
CRAY USER GROUP MEETING 2019 (CUG 2019)

ROOFLINE-BASED PERFORMANCE EFFICIENCY
OF HPC BENCHMARKS AND APPLICATIONS

ON CURRENT GENERATION
OF PROCESSOR ARCHITECTURES

erhtjhtyhy

JAEHYUK KWACK*, THOMAS APPLENCOURT, COLLEEN BERTONI, YASAMAN GHADAR, HUIHUO ZHENG,
CHRISTOPHER KNIGHT, AND SCOTT PARKER

Argonne Leadership Computing Facility
Argonne National Laboratory

May 5th - 9th , 2019 in Montreal, Canada

INTRODUCTION
Supercomputers with the cutting-edge technology

2

• TOP500 – mostly about Peak Flop-rates

• HPCG list – mostly about memory bandwidths

• Argonne, Cray and Intel have collaborated

for an Exa-scale system (Aurora)

• We are interested in general state of

processor performance for future

INTRODUCTION

§ On a given processor architecture, applications’
performance can be bound by
– Memory Bandwidth (e.g., application A), or
– Peak Flop-rates (e.g., application B).

§ Your application performance can be bound by
– Memory Bandwidth on architecture I, or
– Peak Flop-rates on architecture II.

Why does Roofline-based Performance Efficiency matter?

3

CI

Fl
op

-ra
te

A

B

Memory
BW

Peak Flop-rate

CI

Fl
op

-ra
te Architecture I

Architecture II

EMPLOYED PROCESSOR ARCHITECTURES

5

§ ALCF Theta system
– Cray XC40 system
– 4,392 KNL 7230 processors w/ a peak of 11.69 PF
– 192GB DDR / node

§ Intel KNL 7320 processor
– 32 tiles with 2 cores/tile (64 cores in total) (14nm)
– 32 KB L1 data cache/core
– 1 MB L2 data cache/tile
– 16 GB MCDRAM on chip
– AVX-512 instructions
– Two instructions/clock cycle
– SMT-4 mode (i.e., 4 hyper-treads/core)
– 1.3 GHz reference frequency

§ Memory configurations
– Cache / Flat / Hybrid mode

INTEL XEON PHI KNL PROCESSOR
CPU

IPM D
D
R

CPU
IPM D

D
R

480	GB/s

480	GB/s
IPM

Cache

Hybrid

CPU
IPM D

D
R

Flat

90	GB/s

480	GB/s
90	GB/s

90	GB/s

6

§ ANL JLSE (Joint Laboratory for System Evaluation)
system (Skylake partition)

– Dual-socket Intel Xeon 8180M processor node
– 395 GB DDR / node

§ Intel Xeon Platinum 8180M processor
– 28-core x86 Skylake processor (14 nm+)
– 2 AVX-512 FMA units / core
– Three UPI (Ultra Path Interconnect) links
– 2.5 GHz reference frequency
– 205W / socket
– 32 KB L1 data cache/core
– 1 MB L2 data cache/core
– 38.5 MB L3 data cache/socket
– 6 memory channels
– SMT-2 mode (i.e., 2 hyper-threads/core)

INTEL XEON SKYLAKE PROCESSOR

7

§ ANL JLSE (Joint Laboratory for System Evaluation) system

(Comanche partition)

– Dual-socket Marvell ThunderX2 processor nodes

– 217GB DDR / node

§ Arm Marvell ThunderX2 CN9975 processor

– 28-core Arm v8.1 processor (16nm)

– 2 NEON 128-vectors engines/core

– CCPI2 (Cavium Coherent Processor Interconnect) link

– 2.2 GHz reference frequency (2.5 GHz on Turbo mode)

– 170W / socket

– 32 KB L1 data cache/core

– 256 KB L2 data cache/core

– 32 MB L3 data cache/socket

– 8 memory channels

– SMT-2 mode (i.e., 2 hyper-threads/core, up to 4 hyper-

threads/core (SMT-4) available)

ARM MARVELL THUNDER X2 PROCESSOR

8

§ ANL JLSE (Joint Laboratory for System Evaluation)
system (NVIDIA V100 SXM2 GPU partition)

– Dual-socket Intel Xeon Gold 6152 processors
– 4 NVIDIA Tesla V100 SXM2 GPUs
– NVLINK among 4 GPUs
– PCIe 3.0 between GPUs and CPUs
– 197GB DDR / node

§ NVIDIA V100 SXM2 GPU
– 80 Streaming Multiprocessors (SMs) per GPU

(12nm)
• 32 FP64, 64 FP32, 64 INT32 CUDA cores/SM
• 8 tensor cores/SM

– 1.53 GHz maximum frequency
– 250W / socket
– 128 KB L1 data cache/SM
– 6 MB L2 data cache/socket
– 4 stacks of HBM2 (32GB)/socket

NVIDIA TESLA V100 SXM2 GPU

9

MEASURE PEAK PERFORMANCE

Flop-rate
(TF/s)

L1
(TB/s)

L2
(TB/s)

LLC
(GB/s)

DRAM
(GB/s)

KNL 2.13 6.46 1.911 373 78.5

Dual SKX 3.55 15.91 4.55 209

Dual TX2 0.953 3.37 2.63 1091 224

V100 7.83 14.336 3.35 779

§ Via Empirical Roofline Tool [1]
– ERT CFLAGS for KNL: -O3 -fno-alias -fno-fnalias

-xMIC-AVX512 -DERT INTEL
– ERT CFLAGS for SKX: -O3 -fno-alias -fno-fnalias

-xCORE-AVX512 -qopt-zmm-usage=high -DERT INTEL
– ERT CFLAGS for TX2: -Ofast -mcpu=thunderx2t99

-fsimdmath
– ERT CFLAGS for V100: -O3
– ERT GPU CFLAGS for V100: -x cu

§ TX2 peak flop-rate from DGEMM
§ V100 L1 is the theoretical peak.

BENCHMARK/APPLICATION PERFORMANCE

THE EMPLOYED TEST SUITE

§ HPGMG: an ECP proxy application

§ NEKBONE: an ECP proxy application and DOE CORAL-2 benchmark

§ GAMESS: an ECP application

§ LAMMPS: an ECP application and DOE CORAL-2 benchmark

§ QMCPACK: an ECP application and DOE CORAL-2 benchmark

§ Qbox: an ECP application

– DOE: U.S. Department of Energy

– ECP: Exascale Computing Project

– CORAL: Collaboration of Oak Ridge, Argonne, and Livermore

HPC Benchmarks and Applications

11

HPGMG-FV uses Full Multigrid (FMG)

High Performance Geometric Multigrid (HPGMG) BoF
Supercomputing, 2016 7

!  FMG is a single pass, direct solver that provides a solution to
the discretization error (4th order)

!  The FMG multigrid F-Cycle is a series of progressively deeper
geometric multigrid V-cycles 2563

23

43

83

163

323

643

1283

Distributed fine grid operations

12

High Performance Geometric Multi-Grid Benchmark [2][3][4][5]
§ HPGMG-FE(Finite Element): compute-intensive and cache-intensive
§ HPGMG-FV(Finite Volume): memory bandwidth-intensive

– Used for the official list
– Solving an elliptic problem on isotropic Cartesian grids with 4th order accuracy
– 4× FP ops, 3× MPI messages, 2× MPI message size w/o DRAM data movement compared to 2th

order HPGMG-FV
– Employing the Full Multi-grid (FMG) F-cycle
– A series of progressively deeper geometric multi-grid V-cycles

HPGMG

Coarse grid operations

Agglomeration stages

PoC: JaeHyuk Kwack

13

§ Source
– MPI+OpenMP version (commit: a0a5510) [6]
– MPI+CUDA version (commit: 5ad473d) [7]

§ Compilers
– KNL / SKX : Intel 19.0.3.199
– TX2: Arm Compiler version 19.0
– V100: CUDA V10.0.130

§ Inputs

HPGMG-FV

§ Runtime configurations

Higher is better

14

§ A mini-app derived from the Nek5000 [9] CFD code which is a high order, incompressible Navier-Stokes
CFD solver based on the spectral element method.

§ Standard Poisson equation in a 3D box domain with a block spatial domain decomposition among MPI
ranks.

§ Solution phase: conjugate gradient iterations in an element-by-element fashion.
– Vector operations
– Matrix-matrix multiply operations
– Nearest- neighbor communication
– MPI Allreduce operations.

§ Source:
– written in C and Fortran
– MPI+OpenMP

NEKBONE [8]

PoC: Scott Parker

Direct Numerical Simulation of the flow
inside an internal combustion engine
(https://nek5000.mcs.anl.gov)

15

§ Input
– a total of 8960 spectral elements
– 12 grid points in each direction within an element

§ Runtime configurations
– KNL: 1 MPI rank + 128 OpenMP threads/MPI
– SKX: 2 MPI ranks + 56 OpenMP threads/MPI
– TX2: 2 MPI ranks + 56 OpenMP threads/MPI

§ NEKBONE solver time

NEKBONE

16

General Atomic and Molecular Electronic Structure System
§ A general quantum chemistry and ab initio electronic structure code

[10][11].
– ab initio SCF energies (e.g. RHF and MCSCF)
– Force fields (e.g., the Effective Fragment Potential)
– Perturbative corrections to Hartree-Fock (e.g., MP2 and RI-MP2)
– Near-linear scaling fragmentation methods (e.g., Fragment Molecular

Orbital (FMO) method)
– ab initio gradients, hessians, and geometry optimizations.

§ Source
– Mainly written in Fortran
– A MPI parallelization library (DDI library) written in C
– An optional C++ library with re-implementations of certain methods
– MPI + X

• OpenMP for CPU cores
• CUDA for GPU accelerators.

GAMESS

PoC: Colleen Bertoni

Generated by wxMacMolPlt [12]

17

§ Two groups of MPI ranks
– A half for ”compute processes” to perform the chemistry algorithms
– Another half for ”data servers” to handle distributed memory and dynamic load-balancing.

§ Via over-subscription, a physical core serves as a compute process as well as a data server

§ MPI-only
– 128 MPIs (64 compute + 64 data) for KNL
– 112 MPIs (56 compute + 56 data) for SKX/TX2

§ MPI+X: 2 MPIs (1 compute + 1 data)
– 256 OpenMP threads for compute on KNL
– 112 OpenMP threads for compute on SKX/TX2

GAMESS
Runtime configurations

18

§ Inputs
– RHF (energy) for KNL/SKX/TX2
– MP2 (energy) for KNL/SKX/TX2
– RI-MP2 (energy) for KNL/SKX/TX2/V100

§ Average Speedup over KNL

GAMESS

Average Speedup over KNL

KNL 1.0 X

SKX 3.9 X

TX2 2.6 X

V100 5.9 X

Benchmark results

Lower is better

19

§ In Intel MPI 2019, the flag “I_MPI_WAIT_MODE” has been removed.

§ This flag has an effect on GAMESS performance when oversubscribing cores, since it allows the data
servers to wait for messages instead of polling the fabric.

GAMESS
Intel MPI 2017 vs. 2019

Lower is better

20

A Molecular Simulation Code
§ A molecular simulation code commonly used for modeling various states of matter (liquids, surfaces,

solids, biopolymers) and supports multiple physical models, particle types, and sampling methods
[13][14].

LAMMPS

PoC: Yasaman Ghadar, Christopher Knight

§ Source
– Written in C/C++
– Parallelized with MPI + X

• X for OpenMP, CUDA/OpenCL, Kokkos and
explicit vectorization.

– An unaltered version of LAMMPS, 19Feb19,
– Used for analysis of the reactive forcefield ReaxFF

using the DOE CORAL-2 LAMMPS benchmark.

21

§ Input
– Analysis of the reactive forcefield ReaxFF

using the DOE CORAL-2 LAMMPS
benchmark

– 36,480 particles
§ Runtime configurations

– KNL: 32 MPIs + 4 OpenMP threads/MPI
– SKX: 28 MPIs + 4 OpenMP threads/MPI
– TX2: 14 MPIs + 8 OpenMP threads/MPI
– V100: 1 MPI with Kokkos

LAMMPS
Benchmark results Reax/C performance

22

LAMMPS
Neighbor list performancePair performance

23

Quantum Monte Carlo PACKage
§ An open source quantum Monte Carlo package [15] for ab-initio electronic structure calculations.

§ It supports calculations of metallic and insulating solids.

§ It uses a Metropolis Monte Carlo algorithm who generates samples sequentially via a random walk along a

Markov chain.

§ Each OpenMP thread executes an independent Markov chains or walkers. After each walker has

completed a number steps, the simulation is completed. Hence, the more worker you have, the more

computation you will do.

§ Our figure of merit (FOM) measures how many walkers have been moved in one second.

§ Version: QMCPACK v3.7.0 with SoA (i.e., Structure-of-Array)

§ Input (a.k.a. S32)

– 32 repeats of a NiO primitive cell leading to 128 atoms and 1536 electrons

QMCPACK

PoC: Thomas Applencourt

24

§ FOM measurement

QMCPACK
Benchmark results

Higher is better

25

§ The performance of QMCPACK has been
improved by adopting SoA (Structure-of-Array)
instead of AoS (Array-of-Structure).

§ Since the SoA approach improves data cache hit
ratio, the performance gain by SoA depends on
the data cache performance.

§ The speedup by SoA is much higher on SKX than
on TX2, because the data cache performance of
SKX is much better than the cache performance
of TX2.

QMCPACK
AoS vs. SoA

3.3x

1.4x
Lower is better

26

First-Principles Molecular Dynamics
§ A C++ MPI/OpenMP scalable parallel implementation of first-principles molecular dynamics based on the

plane-wave, pseudopotential density functional theory formalism
§ It uses FFTW for 3D Fast Fourier Transformation and ScaLAPACK for parallel dense linear algebra.
§ Linking against the vendor provided libraries for FFT and ScaLAPACK

– MKL on SKX and KNL
– ArmPL on TX2

§ Input
– A silicon carbide periodic solid system which contains 64 atoms (32 silicon and 32 carbon atoms) and

256 electrons
– Performing the ground state calculation using PBE0 hybrid functional
– Total number of self-consistent iterations set to be 5

§ Runtime environments
– OMP_NUM_THREADS=1 and 1 MPI rank per core on all architectures
– MPI processes are arranged in a two dimensional array (8 × 7 on SKX/TX2, 8 × 8 on KNL).

QBOX

PoC: Huihuo Zheng

27

§ Time-to-solutions

QBOX
Benchmark results

28

SUMMARY
Per-node performance

Higher is better

29

§ TDP (Thermal Design Power)
– KNL: 215W/socket, 215W/node
– SKX: 205W/socket, 410W/node
– TX2: 170W/socket, 340W/node
– V100: 250W/socket

SUMMARY
Per-watt performance

Higher is better

ROOFLINE-BASED PERFORMANCE EFFICIENCY

31

§ Computational Intensity (CI)
– CI = FLOP measurement / Data transfer

§ DRAM-based CIs

§ Roofline-based Performance Efficiency [16-19]
– Compute-bound applications

• !""#$#%&$' =)**+,-./,01 2+0*34./5
65.7 2+0*34./5

– Memory-bound applications
• !""#$#%&$' =)**+,-./,01 2+0*34./5

)**+,-./,01 89 ∗;5<04= >?

ROOFLINE-BASED PERFORMANCE EFFICIENCY

CI

Fl
op

-ra
te

32

ROOFLINE-BASED PERFORMANCE EFFICIENCY

Intel Xeon Phi 7230 processor

33

ROOFLINE-BASED PERFORMANCE EFFICIENCY

Intel Xeon Skylake 8180M processors

34

ROOFLINE-BASED PERFORMANCE EFFICIENCY

Arm Marvell ThunderX2 processors

35

ROOFLINE-BASED PERFORMANCE EFFICIENCY
Relative Roofline-based Performance Efficiency

Higher is better

CONCLUDING REMARKS

CONCLUDING REMARKS
§ Executed performance tests

– for 2 HPC benchmarks (i.e., HPGMG-FV, and NEKBONE)
and 4 HPC applications (i.e., GAMESS, LAMMPS, QMCPACK, and Qbox)

– on four types of processor architectures (i.e., KNL, SKX, TX2 and V100)

37

Per-node performance Per-watt performance Roofline-based Efficiency

CONCLUDING REMARKS
§ Core Affinity issues on TX2

– “-bind-to socket” should be used with MPI. Otherwise, OpenMP threads are spread out
to multiple sockets, or MPI processes are not equally distributed to multiple sockets.

38

ACKNOWLEDGEMENT

§ This Work was supported by the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

§ We also gratefully acknowledge the computing resources provided and operated
by the Joint Laboratory for System Evaluation (JLSE) at Argonne National
Laboratory.

39

REFERENCES
1. “Empirical Roofline Tool Web page,” https://crd.lbl.gov/departments/computerscience/PAR/research/

roofline/software/ert/, 2019.
2. “HPGMG Web page,” https://hpgmg.org, 2019.
3. S. Williams, “4th order hpgmg-fv implementation,” HPGMG BoF, Supercomputing, 2015.
4. M. Adams, J. Brown, J. Shalf, B. Straalen, E. Strohmaier, and S. Williams, “Hpgmg 1.0: A benchmark

for ranking high performance computing systems,” LBNL Technical Report, LBNL 6630E, 2014.
5. J. Kwack and G. H. Bauer, “HPCG and HPGMG benchmark tests on multiple program, multiple data

(MPMD) mode on Blue Watersa Cray XE6/XK7 hybrid system,” Concurrency Computat: Pract Exper.,
2017.

6. “HPGMG Github,” https://github.com/hpgmg/hpgmg, 2019.
7. “HPGMG-CUDA Bitbucket,” https://bitbucket.org/nsakharnykh/ hpgmg- cuda.git, 2019.
8. “Nekbone repository,” https://asc.llnl.gov/CORAL-benchmarks/.
9. P. Fischer, J. Lottes, D. Pointer, and A. Siegel, “Petascale algorithms for reactor hydrodynamics,”

Journal of Physics: Conference Series, 2008.

40

REFERENCES
10. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N.

Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, “General atomic and
molecular electronic structure system,” Journal of Computational Chemistry, vol. 14, no. 11, pp. 1347–
1363, 1993.

11. M. S. Gordon and M. W. Schmidt, “Chapter 41 - advances in electronic structure theory: Gamess a
decade later,” in Theory and Applications of Computational Chemistry, C. E. Dykstra, G. Frenking, K.
S. Kim, and G. E. Scuseria, Eds. Amsterdam: Elsevier, 2005, pp. 1167 – 1189.

12. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 1998, 133-138.
13. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of Computational

Physics, vol. 117, pp. 1– 19, 1995.
14. “LAMMPS Web page,” https://lammps.sandia.gov, 1995.
15. J. Kim, et al, “QMCPACK: an open source ab initio quantum monte carlo package for the electronic

structure of atoms, molecules and solids,” Journal of Physics: Condensed Matter, vol. 30, no. 19, p.
195901, apr 2018.

41

REFERENCES
16. S. Williams, A. Waterman, and A. Patterson, “Roofline: an insightful visual performance model for

floating-point programs and multicore architectures,” Commun ACM., vol. 53, pp. 65–76, 2009.
17. A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: upgrading the loft,” IEEE Comput Archit

Lett., vol. 13, pp. 21–24, 2014.
18. J. Kwack, G. Arnold, C. Mendes, and G. H. Bauer, “Roofline analysis with Cray performance analysis

tools (CrayPat) and roofline- based performance projections for a future architecture,” Concurrency
Computat Pract Exper., 2018.

19. “General Roofline Evaluation Gadget Webpage,” https://github.com/ ncsa/GREG, 2019.

42

THANK YOU!

