
User-Friendly Data Management for Scientific Computing Users

R. Cheema 1, L. Gerhardt*1, A. Greiner*1, D. Hazen1, R. Lee1, K. Lozinskiy1, K. Kallback-Rose1

Abstract— Wrangling data at a scientific computing center
can be a major challenge for users, particularly when quotas
may impact their ability to utilize resources. In such an
environment, a task as simple as listing space usage for
one’s files can take hours. The National Energy Research
Scientific Computing Center (NERSC) has roughly 50 PBs
of shared storage utilizing more than 4.6B inodes, and a
150 PB high-performance tape archive, all accessible from
two supercomputers. As data volumes increase exponentially,
managing data is becoming a larger burden on scientists. To
ease the pain, we have designed and built a Data Dashboard.
Here, in a web-enabled visual application, our 7,000 users can
easily review their usage against quotas, discover patterns, and
identify candidate files for archiving or deletion. We describe
this system, the framework supporting it, and the challenges
for such a framework moving into the exascale age.

I. INTRODUCTION

Scientists are inundated with data, and data volumes are
expected to increase as new high-luminosity experiments turn
on and exascale simulations are run. At the National Energy
Research Scientific Computing Center (NERSC), the primary
high-performance computing (HPC) center for the Office of
Science in the U.S. Department of Energy [1], scientists are
already encountering challenges with managing their data.
NERSC supports more than 7,000 scientists from a broad
range of scientific disciplines processing both experimental
and simulated data in large volumes. NERSC offers 35 PB
of Lustre [2] and 20 PB of Spectrum Scale (formerly GPFS)
[3] disk storage, as well as more than 150 PB of tape storage
in a High-Performance Storage System (HPSS) [4] archiving
system, and 1.8 PB of NVMe Burst Buffer storage [5]. Long-
term disk storage is typically filled to 90% capacity with
scientific data. Future projections estimate that the volume
will increase by a factor of 10 - 100 by 2025 [6].

While scientists have grown increasingly adept at produc-
ing data, there has been no commensurate increase in the
sophistication of the tools available to manage data sets. As a
result, scientists spend a large fraction of their time in manual
data management. For instance, scientists often have only
“du” and “ls” to examine tens to hundreds of terabytes of
data spread across tens of millions of files at NERSC. They
must manually move this data through a multi-level storage
hierarchy (i.e., from high-speed scratch to a long-term tape
archive) and manually verify that the transfer succeeded. The
commands can often take hours to days to complete, making
data management a time-consuming chore and management
of petabyte-size data volumes untenable.

1NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720,
USA

*Corresponding Authors

These issues become more complex when considered with
the idea of a Superfacility: a partnership that integrates ex-
perimental and observational instruments with computational
and data facilities like those at NERSC, bringing the power
of exascale systems to the analysis of real-time data from
light sources, microscopes, telescopes, and other devices.
Data from these experiments will stream to large computing
facilities where it will be analyzed, archived, curated, com-
bined with simulation data, and served to the community
using powerful computing, storage, and networking systems.
Scientist may interact with the computing facilites through
their experimental facility, sometimes without direct access
or membership at HPC centers.

NERSC is partnering with several different experimental
facilities to build tools that can be used for the Superfacility
project. Some of these partners that have a strong data
management need are:

• The Advanced Light Source [7], a synchrotron facility
used for scientific imaging, produces 30 - 60 TB of data
from its beamlines. This number is expected to increase
by approximately a factor of 10 in 2025. Data is copied
from the experimental facility and processed, stored in
the archive, and shared only with the specific beamline
scientists. Data must move across many different tiers
at the HPC center. The movement and processing is
triggered by the beamline maintainer and scientists (who
are not necessarily HPC facility members) consume
finished products.

• LSST Dark Energy Science Collaboration [8] per-
forms cosmological analyses on data from the Large
Synoptic Survey Telescope and is expected to consume
10 TB of image data every night. Data must be pro-
cessed, shared with collaborators, and archived for long
term storage.

• National Center for Electron Microscopy (NCEM)
[9] is developing a high frame rate (100KHz) 4D
detector system to enable fast real-time data analysis
of scanning diffraction experiments in scanning trans-
mission electron microscopy. Data rates are expected to
burst to 360 Gbps during operation. Resulting data must
be analyzed and archived.

Scientists at these facilities will need the ability to curate,
share, and publish data programmatically and on a mass
scale. Managers of superfacilities will need the ability to
discover and manage data on behalf of scientists, as well as
shepherd the data through analysis pipelines. While the goals
of these facilities may be wildly different, they face common
challenges throughout the life cycle of their data.



We intend to ease some of the burden of managing data by
creating a unified framework that provides basic functionality
for all phases of data’s life cycle. In this paper we will
describe the initial deployment of this framework, the Data
Dashboard, a web-enabled visual application that allows
NERSC’s 7,000 users to review their usage against quotas,
discover patterns, and identify candidates for archiving or
deletion. We will describe the design and support framework
for the Data Dashboard, and discuss future plans for further
deployment of data management tools.

II. NERSC ENVIRONMENT

NERSC is one of the largest facilities in the world devoted
to providing computational resources and expertise for basic
scientific research. It provides some of the most powerful
computing and storage systems designed to accelerate scien-
tific discovery.

A. Computing Resources

To support both data intensive and simulation workloads,
NERSCs newest supercomputer, Cori, a Cray XC40, com-
prises a “data partition” made up of 2,004 dual-socket com-
pute nodes with two 2.3-GHz, 16-core Haswell processors
for a total of 64,128 cores and 128 GB of DRAM per node,
and an “HPC partition” made up of 9,300 Intel Knights
Landing (KNL) nodes. The KNL partition consists of more
than 632,000 cores and has a combined 1 PB of memory.
The innovative dual-architecture configuration within the
same supercomputer is driven by two factors: the increasing
demands of data analysis in HPC workflows, and the need
to support both data intensive and simulation workloads at
scale. Cori has a Cray Aries high speed “dragonfly” topology
interconnect. Cori debuted as the world’s fifth most powerful
supercomputer in the 2016 TOP500 list [10] and is used for
scientific computing at all scales. NERSC also has another
supercomputer, Edison, a Cray XC30, with 5,586 dual-socket
compute nodes, each with two 2.4-GHz, 12-core Ivy Bridge
processors, for a total of 134,064 cores and 64 GB of DRAM
per node.

B. Data Storage

A unique feature of the Cori system is the integration of
a high-bandwidth SSD-based storage layer or Burst Buffer.
For more than two decades, supercomputers have used large-
capacity, high-performance file systems, which served both
as temporary capacity storage and as a high-performance
data sink for job I/O. Having a high-bandwidth storage tier
improves machine productivity by letting defensive I/O, such
as checkpointing, complete quickly. The Cori Burst Buffer
file system [5] is based on Cray’s DataWarp application IO
accelerator technology [11]. It is made up of 288 DataWarp
nodes, each with two Intel P3608 3.2-TB NAND flash SSD
modules attached over two PCIe gen3 interfaces. These are
packaged two to a blade and attached directly to the Cray
Aries network interconnect of the Cori system. The Burst
Buffer provides a total 1.8 PB of storage with an aggregate
bandwidth of 1.7 TB/s. Requests for this storage go through

the Slurm workload manager [11], and data are staged in
and out from the Lustre file system via Cray’s DataWarp
software. The Burst Buffer is intended for extremely fast
I/O during a job. Users can make reservations to keep data
on the Burst Buffer between jobs. However, because of the
limited size of the Burst Buffer, it is not intended for long-
term storage.

Cori’s Burst Buffer adds an additional layer to the tra-
ditional HPC storage hierarchy. The next layer closest to
the compute nodes is a 28-PB Lustre file system that serves
as a temporary home for data while it is being used for
computation. Served by 248 OSTs and 5 MDS/DNEs, it
delivers an aggregate bandwidth of 700 GB/s. This file
system is mounted on both Cori and Edison, and serves as the
primary scratch file system for Cori. Each user has their own
scratch directory with a quota of 20 TB and 10M inodes. To
manage the capacity growth of the scratch file system, files
not accessed within 12 weeks are automatically purged.

Moving further down the hierarchy, NERSC also has
a 20-PB Spectrum Scale file system called “Project” that
is mounted on all systems at NERSC. The file system
uses storage arrays built from enterprise-grade hard disk
drives. Two copies of file system metadata are stored on
high-performance SSDs. The file system fabric is a non-
blocking Fat Tree built on FDR Infiniband. RDMA is used
for bulk data transfers. To provide access to the Project file
system from within the Cray compute clusters, the Cray Data
Virtualization Service (DVS) [12] is used to forward I/O
requests between the Project file system and compute nodes.
DVS nodes are attached to both the Infiniband storage fabric
and the Cray high-speed internal network.

Project is intended to be used as a shared data repository
for science groups and for medium- to longer-term storage
of large volumes of data. To facilitate data sharing, each
science group is given a separate directory (a Spectrum Scale
fileset) with a directory quota and group-readable Linux
permissions. The default quota for each directory is 1 TB and
1M inodes, but this can be increased up to hundreds of TBs
or even larger as needed. Quota enforcement is managed by
Spectrum Scale software, which forbids further writes when
the quota is exceeded. The aggregate bandwidth of Project
is 400 GB/s.

An expansion to this tier is planned in at least two phases,
with an initial deployment of approximately 75PB in 2019
and approximately 200PB in 2020. The tier will be disk-
based with a focus on capacity over performance, allowing
for larger quotas.

At the base of the NERSC storage hierarchy is a tape-
based storage system. HPSS, or the High Performance Stor-
age System, is a hierarchical storage management system
used for long-term data retention. The system consists of
a fast disk cache backed by a large tape layer. HPSS is
connected to the compute systems at NERSC using a 400 Gb
Ethernet link. Current HPSS deployment consists of two
independent systems: one for scientific data archive and one
for system backup, with a total of 150 PB stored. Data in
the archive dates back nearly 40 years.



Each NERSC user is given a directory in HPSS for storing
data. Group directories are also available by request. Usage
is controlled by a yearly allocation of storage space. This
is used primarily for record keeping. In practice, storage
volumes under 1 PB/year are generally acceptable. Users can
access HPSS via hsi, htar, ftp, and Globus [13].

C. Usage Patterns

At the beginning of this project, we recognized the need
to thoroughly understand how users move and interact with
their data on NERSC systems and at what points issues
arise. Project members are frequently engaged with users as
consultants, so we had a history of support experience from
which to draw for our use cases. But we also recognized
the importance of talking directly with users outside the
context of a particular problem. We therefore undertook
a series of interviews with researchers from a range of
scientific domains, to identify the greatest pain points across
the center. With this approach, we were able to identify
the most desperate needs and the most pressing questions
that our users have about their data. Besides qualitative
information from interviews, we also examined quantitative
data about file system usage to aid prioritization. Another
means of determining user needs was to look at custom
tools that some large user groups had already developed for
themselves. We found that the most pressing needs were for
managing growth against quotas, managing permissions, and
more easily moving files from one storage system to another.

The capacity, performance, and administrative policies of
the file systems greatly influence user behavior at NERSC.
Given the choice, most users would prefer to store all their
data on the Lustre file system, since it has the highest
bandwidth to NERSC’s computing resources. However, pur-
chasing enough Lustre storage to enable every user to use
their full 20-TB quota would be prohibitively expensive,
so NERSC implements purges on the Lustre file system
that automatically remove files not read in 12 weeks. This
motivates users to move their data to the slower (but per-
manent) Project file system or HPSS. Scientists also need
to publicize their data via web portals. These portals don’t
require high bandwidth, but do require long-term storage
capacity which is well served by the Project file system.
Storage allocations on Project are managed by directory
quotas, and sometimes users are forced to archive “warm”
data into HPSS because of space constraints. We anticipate
the expansion of the project tier, and associated larger project
quotas, will reduce some of this ”warm” data migration.
These pressures combine to create a pattern at NERSC where
data typically starts on the Lustre scratch file system or
Burst Buffer, gets migrated to Project, and finally is stored
in HPSS. However, many exceptions to this pattern do exist.
For example, climate simulations require very large datasets
that are read for a few months while a new simulation is
performed. In these situations, the O(10 TB) datasets may
be moved directly from HPSS to scratch and returned to
HPSS when the campaign is done. With the exception of
the Burst Buffer, all data movement between the different

storage systems is done manually.
Movement and dealing with separated file systems con-

sume many hours of user effort. Several million inodes are
deleted, created, or modified daily on the Project file system,
and multiple terabytes of data are deleted or created. Cori’s
Lustre file system has tens of millions of files modified and
nearly half a PB of data written per day. With such active data
volumes, users often struggle to find their files across these
many storage systems, principal investigators must manage
quotas for groups of tens to hundreds of people, and ensuring
data are migrated across tiers requires tedious checking.

III. DATA DASHBOARD

The first user-level product of our data management frame-
work is a tool for rapidly visualizing the state of a user’s
file storage, which we call the Data Dashboard. The goal
is to enable a user to visualize their files across all file
systems and to identify at a glance any storage area that
is at risk of exceeding a quota, to identify users or groups
who can be asked to free up space or inodes, and to identify
the individual files and directories that contribute most to
overages.

Ultimately the Data Dashboard will become the central
hub for most routine data management tasks. For instance,
when a users directory is near quota, it will provide a quick
list of their largest directories. By clicking onto directories,
users will be able to drill down and find files that havent
been accessed in months. Selecting these files and dragging
them to an HPSS icon will trigger backend invocations of
the framework tool that will automatically archive them in
HPSS. A rules interface will let them select directories and
create workflows by using pull down menus with choices
to indicate targets (files in this directory), conditions (new
and larger than XXGB) and actions (copy to Lustre in YY
directory).

A. Implementation

The data that feed the Data Dashboard are generated by
daily Spectrum Scale scans. This scan outputs the full path,
size, ctime, atime, owner uid, and owner gid for every file
and directory in the Project file system. Initially the scans
took about 12 hours. This was sped up by about a factor of
five by moving filesystem metadata to SSD and by scaling
out the number of nodes running the scan.

The scan generates a text file that contains ∼1B lines and
is about 200 GB. This text file is parsed using the Spark
framework [14] to produce aggregate usage for each user
(in space and inodes), as well as the size and inode count
of each directory on the file system. This process generally
takes about 5 minutes on 16 Cori compute nodes. The entire
process from scan to display takes between 4 and 10 hours
in total, which allows us to refresh the data daily (Fig. 1).

The resulting data for each project directory is stored
in a JSON-formatted file that can be read by PHP scripts
invoked by the web server. Data from the scans is also
loaded into a PostgreSQL database that can be queried to
retrieve information to support additional views. Details of



how we use this data are given below in the discussion of
the components of the user interface.

B. User Interface

In developing the user interface for the Data Dashboard,
we followed a user-centered design approach. We began
the design process by talking with NERSC research team
data wranglers, individuals who perform a majority of a
project’s data movement and archiving work. Interviewees
were selected to cover a range of scientific domains. We
targeted large collaborations known to push the limits of
their available storage. Some interviewees were principal
investigators; others were not. Through these discussions, we
developed a list of user needs and an understanding of how
we might best address them with our tools.

When we began designing the system, we had planned to
create two distinct interfaces, one for principal investigators
and one for regular research group members. We soon
discovered that the file system data from the Spectrum Scale
scans did not support the level of permissions needed to
differentiate content for the two views. As it turned out, our
needs assessment showed that enough commonality existed
between the principal investigators and others that we could
create a single interface to meet most of the needs. Two
of the biggest needs identified by our users were seeing
growth against quotas, by owner or group, and finding files
to archive, by age, size, and number. We chose to address
these issues in our first release.

Based on the input from our interview group, we next
created a prototype dashboard for testing. The prototype
enabled us to refine the pipeline by which we move data from
Spectrum Scale scans to the web server, and it also allowed
us to conduct usability testing. The usability tests consisted
of in-person, think-aloud task completions observed by a
trained usability researcher. Before releasing the initial ver-
sion to all users, we also solicited simple feedback from
a group of test users given early access. After the initial
release, we continued usability testing and iteration while
adding new features.

Our dashboard interface has been integrated into the exist-
ing MyNERSC extranet web pages [15]. The MyNERSC site
offers a suite of user tools for account and job management,
so it was a natural fit for data management tools as well. It
takes advantage of the existing NERSC Web Toolkit (NEWT)
API [16] for authentication, so this provided a ready means
of handling user logins. We have created custom API calls
within NEWT to handle requests from the Data Dashboard.
At page load, one custom call sends a request to a PHP
script that obtains information about project membership for
the logged-in user and then uses that information to grab the
JSON-formatted data for each Project directory. The extra
hop through the NEWT web server to the PHP script is
needed because the request for user data must originate from
a local machine. The MyNERSC web page, upon receiving
the json data, has what it needs to construct the first set of
visualizations in the user interface. We use the D3 Javascript
library to render the visualizations.

On initial page load of the Data Dashboard, a user who
is not yet logged in is prompted to do so. Once the user
is logged in, the page is rendered as a series of small
graphs representing each of the user’s Project directories
(Fig. 2). These show overall Project usage as a percentage of
allocations, for both space and inodes. A toggle button allows
the user to open up the display for each Project directory to
reveal four additional bar graphs, showing the breakdown of
usage, by users and groups, for both space and number of
inodes (Fig. 3). The user can hover the cursor over any of
the bars to obtain a small popup with usage details about
the relevant group or user’s usage of space or inodes. As our
users requested the ability to copy and paste the detailed
numbers into warning emails to collaborators, we enable
the user to “pin” and “unpin” the popups in place with a
click on the bar. For each Project directory, the user can
also download the usage data in CSV format for use offline
processing. For each project, we show the time at which the
data was last refreshed.

We have continued to iterate the design and add features
that address the needs of our users. In the first major revision
of the Dashboard, we added an additional button within each
Project directory panel that reveals a visualization of the
user’s “biggest” directories and files. That is, it shows the
files and directories that use the most space and the greatest
number of inodes. It is rendered as three graphs, one showing
the top n largest individual files, one showing the n largest
directories, and one showing the n directories with the most
inodes. A drop-down menu allows the user to set n to 10, 20,
50, or 100. Coloring in this view is by atime or ctime, with
the newest files appearing in a spring green and the oldest
aged to a dark brown. The user can quickly switch between
atime and ctime coloring with a set of radio buttons.

One requirement in representing the largest user directo-
ries was to elegantly handle the case where a single large
directory sits in a parent directory that contains little else.
Both parent and child would appear in the results, and the
user would not know that the child was the directory on
which to focus cleanup efforts. We therefore by default
remove big parent directories from the list if the difference
in size or number of inodes between them and a large child
directory is not large enough to land in the top n. If they
prefer, the user can also uncheck a checkbox to turn off the
removal of parent directories.

We have also recently added a graphical file browser
that lets users drill down into all of their directories in
each project. The browser allows two views, a sunburst
representation (Fig. 5) and an icicle plot, which the user can
toggle between. The graphs show the hierarchy of directories,
and a colorful strip at top shows the path to the directory
most recently rolled over with the cursor. A button enables
the user to capture this path to the clipboard.

The user-focused “Biggest Files and Dirs” view and the
file browser are powered by a PostgreSQL database. The
handling of data from Spectrum Scale scans now includes
the loading of a database table with data for each inode
that includes calculated directory size information as well



Fig. 1. A schematic diagram of the framework, showing data flows.

as the scan metadata. Data loading can be time intensive,
taking between four and ten hours to load the data for all file
systems in parallel. Once loaded, however, queries perform
at acceptable speeds for a web application. Indexing helps
speed up the queries, which must find all inodes of a given
type owned by the logged-in user, sort, and return the top n
hits.

C. Permissions Wrangler

To address the need of users to maintain proper group
permissions throughout a project, we have developed a
facility for correcting permissions on a daily basis. A Spark
script mines the same scans used by the dashboard, looking
for files and directories that have deviated from group read-

able permissions. It generates a list of permission-correcting
commands that are then automatically run on a node with
elevated permissions. At present, the permissions wrangler
is being beta tested with a few project groups. We plan to
eventually include an option for principal investigators to
“opt in” to this service on the Data Dashboard.

D. Usage Statistics

Usage of the Data Dashboard is tracked a number of
different ways. Google Analytics tracks unique page views
over time. In the first quarter of 2019 we saw 59 unique and
168 non-unique page views of the Data Dashboard per week.



Fig. 2. The Data Dashboard user interface as it loads within MyNERSC. Each of the user’s Project directories (here “als”, “alsripple”, “CAL”, “carver”,
etc.) is represented by a panel, showing the percentages of Project space and inode allocations being used.

E. Challenges

The Lustre file system does not have any built-in policy
functionality that could be used for data identification and
tracking. Typically this is provided by the Robinhood Policy
Engine [17], an open source tool that provides metadata
tracking and policy engine functionality. While the func-
tionality offered by Robinhood is good, in practice it often
struggles to keep up with the load from a very large file sys-
tem, and falling behind can lead to file system outages [18].
A quick scan is vital for presenting users with an accurate
picture of their data and for enforcement of data management
policies. NERSC uses Robinhood to parse Lustre Changelog
information into a MariaDB database, but failure to keep up
with changelogs or other Lustre failures and bugs frequently
causes the database to get out of sync. Once Robinhood
lags behind by a substantial number of entries, a full rescan
of the file system to repopulate the database from scratch
is required. On a file system with several PBs, this can
take several days. Recent developments have been aimed
at addressing some of these issues. However, while the
Robinhood framework has been used for file system scans
on Cori, it is not yet known if these new updates can keep
up with the usage of a ∼30 PB Lustre file system.

For HPSS analytics, NERSC has created an in-house
system for analyzing and storing data transfer and operations
logs, as well as tape library statistics and health markers.

Until recently, this database containing over 10 years of data
has not been integrated into a centralized system. We are in
the process of ingesting HPSS transfer logs into the web UI,
with the goal of matching the level of detail provided by the
Spectrum Scale scans.

IV. FUTURE PLANS

A. Data Dashboard

The Data Dashboard functionality will be extended to
include full file system information for Sprectrum Scale,
Lustre, and HPSS, with the ability for users to “walk”
their directory trees and search for files across file systems.
Eventually, the Data Dashboard will serve as the central
control point for data movement in the center.

An API will also be available for users so that groups
can incorporate the data management framework into their
existing pipelines, replacing many lines of complicated code.

B. File System Evolution and Integration

NERSC has outlined a plan for the evolution of their stor-
age systems for the next several years [19]. The Project and
HPSS layers will be unified into a single “off-platform” tier
and the high performance layers (Burst Buffer and Scratch)
will be unified into a platform-integrated tier. Having fewer
layers will greatly simplify data movement. In addition,
NERSC is looking at deploying unification tools like GHI



Fig. 3. One panel of the Data Dashboard user interface showing that
Project directory’s details expanded and a user space popup ”pinned”.

(Spectrum Scale / HPSS integration) [20] that allows policy-
driven migration of files between the Spectrum Scale file
system and HPSS. This coupling can be further leveraged
by creating tools that allow users to define migration policies
for their data. For instance, users could write pseudo code to
detect when a new file has arrived in a particular directory,
apply some criteria to it (like checking file size), then migrate
this file to HPSS, and notify the user when it is finished.

C. Superfacility Project

The Data Dashboard will ultimately be the front end
for the data management piece of the Superfacility Project,
a suite of features designed to facilitate experimental and
observational workflows across HPC centers and user facili-
ties. In addition to data management tools, the Superfacility
project will also include tools to assist in

• Scheduling: tools to make realtime and bursty schedul-
ing easier across HPC centers, including reserving non-
compute resources like network bandwidth or file sys-
tem space for complex workflows

• Centerwide Access: An API for interacting with all
aspects of an HPC center

• Software Defined Networking: Seamless streaming of
data directly to compute nodes

• Federated ID: Leverage identity federation techniques
to provide seamless access to data and services at
HPC centers using credentials from a scientist’s home
institution.

The Data Dashboard will work in tandem with these tools

Fig. 4. The Data Dashboard view of one user’s biggest files and directories,
showing their largest files, largest directories, and directories with the most
inodes. Coloring reflects the access time of each inode.

to facilitate experimental and observational workflows in the
exascale era.

V. RELATED WORK

A number of scanning frameworks for different file sys-
tems have been developed over the years. The most recent
one, the Grand Unified File Index (GUFI), was developed
by researchers at Los Alamos National Laboratory [21].
GUFI stores file metadata in a hierarchy of databases, which
allows rapid searches across the entire scan. GUFI is still in
development, but could be a potential solution to scanning a
large Lustre file system.

iRODS is an open source data management system that is
supported by a group at RENCI [22]. All data is accessed
via the iRODS server. Data can be accessed directly from
the storage pool without using iRODS, but the iRODS



Fig. 5. Sunburst view of a user’s files in the Data Dashboard. The path at
top reflects the file most recently rolled over with the cursor.

directory structure is opaque, making this cumbersome. A
rich suite of metadata for each file can be stored in the
iRODS database. Programmable rules can be created to move
storage between different layers of the storage pool while still
presenting end users with a centralized namespace. While
iRODS includes much of the functionality proposed here,
it does it by enforcing a new framework. Many NERSC
users operate on multiple platforms, and redesigning their
workflows to accommodate something that is only used at
a single center is enough of a burden to make the effort
untenable. Maintaining a separate framework would also
be quite challenging to scale alongside the file system as
bandwidth and IOPS increase, representing an ongoing cost
to NERSC in addition to the cost of the storage itself.

Researchers at Oak Ridge National Laboratory have devel-
oped TagIt, a scalable, distributed metadata indexing frame-
work which allows users to ”tag” their data with appropriate
metadata information [23]. The system performs well at
scale, but is tightly integrated to the GlusterFS file system
(future plans may include CephFS, but not Spectrum Scale
or Lustre).

Several vendors offer integrated metadata and search
functionality and tier migration. For instance, Starfish [24]
uses a software-only solution that doesn’t require integrated
hardware and works across a variety of file systems but their
offering didn’t cover all of the file systems at NERSC nor
cover our needs for individual tools.

VI. CONCLUSION

The Data Dashboard described in this paper will remove
much of the manual, redundant effort scientists spend manag-
ing data, freeing them up to do more science. The increasing
complexity and size of storage systems mandate better tools

for taming the data deluge and interfacing with HPC centers
in the exascale age.

ACKNOWLEDGMENT

This research used resources of the National Energy
Research Scientific Computing Center, a DOE Office of
Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] http://www.nersc.gov/about/.
[2] http://lustre.org/.
[3] http://www-03.ibm.com/systems/storage/spectrum/

scale/.
[4] http://www.hpss-collaboration.org/.
[5] W. Bhimji et al., “Accelerating science with the nersc burst buffer

early user program,” 2016. https://cug.org/proceedings/
cug2016_proceedings/includes/files/pap162.pdf.

[6] S. Habib et al., “Ascr/hep requirements review report,” 2016.
arXiv:1603.09302v2.

[7] https://als.lbl.gov/.
[8] http://lsst-desc.org/.
[9] http://foundry.lbl.gov/facilities/ncem/.

[10] https://www.top500.org/lists/2016/11/.
[11] http://www.cray.com/datawarp.
[12] “Cray DVS Installation and Configuration.” http://docs.cray.

com/books/S-0005-10/.
[13] https://www.globus.org/.
[14] http://spark.apache.org/.
[15] https://my.nersc.gov/.
[16] S.Cholia, D. Skinner and J. Boverhof, “Newt: A restful service for

building high performance computing web applications,” Gateway
Computing Environments Workshop (GCE), New Orleans, LA, 2010,
pp. 1–11.

[17] https://github.com/cea-hpc/robinhood/wiki.
[18] T. Declerck et al., “Using robinhood to purge data from

lustre file systems,” Cray Users Group Proceedings 2014,
2014. https://cug.org/proceedings/cug2014_
proceedings/includes/files/pap157.pdf.

[19] “Storage 2020: A vision for the future of hpc storage.” https://
escholarship.org/uc/item/744479dp.

[20] http://www.hpss-collaboration.org/ghi.shtml.
[21] https://www.hpcwire.com/off-the-wire/

los-alamos-releases-file-index-product-to-software-community/.
[22] http://irods.org/.
[23] H. Sim et al., “Tagit: an integrated indexing and search service for file

systems,” No. 5, SC ’17 Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2017.

[24] http://www.starfishstorage.com/.

APPENDIX

A. Abstract

The framework described in this paper makes use of
technologies from a broad range of domains. We use high-
performance storage technologies as well as tools for cluster
computing, web engineering, and data visualization. The
preparation of data begins with metadata scans of the Spec-
trum Scale file system generated with the mmapplypolicy
command. A cronjob is used to trigger a check to determine
when a new scan has become available in a designated
directory. The new scan file is processed by a series of
bash scripts that launch Spark 2.1.1 Python jobs on the Cori
Supercomputer. The Spark jobs create a set of JSON files,
one for each Project directory on NERSC shared storage.
They also load data into a PostgreSQL 9.4.15 database and



build a list of bash shell permission-correction commands to
be invoked later by another cronjob.

The Data Dashboard is made available to users via the
MyNERSC extranet site (https://my.nersc.gov), which in turn
makes use of the NERSC Web Toolkit (NEWT) [16], a web
API for high-performance computing. We use some built-in
functions of NEWT, such as authentication and authorization
(including queries of the NERSC Information Management
system and a local LDAP server), and add custom API calls
to handle queries specific to the Data Dashboard, such as
retrieval of JSON-formatted directory metadata and queries
of the PostgreSQL database. Web pages and API endpoints
are served by an Apache Web server running PHP 5.6. Data
manipulation on the client side is performed with Javascript
and the D3 visualization library, version 3.

This paper contains no computational results.


