 1.00 2.85 6.39
LAMMPS 1.00 4.00 2.13

QMCPACK 1.00 6.21 2.10
Qbox 1.00 3.18 2.64

platforms. We plan to perform roofline-based performance
efficiency tests on a larger number of applications to reflect
the spectrum of ALCF workloads on the next generation of
processor architectures.
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