

CRAY USER GROUP MEETING 2019 (CUG 2019)

ROOFLINE-BASED PERFORMANCE EFFICIENCY OF HPC BENCHMARKS AND APPLICATIONS ON CURRENT GENERATION OF PROCESSOR ARCHITECTURES

JAEHYUK KWACK*, THOMAS APPLENCOURT, COLLEEN BERTONI, YASAMAN GHADAR, HUIHUO ZHENG,

CHRISTOPHER KNIGHT, AND SCOTT PARKER

Argonne Leadership Computing Facility Argonne National Laboratory

May 5th - 9th , 2019 in Montreal, Canada

INTRODUCTION

Supercomputers with the cutting-edge technology

 TOP500 – mostly about Peak Flop-rates 				
Rank	System	Cores	(TFlop/s)	
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824	143,500.0	
2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94,640.0	

HPCG list – mostly about memory bandwidths

Rank	Rank	System	Cores
1	1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM DOE/SC/Oak Ridge National Laboratory United States	2,397,824
2	2	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox DOE/NNSA/LLNL	1,572,480

 Argonne, Cray and Intel have collaborated for an Exa-scale system (Aurora)

• We are interested in general state of processor performance for future

INTRODUCTION

Why does Roofline-based Performance Efficiency matter?

- On a given processor architecture, applications' performance can be bound by
 - Memory Bandwidth (e.g., application A), or
 - Peak Flop-rates (e.g., application B).

- Your application performance can be bound by
 - Memory Bandwidth on architecture I, or
 - Peak Flop-rates on architecture II.

EMPLOYED PROCESSOR ARCHITECTURES

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

INTEL XEON PHI KNL PROCESSOR

- ALCF Theta system
 - Cray XC40 system
 - 4,392 KNL 7230 processors w/ a peak of 11.69 PF
 - 192GB DDR / node
- Intel KNL 7320 processor
 - 32 tiles with 2 cores/tile (64 cores in total) (14nm)
 - 32 KB L1 data cache/core
 - 1 MB L2 data cache/tile
 - 16 GB MCDRAM on chip
 - AVX-512 instructions
 - Two instructions/clock cycle
 - SMT-4 mode (i.e., 4 hyper-treads/core)
 - 1.3 GHz reference frequency
- Memory configurations
 - Cache / Flat / Hybrid mode

INTEL XEON SKYLAKE PROCESSOR

- ANL JLSE (Joint Laboratory for System Evaluation) system (Skylake partition)
 - Dual-socket Intel Xeon 8180M processor node
 - 395 GB DDR / node
- Intel Xeon Platinum 8180M processor
 - 28-core x86 Skylake processor (14 nm+)
 - 2 AVX-512 FMA units / core
 - Three UPI (Ultra Path Interconnect) links
 - 2.5 GHz reference frequency
 - 205W / socket
 - 32 KB L1 data cache/core
 - 1 MB L2 data cache/core
 - 38.5 MB L3 data cache/socket
 - 6 memory channels
 - SMT-2 mode (i.e., 2 hyper-threads/core)

ARM MARVELL THUNDER X2 PROCESSOR

- ANL JLSE (Joint Laboratory for System Evaluation) system (Comanche partition)
 - Dual-socket Marvell ThunderX2 processor nodes
 - 217GB DDR / node
- Arm Marvell ThunderX2 CN9975 processor
 - 28-core Arm v8.1 processor (16nm)
 - 2 NEON 128-vectors engines/core
 - CCPI2 (Cavium Coherent Processor Interconnect) link
 - 2.2 GHz reference frequency (2.5 GHz on Turbo mode)
 - 170W / socket
 - 32 KB L1 data cache/core
 - 256 KB L2 data cache/core
 - 32 MB L3 data cache/socket
 - 8 memory channels
 - SMT-2 mode (i.e., 2 hyper-threads/core, up to 4 hyperthreads/core (SMT-4) available)

NVIDIA TESLA V100 SXM2 GPU

- ANL JLSE (Joint Laboratory for System Evaluation) system (NVIDIA V100 SXM2 GPU partition)
 - Dual-socket Intel Xeon Gold 6152 processors
 - 4 NVIDIA Tesla V100 SXM2 GPUs
 - NVLINK among 4 GPUs
 - PCIe 3.0 between GPUs and CPUs
 - 197GB DDR / node
- NVIDIA V100 SXM2 GPU
 - 80 Streaming Multiprocessors (SMs) per GPU (12nm)
 - 32 FP64, 64 FP32, 64 INT32 CUDA cores/SM
 - 8 tensor cores/SM
 - 1.53 GHz maximum frequency
 - 250W / socket
 - 128 KB L1 data cache/SM
 - 6 MB L2 data cache/socket
- ENERGY US Detartment & Stacks of HBM2 (32GB)/socket

MEASURE PEAK PERFORMANCE

- Via Empirical Roofline Tool [1]
 - ERT CFLAGS for KNL: -O3 -fno-alias -fno-fnalias
 -xMIC-AVX512 -DERT INTEL
 - ERT CFLAGS for SKX: -O3 -fno-alias -fno-fnalias
 -xCORE-AVX512 -qopt-zmm-usage=high -DERT INTEL
 - ERT CFLAGS for TX2: -Ofast -mcpu=thunderx2t99
 -fsimdmath
 - ERT CFLAGS for V100: -O3
 - ERT GPU CFLAGS for V100: -x cu
- TX2 peak flop-rate from DGEMM
- V100 L1 is the theoretical peak.

U.S. DEPARTMENT OF Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC

	Flop-rate (TF/s)	L1 (TB/s)	L2 (TB/s)	LLC (GB/s)	DRAM (GB/s)
KNL	2.13	6.46	1.911	373	78.5
Dual SKX	3.55	15.91	4.55		209
Dual TX2	0.953	3.37	2.63	1091	224
V100	7.83	14.336	3.35		779

BENCHMARK/APPLICATION PERFORMANCE

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

THE EMPLOYED TEST SUITE HPC Benchmarks and Applications

- HPGMG: an ECP proxy application
- NEKBONE: an ECP proxy application and DOE CORAL-2 benchmark
- GAMESS: an ECP application
- LAMMPS: an ECP application and DOE CORAL-2 benchmark
- QMCPACK: an ECP application and DOE CORAL-2 benchmark
- Qbox: an ECP application
 - DOE: U.S. Department of Energy
 - ECP: Exascale Computing Project
 - CORAL: Collaboration of Oak Ridge, Argonne, and Livermore

HPGMG

High Performance Geometric Multi-Grid Benchmark [2][3][4][5]

- HPGMG-FE(Finite Element): compute-intensive and cache-intensive
- HPGMG-FV(Finite Volume): memory bandwidth-intensive
 - Used for the official list
 - Solving an elliptic problem on isotropic Cartesian grids with 4th order accuracy
 - 4× FP ops, 3× MPI messages, 2× MPI message size w/o DRAM data movement compared to 2th order HPGMG-FV
 - Employing the Full Multi-grid (FMG) F-cycle
 - A series of progressively deeper geometric multi-grid V-cycles

Distributed fine grid operatió Agglomeration stages kid operations

HPGMG-FV

- Source
 - MPI+OpenMP version (commit: a0a5510) [6]
 - MPI+CUDA version (commit: 5ad473d) [7]

Compilers

- KNL / SKX : Intel 19.0.3.199
- TX2: Arm Compiler version 19.0
- V100: CUDA V10.0.130

Inputs

Number of Finite-Volumes	Multi-grid	Degrees-of- Freedom	Numerical Frrors
	Levels		
64^{3}	6	2.62E+05	6.93E-05
128^{3}	7	2.10E+06	7.45E-06
256^{3}	8	1.68E+07	5.14E-07
512^{3}	9	1.34E+08	4.15E-08
1024^{3}	10	1.07E+09	5.15E-09

Runtime configurations

		Number of	
Processor	Number of	Threads	Total
	MPI ranks	per MPI rank	Threads
KNL	64	1	64
SKX	16	7	112
TX2	16	7	112
V100	1	7	all GPU cores

PoC: Scott Parker

- A mini-app derived from the Nek5000 [9] CFD code which is a high order, incompressible Navier-Stokes CFD solver based on the spectral element method.
- Standard Poisson equation in a 3D box domain with a block spatial domain decomposition among MPI ranks.
- Solution phase: conjugate gradient iterations in an element-by-element fashion.
 - Vector operations

NEKBONE [8]

- Matrix-matrix multiply operations
- Nearest- neighbor communication
- MPI Allreduce operations.
- Source:
 - written in C and Fortran
 - MPI+OpenMP

NEKBONE

Input

- a total of 8960 spectral elements
- 12 grid points in each direction within an element
- Runtime configurations
 - KNL: 1 MPI rank + 128 OpenMP threads/MPI
 - SKX: 2 MPI ranks + 56 OpenMP threads/MPI
 - TX2: 2 MPI ranks + 56 OpenMP threads/MPI

NEKBONE solver time

Processor	Solver Time (s)	Ranks	Thds/Rank	El./Rank
KNL	17.11	1	128	8960
SKX	20.15	2	56	4480
TX2	22.07	2	56	4480

BINERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

PoC: Colleen Bertoni

GAMESS

General Atomic and Molecular Electronic Structure System

- A general quantum chemistry and *ab initio* electronic structure code [10][11].
 - ab initio SCF energies (e.g. RHF and MCSCF)
 - Force fields (e.g., the Effective Fragment Potential)
 - Perturbative corrections to Hartree-Fock (e.g., MP2 and RI-MP2)
 - Near-linear scaling fragmentation methods (e.g., Fragment Molecular Orbital (FMO) method)
 - ab initio gradients, hessians, and geometry optimizations.
- Source
 - Mainly written in Fortran
 - A MPI parallelization library (DDI library) written in C
 - An optional C++ library with re-implementations of certain methods
 MPL + X
 - MPI + X
 - OpenMP for CPU cores
 - CUDA for GPU accelerators.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Generated by wxMacMolPlt [12]

GAMESS

Runtime configurations

- Two groups of MPI ranks
 - A half for "compute processes" to perform the chemistry algorithms
 - Another half for "data servers" to handle distributed memory and dynamic load-balancing.
- Via over-subscription, a physical core serves as a compute process as well as a data server

MPI-only

- 128 MPIs (64 compute + 64 data) for KNL
- 112 MPIs (56 compute + 56 data) for SKX/TX2
- MPI+X: 2 MPIs (1 compute + 1 data)
 - 256 OpenMP threads for compute on KNL
 - 112 OpenMP threads for compute on SKX/TX2

GAMESS

Benchmark results

Inputs

- RHF (energy) for KNL/SKX/TX2
- MP2 (energy) for KNL/SKX/TX2
- RI-MP2 (energy) for KNL/SKX/TX2/V100

Average Speedup over KNL

	Average Speedup over KNL
KNL	1.0 X
SKX	3.9 X
TX2	2.6 X
V100	5.9 X

GAMESS Intel MPI 2017 vs. 2019

- In Intel MPI 2019, the flag "I_MPI_WAIT_MODE" has been removed.
- This flag has an effect on GAMESS performance when oversubscribing cores, since it allows the data servers to wait for messages instead of polling the fabric.

PoC: Yasaman Ghadar, Christopher Knight

A Molecular Simulation Code

A molecular simulation code commonly used for modeling various states of matter (liquids, surfaces, solids, biopolymers) and supports multiple physical models, particle types, and sampling methods [13][14].

Source

- Written in C/C++
- Parallelized with MPI + X
 - X for OpenMP, CUDA/OpenCL, Kokkos and explicit vectorization.
- An unaltered version of LAMMPS, 19Feb19,
- Used for analysis of the reactive forcefield ReaxFF using the DOE CORAL-2 LAMMPS benchmark.

LAMMPS

Benchmark results

- Input
 - Analysis of the reactive forcefield ReaxFF using the DOE CORAL-2 LAMMPS benchmark
 - 36,480 particles
- Runtime configurations
 - KNL: 32 MPIs + 4 OpenMP threads/MPI
 - SKX: 28 MPIs + 4 OpenMP threads/MPI
 - TX2: 14 MPIs + 8 OpenMP threads/MPI
 - V100: 1 MPI with Kokkos

Reax/C performance

LAMMPS

Pair performance

Neighbor list performance

PoC: Thomas Applencourt

QMCPACK Quantum Monte Carlo PACKage

- An open source quantum Monte Carlo package [15] for *ab-initio* electronic structure calculations.
- It supports calculations of metallic and insulating solids.
- It uses a Metropolis Monte Carlo algorithm who generates samples sequentially via a random walk along a Markov chain.
- Each OpenMP thread executes an independent Markov chains or walkers. After each walker has completed a number steps, the simulation is completed. Hence, the more worker you have, the more computation you will do.
- Our figure of merit (FOM) measures how many walkers have been moved in one second.
- Version: QMCPACK v3.7.0 with SoA (i.e., Structure-of-Array)
- Input (a.k.a. S32)
 - 32 repeats of a NiO primitive cell leading to 128 atoms and 1536 electrons

QMCPACK Benchmark results

FOM measurement

	DMC Time	Walker	Socket	FOM
KNL	65.01	64	1	0.98
SKX	16.173	28	2	3.43
TX2	57.52	28	2	0.97

QMCPACK AoS vs. SoA

- The performance of QMCPACK has been improved by adopting SoA (Structure-of-Array) instead of AoS (Array-of-Structure).
- Since the SoA approach improves data cache hit ratio, the performance gain by SoA depends on the data cache performance.
- The speedup by SoA is much higher on SKX than on TX2, because the data cache performance of SKX is much better than the cache performance of TX2.

PoC: Huihuo Zheng

First-Principles Molecular Dynamics

QBOX First-Principles Molecular Dynamics

- A C++ MPI/OpenMP scalable parallel implementation of first-principles molecular dynamics based on the plane-wave, pseudopotential density functional theory formalism
- It uses FFTW for 3D Fast Fourier Transformation and ScaLAPACK for parallel dense linear algebra.
- Linking against the vendor provided libraries for FFT and ScaLAPACK
 - MKL on SKX and KNL
 - ArmPL on TX2
- Input
 - A silicon carbide periodic solid system which contains 64 atoms (32 silicon and 32 carbon atoms) and 256 electrons
 - Performing the ground state calculation using PBE0 hybrid functional
 - Total number of self-consistent iterations set to be 5
- Runtime environments
 - OMP_NUM_THREADS=1 and 1 MPI rank per core on all architectures
 - MPI processes are arranged in a two dimensional array (8 × 7 on SKX/TX2, 8 × 8 on KNL).

QBOX Benchmark results

Time-to-solutions

Kernel	KNL	SKX	TX2
exc	24.15	16.76	19.278
hpsi	2.06	0.47	0.74
wf_update	1.63	0.40	0.38
Total Walltime	33.76	18.94	21.32

SUMMARY Per-node performance

SUMMARY

Per-watt performance

- TDP (Thermal Design Power)
 - KNL: 215W/socket, 215W/node
 - SKX: 205W/socket, 410W/node
 - TX2: 170W/socket, 340W/node
 - V100: 250W/socket

REAL Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

- Computational Intensity (CI)
 - CI = FLOP measurement / Data transfer
- DRAM-based Cls

	GFLOP	Memory Read/Write (GiB)	Memory-based Computational Intensity
HPGMG-FV	13303.9	13440.0	0.99
NEKBONE	2666.6	3838.0	0.69
GAMESS	9618.9	548.1	17.55
LAMMPS	4997.3	32075.7	0.16
QMCPACK	16653.5	3038.8	5.48
Qbox	997.2	2913.2	0.34

- Roofline-based Performance Efficiency [16-19]
 - Compute-bound applications
 - $Efficiency = \frac{Application Flop-rate}{Peak Flop-rate}$
 - Memory-bound applications
 - Efficiency = $\frac{Application Flop-rate}{Application CI * Memory BW}$

Intel Xeon Phi 7230 processor

		KNL	
	FLOP-rates	Peak	Efficiency
	(GFLOP/s)	(GFLOP/s)	(%)
HPGMG-FV	191.5	369.2	51.9%
NEKBONE	155.9	259.2	60.1%
GAMESS	19.0	2130.0	0.9%
LAMMPS	7.5	58.1	13.0%
QMCPACK	295.86	2044.2	14.5%
Qbox	29.5	127.7	23.1%

Arm Marvell ThunderX2 processors

		TX2	
	FLOP-rates	Peak	Efficiency
	(GFLOP/s)	(GFLOP/s)	(%)
HPGMG-FV	176.9	221.7	79.8%
NEKBONE	120.8	155.6	77.6%
GAMESS	54.3	953.0	5.7%
LAMMPS	9.6	34.9	27.6%
QMCPACK	289.5	953.0	30.4%
Qbox	46.8	76.7	61.0%

Relative Roofline-based Performance Efficiency						KNL	SKX	TX2	
				-	HPGMG-FV	1.00	1.73	1.54	
					NEKBONE	1.00	1.52	1.29	
					GAMESS	1.00	2.85	6.39	
					LAMMPS	1.00	4.00	2.13	
					QMCPACK	1.00	6.21	2.10	
					Qbox	1.00	3.18	2.64	
7				-					
er KNL	KNL SKX	TX2							
	Higher is bet	tter							
	3								
₽ 9 9 4									
sec								_	
e-ba					_				
flin Eff									
00 1									
<u> </u>									
-	HPGMG-FV	NEKBONE	GAMESS	LAMM	IPS QN	1CPACK		Qbox	

CONCLUDING REMARKS

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CONCLUDING REMARKS

- Executed performance tests
 - for 2 HPC benchmarks (i.e., HPGMG-FV, and NEKBONE) and 4 HPC applications (i.e., GAMESS, LAMMPS, QMCPACK, and Qbox)
 - on four types of processor architectures (i.e., KNL, SKX, TX2 and V100)

CONCLUDING REMARKS

- Core Affinity issues on TX2
 - "-bind-to socket" should be used with MPI. Otherwise, OpenMP threads are spread out to multiple sockets, or MPI processes are not equally distributed to multiple sockets.

ACKNOWLEDGEMENT

- This Work was supported by the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- We also gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

REFERENCES

- 1. "Empirical Roofline Tool Web page," https://crd.lbl.gov/departments/computerscience/PAR/research/ roofline/software/ert/, 2019.
- 2. "HPGMG Web page," https://hpgmg.org, 2019.
- 3. S. Williams, "4th order hpgmg-fv implementation," HPGMG BoF, Supercomputing, 2015.
- 4. M. Adams, J. Brown, J. Shalf, B. Straalen, E. Strohmaier, and S. Williams, "Hpgmg 1.0: A benchmark for ranking high performance computing systems," LBNL Technical Report, LBNL 6630E, 2014.
- 5. J. Kwack and G. H. Bauer, "HPCG and HPGMG benchmark tests on multiple program, multiple data (MPMD) mode on Blue Watersa Cray XE6/XK7 hybrid system," Concurrency Computat: Pract Exper., 2017.
- 6. "HPGMG Github," https://github.com/hpgmg/hpgmg, 2019.
- 7. "HPGMG-CUDA Bitbucket," https://bitbucket.org/nsakharnykh/ hpgmg- cuda.git, 2019.
- 8. "Nekbone repository," https://asc.llnl.gov/CORAL-benchmarks/.
- 9. P. Fischer, J. Lottes, D. Pointer, and A. Siegel, "Petascale algorithms for reactor hydrodynamics," Journal of Physics: Conference Series, 2008.

REFERENCES

- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, "General atomic and molecular electronic structure system," Journal of Computational Chemistry, vol. 14, no. 11, pp. 1347– 1363, 1993.
- M. S. Gordon and M. W. Schmidt, "Chapter 41 advances in electronic structure theory: Gamess a decade later," in Theory and Applications of Computational Chemistry, C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria, Eds. Amsterdam: Elsevier, 2005, pp. 1167 – 1189.
- 12. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 1998, 133-138.
- 13. S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," Journal of Computational Physics, vol. 117, pp. 1– 19, 1995.
- 14. "LAMMPS Web page," https://lammps.sandia.gov, 1995.
- 15. J. Kim, et al, "QMCPACK: an open source ab initio quantum monte carlo package for the electronic structure of atoms, molecules and solids," Journal of Physics: Condensed Matter, vol. 30, no. 19, p. 195901, apr 2018.

REFERENCES

- 16. S. Williams, A. Waterman, and A. Patterson, "Roofline: an insightful visual performance model for floating-point programs and multicore architectures," Commun ACM., vol. 53, pp. 65–76, 2009.
- 17. A. Ilic, F. Pratas, and L. Sousa, "Cache-aware roofline model: upgrading the loft," IEEE Comput Archit Lett., vol. 13, pp. 21–24, 2014.
- 18. J. Kwack, G. Arnold, C. Mendes, and G. H. Bauer, "Roofline analysis with Cray performance analysis tools (CrayPat) and roofline- based performance projections for a future architecture," Concurrency Computat Pract Exper., 2018.
- 19. "General Roofline Evaluation Gadget Webpage," https://github.com/ ncsa/GREG, 2019.

THANK YOU!

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

