
Scheduling Data Streams for Low Latency and
High Throughput on a Cray XC40 Using Libfabric

Farouk Salem, Thorsten Schütt, Florian Schintke, Alexander Reinefeld
Zuse Institute Berlin

{salem, schuett, schintke, ar}@zib.de

Abstract—Achieving efficient many-to-many communication
on a given network topology is a challenging task when many data
streams from different sources have to be scattered concurrently
to many destinations with low variance in arrival times. In
such scenarios, it is critical to saturate but not to congest the
bisectional bandwidth of the network topology in order to achieve
a good aggregate throughput. When there are many concurrent
point-to-point connections, the communication pattern needs to
be dynamically scheduled in a fine-grained manner to avoid
network congestion (links, switches), overload in the node’s
incoming links, and receive buffer overflow. Motivated by the
use case of the Compressed Baryonic Matter experiment (CBM),
we study the performance and variance of such communication
patterns on a Cray XC40 with different routing schemes and
scheduling approaches. We present a distributed Data Flow
Scheduler (DFS) that reduces the variance of arrival times from
all sources at least 30 times and increases the achieved aggregate
bandwidth by up to 50 %.

Index Terms—Stream Processing; Data Flow Scheduling;
RDMA; libfabric

I. INTRODUCTION

The stream processing paradigm aims at the continuous
processing of incoming data at the rate of all incoming data
streams sustainably. The paradigm is successfully used in time-
critical applications such as sensor data processing [1], simu-
lation and prototyping [2], and real-time query processing [3],
[4]. It is especially challenging to solve when hard real-time
constraints have to be met as in latency-sensitive [5], [6]
and life-critical [7] applications. Some applications require to
collect and aggregate stream data based on feature-, sensor-,
or time-dependent constraints before they can be processed
in (mini-)batches, as in case of the Compressed Baryonic
Matter (CBM) experiment [8].

The mentioned CBM experiment is currently set up to
explore the QCD phase diagram [9] in the region of high
baryon densities. High-energy nucleus-nucleus collisions are
observed by many sensors surrounding the experiment gener-
ating hundreds of data streams with an aggregate data rate of a
few terabytes per second. The packets of measured data signals
arrive at multiple input nodes and are analyzed in aggregated
time-slices at compute nodes. To build the time-slices, each
sensor contributes via its input node its measurements corre-
sponding to that time-slice for the analysis. Subsequent time-
slices are assigned to different compute nodes in a round-
robin fashion for analysis to sustain the incoming data rate
and to spread the load equally. The data distribution and
time-slice building are done in a parallel cluster application

called FLESnet, which is part of the First-Level Event Selector
(FLES) [10] of CBM.

Our goal is to achieve a high aggregate bandwidth between
input and compute nodes while maintaining short duration and
variance of time-slice building (receiving all contributions) in
a scalable system. A high aggregate bandwidth can only be
achieved by utilizing all communication links at all times.
Short duration and variance of time-slice building can only
be achieved with uniform usage of the network. The building
of subsequent time-slices is parallel in space and sequential but
overlapping in time. Ensuring a uniform network utilization is
necessary for achieving a sustained high bandwidth, because
otherwise, some receive buffers may overflow while other
contributions needed for completing other time-slice are still
missing. Filled buffer space will eventually reduce the overall
aggregate bandwidth, as some senders will not be able to fill
their outgoing links appropriately. Indirectly, a short duration
and variance of time-slice completion leads to a more regular
usage of receive buffers per input link at the compute nodes,
which improves the scalability of the system. Suppose we
have fixed hardware components and cannot afford a linear
growth of main memory for receive buffers at the compute
nodes, the overall buffer space we can provide per input link
at the compute nodes will linearly decrease with an increasing
number of input nodes. Thus, being able to free buffer space
early by low variance of time-slice completion at compute
nodes is a desirable system property for scalability. In general,
the buffer size determines the amount of variance a system can
tolerate.

We make the following main contributions throughout this
paper to achieve these goals:

• We discuss the challenges of scaling FLESnet in detail
and present potential solution for its communication pat-
tern, scalability constraints, and synchronization demands
(Sect. II).

• We derive a design for a Data-Flow Scheduler (DFS)
that works distributed across input and compute nodes,
and describe how it addresses the scalability challenges
without introducing a central component or single point
of failure (Sect. III).

• To study the effectiveness of DFS, we implemented
micro-benchmarks using Libfabric and MPI resembling
FLESnet’s communication pattern between two disjoint
groups of input and compute nodes and evaluate the
performance on our test machines (Sect. V-A).

detector/sensors

time-tagged
data streams

input nodes

I3

mts#6mts#7mts#8mts#9. . .

I2

mts#6mts#7mts#8mts#9. . .

I1

mts#6mts#7mts#8mts#9. . .

round

micro time-slices

compute nodes

C3

ts
#8

ts
#5

ts
#2

C2

ts
#7

ts
#4

ts
#1

C1

ts
#6

ts
#3

ts
#0

3

2
1

2
1

3

1
23

bu
ilt

tim
e-

sl
ic

es
fo

r
an

al
ys

is

sw
itc

h
ne

tw
or

k

FLESnet

Fig. 1. A data stream flow for timeslice building.

• With DFS we demonstrate a reduction in the variance of
arrival times by up to a factor of 30, an overall increase of
the throughput of up to 50 % compared to FLESnet using
a best-effort approach (Sect. V-B1). Furthermore, we
show an improved synchronization (Sect. V-B2), a more
regular usage of the receive buffers in compute nodes
(Sect. V-B4), and that the overall throughput achieves at
least 77 % of our micro-benchmark.

II. FLESNET COMMUNICATION PATTERN

The CBM experiment [8] targets to detect and discover
phenomena at different times during beam-time with hundreds
of sensors surrounding the experiment. Each sensor transmits
the measured, timestamped data chunks to an input node,
which buffers and then distributes the contributions to compute
nodes (Fig. 1). To build a time-slice on a compute node for a
meaningful data analysis, CBM requires each data sensor/input
to contribute. The system to distribute individual data streams
from input nodes to compute nodes and to build complete
time-slices is called FLESnet.

FLESnet’s communication pattern is mostly uni-directional
and needs some buffering at input and compute nodes. Input
nodes receive data streams from sensors, buffer them, chop
the data into micro-time-slices (mtss), and scatter the mtss
to compute nodes in a round-robin manner. Each input node
distributes mtss to all active compute nodes in each round,
i.e., a round consists of as many mtss as there are active
compute nodes in the system. On the other hand, each compute
node receives mtss as contributions for a particular time-slice
from all input nodes and buffers them until the time-slice is
completed when the last missing contribution arrives and the
time-slice can be passed over to the data analysis.

In the previous implementation without DFS, the commu-
nication follows a best-effort approach [11] and is not well
coordinated between the nodes. Input nodes distribute their
round, independent of the progress of the other input nodes.
Thus, compute nodes are prepared to collect several mtss for
different time-slices from the same input node by allocating
a part of their limited local memory as a receive buffer per
input node. To prevent buffer overflow at the compute nodes,
a ticket-based flow control mechanism [12] is established per

pair of input and compute nodes. Input nodes receive a set
of tickets from each compute node and they use each ticket
to send a mts. Once they run out of tickets, they wait until
they get new tickets when time-slices were completed (got
mtss from all input nodes) and buffer space becomes available
again. While an input node waits for new tickets, the sensors
keep measuring new data, which is stored in a local buffer
at the input node to avoid data loss—until also this buffer
is exhausted. The lack of coordination between input nodes
may lead to an unfair use of the network (everyone tries to
keep sending according to best-effort), input nodes may fall
far behind others only limited by buffer exhaustion, and delays
finishing a time-slice occur much larger than necessary.

A. Offset-Based Round-Robin Data Distribution

Naively, all input nodes would start sending their first mts
in the data stream to the responsible compute node—all to a
single node. As this node has a limited incoming bandwidth,
the compute node and the overall bandwidth would suffer from
endpoint congestion [13]. All except one link to the compute
nodes would remain unused during that transfer. Afterwards,
the same pattern would repeat with the next set of mtss and the
next compute node. Such an approach would effectively serial-
ize the time slice building and would not use the available links
efficiently. With the default best-effort approach of FLESnet,
asynchronous send requests are issued by input nodes as long
as tickets are available and mtss are ready to be distributed. So,
for a single round the communication network is loaded with
many transfer tasks (#inputnodes ∗ #computenodes), that
can be performed in parallel by the network and switches.
Typically, each link of the switched network is shared for
many point-to-point transfers at each time and a moderate form
of endpoint congestion may still occur. With larger numbers
of input and compute nodes and rounds overlapping each
other, this approach may hit some scalability bottlenecks of
the communication network when the number of concurrent
transfers grows by factors. In addition, a single point of
congestion in the network could spread through the entire
network causing a tree saturation [14].

In order to evenly utilize all communication links, to reduce
the number of concurrent transfers to the same receiving
nodes, and to reduce the occurrence of network congestion,
the input nodes should employ an offset-based round-robin
schema, which is a combination of the round-robin schema
and the index algorithm [15]. Each input node should transmit
data to a different compute node at a time, as depicted by
the subsequent communication steps 1 , 2 , and 3 in Fig. 1.
With this scheme FLESnet distributes the load more regularly
over all compute nodes and communication links by using
only a low number of concurrent connections. Instead just
relying on the ticket-based flow control, FLESnet should also
use a back-pressure mechanism [16] to adapt the injection
rate of input nodes with the current status resp. load of the
network. This would increase the achievable bandwidth when
congestion can be avoided or reduced and minimize the time
to complete time-slices as missing mts get a larger share of the

2

network. The effects are expected to be more pronounced with
increasing number of nodes. The frequency of slow nodes and
other network events will grow.

B. Scalability Constraints and Coordination

With increasing system size the overall bandwidth increases
as well. However, often the local buffer space per compute
node does not grow linearly with the number of input nodes.
This has several effects and consequences for the system. With
more input nodes, compute nodes receive mtss from more
input nodes, but the fraction of the local buffer space per input
node decreases, and consequently fewer tickets are provided
to send mtss. In a system using eager best-effort sending and
ticket-based flow control only, two trends can be expected that
at first seem to be oppositional.

On the one hand, having fewer tickets per input node in-
creases the dependency and implicit synchronisation between
different input nodes as some nodes might run out of tickets
and get blocked when some others cannot keep up. Such
blockage happens earlier with smaller compared to larger
buffers at the compute nodes, so stragglers can catch up and
the network usage becomes more uniformly. As the difference
between the input node with the farthest progress and the
fewest progress decreases, the time to complete full time-
slices should also decrease. So, scaling the system can help to
implicitly synchronize it.

On the other hand, when input nodes have to be blocked,
the overall throughput will not be optimal, as some links are
not used until new tickets become available. The larger the
system, the more input nodes will become blocked waiting for
the latest contribution of a time-slice to arrive at a compute
node, so they can get their next tickets. Additionally, we risk
losing measurement data, when the input buffer runs full, as
running out of tickets is the common case rather than the
exception.

For good scalability and sustained high throughput, more
coordination is beneficial. When some input nodes fall behind,
the other input nodes should not try to saturate all available
bandwidth to give the stragglers a chance to catch up. That
way, compute nodes can collect all contributions to finish time-
slices earlier, buffer fill levels are expected to remain more
regular without buffers running full, and input nodes should
not regularly run out of tickets, so that they can keep sending
to achieve a reasonable sustained aggregate throughput. With
more coordination, smaller buffers at the compute nodes may
be sufficient, which would help to scale to more input nodes
as smaller buffers mitigate the buffer space limitation outlined
above.

Such coordination among the input nodes should happen
without adding much communication/processing overhead, as
that might decrease the achievable bandwidth. It should con-
sider the network status, latency, and clock drifts of different
nodes. The aim would be to steer the distribution of mtss so
that compute nodes receive all contributions for a time-slice
in a timely manner, can pass it to the analysis, and can reuse
the buffer space.

C. Synchronization Aspects

To support the approaches outlined in the previous para-
graphs, input nodes need to behave more synchronized in
time than with the default best-effort approach. For the offset-
based round-robin data distribution, input nodes should start
their data distribution roughly at the same time to effectively
separate the link usage. It might turn out that coordination at
such fine-granular level is not possible or too costly. Then,
coordination of data transfers on a round or group-of-rounds
level might be sufficient when an asynchronous best-effort
approach is used in between. At least, as we have discussed, it
helps to assign a large share of the available network capacity
to stragglers, so that they can catch up. Time-slices can be
finished early and buffers are filled almost uniformly. Either,
one can rely on the external clock synchronization mechanism
of the system, or can integrate a clock synchronization that
indirectly detects deviations and clock drift rates and provides
enough feedback to each input node so that they behave
synchronized.

III. DATA-FLOW SCHEDULER

Based on the considerations outlined in Sect. II, we intro-
duce a new deterministic scheduling mechanism, called Data-
Flow Scheduler (DFS), to increase the aggregated bandwidth,
to stabilize the network latency, to reduce the occurrence of
network congestion, and to reduce the local memory space
usage for stream processing. The main contributions of the
DFS are:

• It synchronizes input nodes to reduce the variance of
arrival times of mtss for a time-slice at compute nodes, so
that time-slices can be completed with shorter duration.

• It schedules the injection rate at the input nodes to avoid
network and endpoint congestion, so that the overall
network can be used more uniformly, which supports
lower variance of arrival times.

• It dynamically adapts the injection rate trying to improve
the network utilization.

• It collects and distributes coordination information decen-
tralized among all input and compute nodes, so it is not
a central component limiting scalability.

The DFS divides the transmission time into time-intervals
(intvl). Each interval consists of a configurable number of
rounds where in each round each input node transmits one mts
to each compute node. Thereby, each compute node receives
a complete time-slice per round. DFS coordinates input and
compute nodes on the level of time-intervals to keep the
communication overhead between different processing nodes
low compared to a management per round. DFS assigns
a unique identifier intvlid to each interval in an ascending
order over time. Each interval has its meta-data, which consists
of: the first time-slice to build, the number of rounds, the
absolute start time, and the duration.

The DFS operates distributedly across the input and com-
pute nodes. We call the part running on input nodes Input
Engine (IE) and the part running on compute nodes Distributed

3

Deterministic Engine (DDE). The IE steers the transmission
of time-intervals in each input node and collects the local
contribution of the meta-data of each time-interval. The DDE
collects the meta-data of each transmitted interval from all IEs
and calculates the proposed meta-data for upcoming intervals.
The IE follows the guidelines of the DDE and it attempts to
transmit the intervals based on the proposed meta-data. Fig. 2
depicts the components of each engine.

input nodes

. . .

Transmittor

Transmittor

compute nodes

. . .

Clock
Sync.

History
Manager

Proposer

Clock
Sync.

History
Manager

Proposer

tmj , durmj

tmj , du
rmj

tpj , durpj

tpj , durpj

Input Engines DD Engines

Fig. 2. DFS Engines.

A. System Assumptions

We assume a homogeneous system where all input and
compute nodes are connected with the same capabilities to
the network, i.e., identical network cards and network links.
Otherwise, the slowest node would limit the scalability of
the system or we would have to load-balance the time-
slice building over the compute nodes—an aspect we plan to
address in the future. The aggregated network capacity of the
input nodes should be similar or smaller than the capacity
of the compute nodes. The bisectional bandwidth should
be close to or higher than the aggregate network capacity
of the input nodes. Varying adversary traffic of colocated
applications might limit the scalability. Instead of adapting
to small changes, the DFS would have to constantly adapt to
large changes of the available network capacity.

B. Distributed Deterministic Engine

The DDE consists of three modules: History Manager, Pro-
poser, and Clock Synchronizer. The history manager module
collects meta-data of completed intervals from input engines
and calculates statistics. Proposer modules calculate the inter-
val meta-data of the upcoming intervals based on the statistics
in the history manager module with the aim to synchronize the
IEs and to utilize the network continuously taking changes in
the achievable aggregate network bandwidth into account. The
proposer then broadcasts the proposed meta-data to the IEs.
The Clock Synchronizer module compensates the different
clock drift rates of the different machines to improve the
synchronicity of input nodes, in case the system clocks are
not well synchronized.

1) History Manager: The history manager module mea-
sures and receives the actual meta-data of intervals, which
consists of the ‘duration measured’ durmi,j and the measured
start time tmi,j , for each input node i and time interval j.
As different machines could have different clock speeds, it
sends each meta-data to the clock synchronizer module in
order to adjust it to the local machine clock. After that, it
stores the actual interval meta-data of each IE and triggers
the completion of each interval once it receives the meta-data
from all IEs. Different IEs could start an interval at different
times or take longer duration than what is proposed. Therefore,
the history manager module calculates a unified meta-data for
each interval that represents all IEs.

The unified meta-data of an interval j consists of the average
start time avg tmj and the median duration med durmj from
all IEs. The history manager module calculates and uses the
average start time avgtmj to consider straggler nodes in its
upcoming interval proposals to re-synchronize all input nodes.
When an IE starts an interval later than what is proposed,
it could be due to several reasons: (1) this input node is
slow, and/or (2) one of the compute nodes is slow, and/or
(3) a network link is congested. Calculating the average start
time considers extreme values and delays upcoming intervals
to reduce pressure on the network and synchronize the input
node in time.

2) Proposer Module: The proposer module calculates the
proposed start time tpj and duration durpj of an upcoming
interval j based on the meta-data of the completed intervals.
As the last completed interval w could represent an extreme
state of the network that does not represent the majority of
intervals, the proposer module calculates the median interval
duration med durm hist of a configurable number hist cnt
of the last completed intervals. It uses this median duration to
estimate the start time of the upcoming interval j. The tpj is
the completion time of the last interval w in addition to the
needed duration to complete the intervals between w and j,
which is calculated based on the med durm hist as follows:

tpj = (tmw + durmw) + (j − w − 1) ∗med durm hist

The proposer module could use med durm hist as the
proposed duration for an upcoming interval j. However, the
measured duration of the last intervals could be exceptionally
high due to temporary problems such as network/endpoint
congestion. Therefore, the proposer module applies a staged-
speed-up (SSU) mechanism that reduces the proposed duration
of intervals in order to reach the maximum achievable band-
width over time and to recover from temporary slow-downs.
When the connections between input and compute nodes are
established at the beginning, this mechanism supports to gain
speed resembling the slow-start of TCP [17].

The proposer module uses the SSU in such a way that it
does not overload or congest the network when the maximum
bandwidth is achieved. The proposer module applies the
SSU only when the average variance between the proposed
and the measured meta-data of each interval from the last
completed intervals hist cnt is smaller than a configurable

4

ssu TH . A lower variance indicates synchronized nodes and
a relaxed network. The SSU reduces the proposed duration
durpj of an interval j by a configurable percentage ssu pct ,
as described in Eq. 1. Once the proposer module calculates
the meta-data of an interval, it transmits this meta-data to all
IEs after adjusting it using the clock synchronizer module in
order to synchronize the data transmission.

µj =

w∑
i=w−c

|durmi − durpi |/hist cnt

VARj =

w∑
i=w−c

(|durmi − durpi | − µj)
2/hist cnt

durpj →

{
durpj ∗ (100−ssu pct)

100 , VARj 6 ssu TH

durpj , Otherwise
(1)

3) Clock Synchronizer: The clock synchronizer module
calculates the clock offsets between the local machine and
input nodes. It also tracks the clock drift of each input node
over time to calculate the meta-data of the upcoming intervals
correctly. When an IE finishes transmitting an interval j,
it sends immediately the actual meta-data and the median
network latency lati of the connection, where i is the index to
indicate the ith DDE. The DDE records the local time lt when
the message is received and calculates the end time of the
interval tmendj . Then, it calculates the clock offset for interval
j as toffseti,j (see Eq. 2), where i is an index indicating the
ith IE.

tmendj = tmj + durmj

toffseti,j = lt − tmendj − lati (2)

The clock synchronizer module stores the history of the
clock offsets of each input node and calculates the clock drift
accordingly:

drifti,x = (toffseti,x − toffseti,x−1)/(tmendx − tmendx−1)

drifti = median(drifti,k) : ∀k ∈ [(j − hist cnt) . . . j], (3)

where j is the index of the latest finished interval.

C. Input Engine

The Input Engine receives the proposed meta-data of inter-
vals and schedules the data transmission accordingly. Initially,
when a connection is established between each pair of IE and
DDE, each IE transmits its mts without any guidelines from
the DDEs. The first intervals determine the initial duration
an interval takes. After the DDEs receive the meta-data of the
first intervals, they calculate the required duration and propose
the meta-data of the upcoming intervals accordingly. When the
IE updates the DDEs with the actual meta-data of an interval
j , it requests the proposal meta-data of a particular interval
k , where k ≥ j + 2 . The IEs use the last proposed meta-data
when they do not receive the guidelines from the DDEs in
time. Therefore, the DFS is a non-blocking mechanism.

When the IE starts a new interval, it records the local time as
tmj , divides the proposed interval duration durpj fairly on the

number of interval rounds rounds(j), and calculates the round
start time trj,y and duration durrj accordingly, where j is the
interval index and y is the round index, as outlined in Eq. 4.
The IE attempts to start each round at its proposed time and
divides the duration to the next round fairly on transmitting
its mtss.

durrj = durpj/rounds(j)

trj,y = tmj + durrj ∗ y (4)

The IE receives an acknowledgment when a compute node
receives a contribution. It calculates the latency of receiv-
ing each acknowledgment and calculates the median medlat
accordingly at the end of each interval. After transmitting
all contributions of a particular interval, the IE waits until
receiving a specific threshold θ of acknowledgments before
starting a new interval. If a node is slow and it reached the
proposed end time of an interval tpj + durpj without sending
all the contributions, the IE starts transmitting the remaining
contributions using the best-effort traffic. As a result, this node
utilizes the network as fast as it can while other input nodes
might idle. The idle time of other nodes would be kept short
as this IE tries to catch up.

When the IE receives the last acknowledgment of a partic-
ular interval, it records the local time and calculates the actual
interval duration tmj . Then, it broadcasts this meta-data to all
DDEs. Therefore, the DFS is a deterministic mechanism for
scheduling data distribution because the DDEs get the same
history of completed intervals and thus they propose the same
meta-data for the upcoming intervals.

D. Fault Tolerance

The DDEs propose the same meta-data for each interval and
thus are replicas to each other. The IEs use the first received
meta-data of an interval proposal without waiting for other
DDEs. Therefore, DFS needs an IE at each input node and at
least one DDE on any of the compute nodes to be running.
When a system uses more DDEs on different compute nodes,
they tolerate a failure of any but one of them.

Different DDEs do not communicate between each other.
When the DFS runs with a single DDE and it fails, the new
restarted DDE cannot propose time-intervals immediately. It
assumes that there might be other running replicas and it might
propose inconsistent meta-data. In order to recover a failed
DDE and to keep the mechanism deterministic, the history
manager module of the new DDE has to collect hist cnt
complete intervals before it starts proposing. As a result,
all DDEs would keep proposing deterministic meta-data of
intervals.

When a compute node fails, the IE would distribute fewer
contributions per round because the DDEs propose the meta-
data based on the history of the completed intervals that
they have. However, the SSU mechanism would reduce the
interval duration over time and the DDEs would propose
the optimal interval duration after a set of intervals. When
an input node fails, each DDE detects that it does not receive
contributions for an interval. After that, it can propose the

5

upcoming intervals based on fewer IEs. Therefore, The DFS
is able to recover the failures of both input and compute
nodes. For the CBM use case, it does not make sense to
tolerate failures of input nodes, as only complete time-slices
are reasonable for later analysis.

IV. IMPLEMENTATION

FLESnet was initially implemented1 using the API of
InfiniBand Verbs [18] and it relies on connection-oriented
communication. To support other modern interconnects like
Omni-Path [19], Ethernet, and GNI [20], we ported2 FLESnet
to OpenFabrics Interface (OFI) Libfabric [21], [22]. Input
and compute processes run on separate single cores and each
process uses a single thread. In order to initially synchronize
input and compute processes, FLESnet uses the MPI Barrier
once the connections are established and before the start of
transmitting the mtss. We assume that all processes leave
the barrier at a similar time and most often they actually
do so. Each process records the local time once it leaves
the barrier and the input processes broadcast their triggered
time to the compute processes. The DDE, which runs on
compute processes, uses these times to calculate the initial
clock offset of each machine. We implemented our DFS3 on
top of FLESnet.

FLESnet uses two types of messages to communicate be-
tween nodes:

• Remote Direct Memory Access (RDMA) writes [23]:
Input nodes write the mtss into the memory of remote
compute nodes using RDMA writes. RDMA is a one-
sided communication, therefore compute nodes are not
informed or interrupted when a mts is written into their
memory.

• Message Passing (SYNC) messages: To coordinate be-
tween input and compute nodes, message passing is used.
SYNC messages are only used when a node wants to
inform another node about changes. Input nodes use this
message to inform compute nodes about the written data,
actual meta-data of intervals, and to request proposal
meta-data of a particular interval. On the other hand,
compute nodes use SYNC messages to send tickets, or
proposed meta-data of upcoming intervals, and to inform
input nodes about completed time-slices.

FLESnet is developed to receive variable sizes of mtss, there-
fore the buffer spaces are designed as ring buffers in order
to utilize the usage of the available memory space. When the
end of the ring-buffer is almost reached and there is a small
space at the end and enough space at the beginning of the
buffer, the input node divides the mts into two parts, to fit the
available space, and writes the mts using two RDMA writes,
instead of one. Additionally, each mts has a descriptor of 20
bytes that describes the component and content of the mts.
This descriptor is written in a separate RDMA write after

1https://github.com/cbm-fles/flesnet
2https://github.com/tschuett/flesnet
3https://github.com/tschuett/flesnet/tree/fles libfabric DFS

transmitting the mts content. After the mts is written, input
nodes use a SYNC message to inform the compute node about
the written mts. Once an IE transmitted a whole interval, it
uses SYNC messages to broadcast the actual meta-data.

V. EVALUATION

We evaluated the Data Flow Scheduler on a Cray XC40
using up to 384 nodes, each equipped with two Intel Xeon
E5-2680v3 and 64 GiB of main memory. We use the GNI
provider [20] of Libfabric to run FLESnet on Cray Aries
network. We implemented a micro benchmark that resembles
the communication pattern of FLESnet—half of the nodes
is spreading messages to the other half of the nodes—but
without any coordination or dependencies on the arrival of
contributions of other nodes or buffer space limitations. This
allows us to compare the performance of RDMA write op-
erations between MPI and Libfabric to evaluate our decision
of porting FLESnet to Libfabric (Sect. V-A). It also gives us
an upper limit of the bandwidth that the FLESnet architecture
reasonably could achieve. Then, we discuss the performance
of DFS in various aspects. We show the effect of DFS on
the aggregated bandwidth (Sect. V-B1), how DFS reduces the
duration to complete time-slices (Sect. V-B2), the status of the
buffer space (Sect. V-B4), and the effectiveness of the staged-
speed-up mechanism (Sect. V-B3).

We used Libfabric 1.6.2 and Cray-mpich 7.5.1 versions
compiled on Cray GCC 6.2.0 compiler. The micro-benchmark
of Libfabric4 and MPI5 are adopted from [24], [25] respec-
tively. We modified these benchmarks to divide the processing
nodes into two groups: half of the nodes as senders, and the
other half as receivers. Each processing node runs a single
thread, either sender or receiver. The benchmark measures
by repeated executions the average duration of a round (each
sender writes a message into each receiver’s memory buffer)
and the average bandwidth of RDMA writes using different
number of processes on a single run.

A. Libfabric/MPI Micro-Benchmark

The MPI and Libfabric micro-benchmarks use the
MPI Put and fi write operation respectively to write data
into the receiver’s memory. In order to improve performance,
the benchmark uses huge pages, which defaults to 2 MiB pages
for the benchmark. The benchmark aligns the senders to start
writing data roughly at the same time using an MPI Barrier .
Each sender finishes writing data independently on other
senders after a given number of iterations.

The results show that Libfabric needs a longer duration
to transmit a round of messages when the message size is
larger than 128 KiB, as depicted in Fig. 3. MPI achieves
8.7 % and 50.65 % shorter duration for 128 KiB and 1 MiB
messages respectively when 192 nodes are used. Therefore,
Libfabric achieves a better bandwidth than MPI when the
message size is at most 128 KiB, as depicted in Fig. 4. While
MPI improves the performance for larger messages, Libfabric

4https://github.com/fsalem/cray-tests
5https://github.com/fsalem/mpi-benchmarks

6

https://github.com/cbm-fles/flesnet
https://github.com/tschuett/flesnet
https://github.com/tschuett/flesnet/tree/fles_libfabric_DFS
https://github.com/fsalem/cray-tests
https://github.com/fsalem/mpi-benchmarks

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

5
2
4
2
8
8

1
0
4
8
5
7
6

2
0
9
7
1
5
2

4
1
9
4
3
0
4

▷
 s
m
a
lle
r is

 b
e
tte
r

A
v
g
.
D
u
ra
tio
n

 p
e
r
R
o
u
n
d

 (
0
.5

 #
n
o
d
e
s
 m
s
g
s
)
[m
s
e
c
]

Message Size [byte]

Libfabric 64 nodes
Libfabric 128 nodes
Libfabric 192 nodes
Libfabric 384 nodes

MPI 64 nodes
MPI 128 nodes
MPI 192 nodes
MPI 384 nodes

 0

 1

 2
1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

Fig. 3. Libfabric-MPI average duration per round of RDMA writes of many
concurrent point-to-point communications with different number of nodes
(half senders and half receivers).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

5
2
4
2
8
8

1
0
4
8
5
7
6

2
0
9
7
1
5
2

4
1
9
4
3
0
4

◁
 la
rg
e
r is

 b
e
tte
r

B
a
n
d
w
id
th

 [
M
iB
/s
]

Message Size [byte]

Libfabric 64 nodes
Libfabric 128 nodes
Libfabric 192 nodes
Libfabric 384 nodes

MPI 64 nodes
MPI 128 nodes
MPI 192 nodes
MPI 384 nodes

Fig. 4. Libfabric-MPI bandwidth per sender of RDMA writes of many
concurrent point-to-point communications with different number of nodes
(half of them sender and half of them receiver).

0

100

200

300

400

500

600

700

800

900

65536 131072 524288 1048576

◁
 la
rg
e
r is

 b
e
tte
r

A
g
g
.
B
a
n
d
w
id
th

 [
G
iB
/s
]

Message Size [byte]

MPI

216

331

612

753
Libfabric

374
339 315 308

Mix w. small msgs. MPI

48 56 45 31

Mix w. small msgs. Libfabric

389
359

326 319

Fig. 5. A comparison between the aggregated bandwidth of Libfabric and
MPI micro-benchmarks at different message sizes and a workload mixed with
small messages; for each big message one 16 and two 64 byte messages are
sent in the ‘Mix’ scenarios. No synchronization overhead is involved and each
sender is sending to all receivers with point-to-point communication on 192
nodes (96 senders to 96 receivers)

TABLE I
CONFIGURABLE PARAMETERS

Parameter Configured Value
ts per intvl 10,000 timeslices; timeslices per interval
hist cnt 10 intervals; length of history
ssu TH 10 %; average variance threshold for speed-up
ssu pct 5 % of the interval duration; speed-up amount

suffers from a significant performance drop with messages
larger than 8 KiB. We use huge pages of 2 MiB to improve
the performance of large messages. In general, it would help
to use multiple threads per node [26].

This micro-benchmark only shows the achievable perfor-
mance when RDMA writes are used overriding the memory
space without any demand of tickets and coordination. It
differs from FLESnet in several aspects:

• FLESnet transmits different types of messages with dif-
ferent sizes, as explained in Sect. IV, while the bench-
mark transmits one message type (RDMA writes) with
a fixed message size.

• FLESnet has a limited buffer space at each node and
tickets have to be available to write more mtss. To receive
a new ticket for the same buffer place, input nodes have to
transmit the mts, wait to receive the completion event of
the networking layer, send a SYNC message to inform the
compute node about the written mts, wait to complete the
time-slice at the compute node (collect all contributions
from other nodes), and then receive a SYNC message
containing a new ticket. The benchmark, on the other
hand, can send as many messages as fast as it can without
these limitations.

• The nodes of FLESnet depend on each other’s progress.
One straggler node quickly affects other nodes, as dis-
cussed in Sect. II. In the benchmark, in contrast, senders
and receivers do not depend on each other at all.

Figure 5 depicts the aggregated bandwidth of the micro-
benchmark (#senders*‘bandwidth per sender’) for MPI and
Libfabric and compares it to a scenario where a fixed number
of SYNC messages and timeslice-descriptors are added per
round. These results show the aggregated bandwidth of writing
1 million mtss, 1 million 16 byte descriptors—one for each
time-slice, and 2 million 64 byte SYNC messages. We see
a significant performance drop when small messages are added
to the workload, especially in case of MPI. These results
confirm our decision to port FLESnet to Libfabric in order
to support various sizes of time-slices performance wise. We
will use the Libfabric benchmark results for the workload
including small messages (rightmost bars in Fig. 5) to evaluate
the effectiveness of DFS.

B. DFS Performance

We configured FLESnet to assign 1 MiB of main memory
to each node and each mts is 64 KiB. Table I shows the values
of the other DFS parameters.

1) Achieved Throughput: We benchmarked FLESnet and
FLESnet with DFS (short DFS) and compare the results with

7

 0

 100

 200

 300

 400

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

▷
 s
m
a
lle
r is

 b
e
tte
r

C
o
m
p
le
tio
n

 d
u
ra
tio
n

 [
m
s
]

Timeslice no. [1] (64 nodes)

FLESnet
DFS

 0

 100

 200

 300

 400

FLESnet DFS

▷
 s
m
a
lle
r is

 b
e
tte
r

Min, Max (bar: 10th - 90th percentile, median) (64 nodes)

 0

 200

 400

 600

 800

 1000

 1200

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

▷
 s
m
a
lle
r is

 b
e
tte
r

C
o
m
p
le
tio
n

 d
u
ra
tio
n

 [
m
s
]

Timeslice no. [1] (128 nodes)

FLESnet
DFS

 0

 200

 400

 600

 800

 1000

 1200

FLESnet DFS

▷
 s
m
a
lle
r is

 b
e
tte
r

Min, Max (bar: 10th - 90th percentile, median) (128 nodes)

 0

 400

 800

 1200

 1600

 2000

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

▷
 s
m
a
lle
r is

 b
e
tte
r

C
o
m
p
le
tio
n

 d
u
ra
tio
n

 [
m
s
]

Timeslice no. [1] (192 nodes)

FLESnet
DFS

 0

 400

 800

 1200

 1600

 2000

FLESnet DFS

▷
 s
m
a
lle
r is

 b
e
tte
r

Min, Max (bar: 10th - 90th percentile, median) (192 nodes)

 0

 800

 1600

 2400

 3200

 4000

 4800

0 100k 200k 300k 400k 500k 600k 700k 800k 900k 1M

▷
 s
m
a
lle
r is

 b
e
tte
r

C
o
m
p
le
tio
n

 d
u
ra
tio
n

 [
m
s
]

Timeslice no. [1] (384 nodes)

FLESnet
DFS

 0

 800

 1600

 2400

 3200

 4000

 4800

FLESnet DFS

▷
 s
m
a
lle
r is

 b
e
tte
r

Min, Max (bar: 10th - 90th percentile, median) (384 nodes)

Fig. 6. A comparison between FLESnet and DFS of the duration to complete each time-slice. The plots, on the right summarize the left side plots by showing
the minimum, maximum, 10th and 90th percentile, and the median. Half of the nodes are input nodes and the other half are compute nodes.

0

100

200

300

400

500

600

700

800

64 128 192 384

◁
 la
rg
e
r is

 b
e
tte
r

A
g
g
.
B
a
n
d
w
id
th

 [
G
iB
/s
]

#Nodes [1] (half of them sender and half of them receiver)

FLESnet

119.7 143.3
170.7

279.4

DFS

125.0

215.2 237.4

425.4

Libfabric Benchmark

1
4
4
.4

2
6
9
.2 3
7
9
.5

6
3
3
.0

Fig. 7. Achieved aggregate bandwidth of FLESnet and DFS compared to the
Libfabric benchmark with different number of nodes.

the Libfabric micro-benchmark results with a mix of message
sizes (see Sect. V-A). This micro-benchmark is comparable
with FLESnet regarding only the data distribution because
FLESnet uses a combination of SYNC messages (87 bytes),
mts RDMA writes (64 KiB in these test cases), and mts
descriptor RDMA writes (20 bytes). We discuss how the
system limitations of FLESnet (see Sect. II), cause a significant
performance drop on larger systems.

Figure 7 depicts the achieved aggregated bandwidth of
FLESnet and DFS on different system sizes. DFS shows
a better performance and it almost closes the gap to the
Libfabric benchmark. The DFS achieves 80 %, 62.5 %, and
67 % of the Libfabric aggregated bandwidth on 128, 192,
384 nodes respectively, while FLESnet achieves 53 %, 45 %,

8

44 % of the Libfabric aggregated benchmark using the same
sequence of nodes. For larger systems, the synchronization
overhead increases.

2) Synchronization Overhead: One of the goals of DFS was
to shorten the duration to receive a complete time-slice at the
compute nodes to free the buffer space as fast as possible.
Figure 6 depicts the time difference between the arrival of
the first and the last mts of each time-slice. DFS shortens
the duration by at least 30 times. The figure shows that DFS
(as FLESnet) needs longer to complete time-slices when the
system scales up because it collects mtss from more nodes,
and therefore it needs more time. Nevertheless, the variance
of the duration to complete time-slices remains steadily short
with larger systems.

3) Bandwidth Recovery: The DFS is able to recover tempo-
rary bandwidth drop, for example because of network conges-
tion. We simulated an artificial bandwidth drop by increasing
the actual duration of an interval by 25 %. Figure 8 depicts
a comparison between the proposed duration and the actual
duration of interval. It compares a normal running of DFS
when there are no problems and when it faces bandwidth
drop. The figure illustrates that the DFS recovers the dropped
bandwidth over time.

4) Buffer Usage: Due to the reduced completion time for
collecting a time-slice, DFS is able to free the buffer space
faster than bare FLESnet. Figure 9 illustrates the buffer fill
levels aggregated across compute nodes and over time. For
each sample, the buffer fill level at each compute node is
ordered in descending order. The figure shows that many
buffers are filled up in case of FLESnet, i.e., input nodes run

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

▷
 s
m
a
lle
r is

 b
e
tte
r

D
u
ra
tio
n

 [
m
s
]

Interval index [1] (192 nodes)

Proposed duration
Actual duration

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

▷
 s
m
a
lle
r is

 b
e
tte
r

D
u
ra
tio
n

 [
m
s
]

Interval index [1] (192 nodes)

Proposed duration
Actual duration

Fig. 8. A comparison between the proposed and actual duration of a sample
of intervals on 192 nodes (half of them input nodes and half of them
compute nodes). The top plot shows a normal meta-data of intervals when the
bandwidth is stable. The bottom plot depicts the effect of the staged-speedup
mechanism when a 25 % bandwidth drop is artificially applied for intervals
15 to 25 and the SSU is applied for intervals 25 to 35.

out of tickets. With DFS the buffer fill level is only ≈10 % for
all connections. As we explained earlier, this is essential for
the system’s scalability because the local memory space does
not scale up with the system size.

VI. RELATED WORK

There are a variety of different measures to detect, avoid,
and cope with congestion in different disciplines. A common
technology is credit-based flow control [27]. It is similar to our
approach and uses credits to manage the network throughput.
The Aries network [28] uses adaptive routing to route around
congested parts of the network.

Monitoring and Detection: On top of existing functional-
ity in common switches, Everflow [29] designed a network
telemetry system on packet-level. It distributes collected pack-
ages of several analysis servers and uses ‘guided probes’ to
detect and analyze faults. In contrast, we decided to use the
existing servers to monitor the network.

SketchVisor [30] uses counters to detect problematic flows
with low overhead. Their prototype is built on top of Open
vSwitch. The so called fast-path is used for more detailed
analysis. It uses Misra-Gries’s top-k algorithm to identify
offending flows. We keep detailed information about each flow
in our approach.

In contrast to previous systems, Trumpet [31] performs
active monitoring of network flows. Instead of using switches
to monitor traffic, they employ the end-hosts, which analyze
all incoming resp. outgoing traffic. Users can deploy triggers
at the nodes. It resembles our approach, as we also rely on
end-hosts for analyzing the network. Our approach knows the
overall communication pattern in advance and thus can plan
the schedules instead of just reacting to the occurring load.

Load-Balancing: State of the art load balancers, such as
Google’s Maglev, maintain state per connection to provide
consistency in face of backends joining or leaving. In contrast,
Beamer [32] is a stateless loadbalancer. It relies on stable
hashing, fault-tolerant control pane, and in-band commu-
nication between switches. When the compute nodes have
heterogeneous compute capacity, we would follow a similar
approach to adaptively distribute the load.

Facebook uses a distributed video processing system called
SVE [33]. Similar to our approach, it is streaming based
and has predictable network flows. Another practical scenario
where the usage of DFS could be advantageous.

Traffic Shaping: Instead of a centralized resource for man-
aging traffic, Carousel [34] lets the end-hosts control their
data-center network. Traffic shaping includes packet pacing,
rate-based congestion control, and policy-based bandwidth
allocation to flows. The DFS also uses a distributed monitoring
and scheduling system for scalability. Instead of reacting to
the arising network load, it knows the overall communication
pattern in advance and thus can plan the schedule ahead.

With an improved switch queuing algorithm, multipath
routing, and a new transport protocol, NDP [35] can provide
low-latency, isolation between different workloads in data-

9

 0

 20

 40

 60

 80

 100

 0 20

▷
 s
m
a
lle
r is

 b
e
tte
r

F
ill
-L
e
v
e
l
[%
]

Connections sorted by buffer fll level [1] (64 nodes)

FLESnet: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20

▷
 s
m
a
lle
r is

 b
e
tte
r

DFS: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20 40 60

▷
 s
m
a
lle
r is

 b
e
tte
r

F
ill
-L
e
v
e
l
[%
]

Connections sorted by buffer fll level [1] (128 nodes)

FLESnet: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20 40 60

▷
 s
m
a
lle
r is

 b
e
tte
r

DFS: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80

▷
 s
m
a
lle
r is

 b
e
tte
r

F
ill
-L
e
v
e
l
[%
]

Connections sorted by buffer fll level [1] (192 nodes)

FLESnet: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80

▷
 s
m
a
lle
r is

 b
e
tte
r

DFS: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

▷
 s
m
a
lle
r is

 b
e
tte
r

F
ill
-L
e
v
e
l
[%
]

Connections sorted by buffer fll level [1] (384 nodes)

FLESnet: Min, Max (bar: 10th-90th percentile, median)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180

▷
 s
m
a
lle
r is

 b
e
tte
r

DFS: Min, Max (bar: 10th-90th percentile, median)

Fig. 9. The minimum, maximum, 10th and 90th percentile, and the median of the buffer fill level on ordered connections of 64, 128, 192 nodes respectively,
aggregated for all compute nodes over a whole run; sampled every second. Each run took at least 18 minutes and each input node has access to a buffer
space at compute nodes that can hold up to 16 mtss, so the overall buffer space is scaled linearly with the number of compute nodes for this evaluation. Half
of the nodes are input nodes and the other half are compute nodes.

10

center networks, fairness, and avoid congestion. It is optimized
for CLOS networks.

While Carousel follows the trend to move traffic shaping to
the end-hosts, DRILL [36] follows the opposite direction. It
uses switches to perform micro load balancing based on queue
occupancy and randomizing the traffic. In contrast to these
approaches, DFS uses an end-host based approach and works
independent and on top of the underlying network routing.

Using credit-based flow control, ExpressPass [37] provides
bandwidth allocation and fine-grained packet scheduling. It
has similar goals to our approach: fast convergence, low buffer
occupancy, and high utilization.

Similar to our approach, some systems rely on end-hosts
to perform traffic shaping. Other system employ the servers
to manage the network. We only rely on the end-hosts. The
literature also shows some cases of using credit-based flow
control, which we used to manage data flows. The typical
network traffic in a data-center is highly challenging as it
is unpredictable and constantly changing with micro bursts.
Similar to SVE [33], our traffic pattern is more constant and
predictable, which allows us to use different techniques.

VII. CONCLUSION

We presented a distributed data-flow scheduler (DFS) which
runs on a set of senders and receivers to steer high-volume data
stream distributions with a high throughput, as needed for the
Compressed Baryonic Matter (CBM) experiment. DFS aims at
achieving a fair network usage, so that stream chunks from the
same observation time are aggregated in the compute nodes
without much time delay and low buffer usage.

DFS is non-blocking, distributed, and provides deterministic
data flow schedules for the senders based on the behavior
observed in the recent past. Due to the use of Libfabric it works
not only with Cray Aries/GNI but also with other modern
interconnects. Compared to generic data-center solutions, DFS
is coupled with the application and thus knows the intended
communication pattern in advance, which gives DFS the
advantage to be able to calculate a schedule that is given to the
input nodes, so they can try to follow the schedule. This way,
we outperform the integrated adaptive routing of the network,
because DFS can leverage knowledge that is not available to
a reactive system.

As shown in the paper, DFS improves both, the system
scalability and the performance. It increases the aggregated
bandwidth (80 % vs. 53 % for FLESnet of the practicably
achievable bandwidth on 128 nodes) and reduces the duration
to collect all time-slice contributions by a factor of up to 45.
DFS synchronizes the input nodes to receive complete time-
slices at compute nodes in a timely manner. As a result, the
buffer space at the compute nodes is less filled (DFS needs
only up to 10 %), which is essential for the system scalability.
DFS distributes the load more evenly on the network resources
to saturate all communication links in any time. It reduces the
congestion of the network by scheduling the outgoing data
packets of input nodes to different compute nodes at a time.
DFS detects dynamic network changes and reschedules the

traffic accordingly. It is also able to tolerate the failure of its
distributed instances.

A. Acknowledgements
We thank the HLRN and Zuse Institute Berlin for computing

time on the Cray XC40. The project received funding from the
BMBF under grants 05P15ZAFC1 and 05P19ZAFC1 (both
CBM).

REFERENCES

[1] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and M. A.
Shah, “TelegraphCQ: Continuous dataflow processing,” in Proceedings
of the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, California, USA, June 9-12, 2003, p. 668, ACM,
2003.

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogenous systems,” Int.
Journal in Computer Simulation, vol. 4, no. 2, 1994.

[3] S. B. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Bal-
azinska, and H. Balakrishnan, “The Aurora and Medusa projects,” IEEE
Data Eng. Bull., vol. 26, no. 1, pp. 3–10, 2003.

[4] S. Group et al., “STREAM: The Stanford stream data manager,” tech.
rep., Stanford InfoLab, 2003.

[5] S. K. Barker and P. J. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the First
Annual ACM SIGMM Conference on Multimedia Systems, MMSys 2010,
Phoenix, Arizona, USA, February 22-23, 2010, pp. 35–46, ACM, 2010.

[6] S. Agarwal and J. R. Lorch, “Matchmaking for online games and other
latency-sensitive P2P systems,” in Proceedings of the ACM SIGCOMM
2009 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Barcelona, Spain, August 16-
21, 2009, pp. 315–326, ACM, 2009.

[7] R. Geist, M. Smotherman, K. S. Trivedi, and J. B. Dugan, “The
reliability of life-critical computer systems,” Acta Inf., vol. 23, no. 6,
pp. 621–642, 1986.

[8] V. Friese, “The CBM experiment at GSI/FAIR,” Nuclear Physics A,
vol. 774, pp. 377–386, 2006.

[9] M. Stephanov, “QCD phase diagram: an overview,” arXiv preprint hep-
lat/0701002, 2006.

[10] J. De Cuveland, V. Lindenstruth, C. Collaboration, et al., “A first-level
event selector for the CBM experiment at FAIR,” Journal of physics:
Conference series, vol. 331, no. 2, p. 022006, 2011.

[11] X. Xiao and L. M. Ni, “Internet QoS: A big picture,” IEEE Network,
vol. 13, pp. 8–18, Mar. 1999.

[12] L. Li and J. Zhu, “Ticket-based traffic flow control at intersections for
internet of vehicles,” in IEEE International Congress on Internet of
Things, ICIOT 2017, Honolulu, HI, USA, June 25-30, 2017, pp. 66–
73, IEEE Computer Society, 2017.

[13] T. E. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “PCP:
efficient endpoint congestion control,” in 3rd Symposium on Networked
Systems Design and Implementation (NSDI 2006), May 8-10, 2007, San
Jose, California, USA, Proceedings., USENIX, 2006.

[14] G. F. Pfister and V. A. Norton, ““Hot spot” contention and combining in
multistage interconnection networks,” IEEE Trans. Computers, vol. 34,
no. 10, pp. 943–948, 1985.

[15] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
algorithms for all-to-all communications in multiport message-passing
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 8, no. 11, pp. 1143–
1156, 1997.

[16] C. M. D. Pazos, J. C. Sanchez-Agrelo, and M. Gerla, “Using back-
pressure to improve TCP performance with many flows,” in Proceedings
IEEE INFOCOM ’99, The Conference on Computer Communications,
Eighteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies, The Future Is Now, New York, NY, USA, March
21-25, 1999, pp. 431–438, IEEE Computer Society, 1999.

[17] W. R. Stevens, “TCP slow start, congestion avoidance, fast retransmit,
and fast recovery algorithms,” RFC, vol. 2001, pp. 1–6, 1997.

[18] V. Velusamy, C. Rao, S. Chakravarthi, J. P. Neelamegam, W. Chen,
S. Verma, and A. Skjellum, “Programming the Infiniband network
architecture for high performance message passing systems,” in ISCA
PDCS, pp. 391–398, Citeseer, 2003.

11

[19] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rim-
mer, K. D. Underwood, and R. C. Zak, “Intel Omni-path architecture:
Enabling scalable, high performance fabrics,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, pp. 1–9, IEEE, 2015.

[20] H. Pritchard, E. Harvey, S.-E. Choi, J. Swaro, and Z. Tiffany, “The GNI
provider layer for OFI libfabric,” in Proceedings of Cray User Group
Meeting, CUG, 2016.

[21] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell, H. Pritchard, and
J. M. Squyres, “A brief introduction to the OpenFabrics interfaces—
A new network API for maximizing high performance application
efficiency,” in 23rd IEEE Annual Symposium on High-Performance
Interconnects, HOTI 2015, Santa Clara, CA, USA, August 26-28, 2015,
pp. 34–39, IEEE Computer Society, 2015.

[22] M. Luo, K. Seager, K. S. Murthy, C. J. Archer, S. Sur, and S. Hefty,
“Early evaluation of scalable fabric interface for PGAS programming
models,” in Proceedings of the 8th International Conference on Par-
titioned Global Address Space Programming Models, PGAS 2014, Eu-
gene, OR, USA, October 6-10, 2014 (A. D. Malony and J. R. Hammond,
eds.), pp. 1:1–1:13, ACM, 2014.

[23] R. Recio, B. Metzler, P. R. Culley, J. Hilland, and D. Garcia, “A remote
direct memory access protocol specification,” RFC, vol. 5040, pp. 1–66,
2007.

[24] OpenFabrics Interfaces for Cray systems, “cray-tests.” https://github.
com/ofi-cray/cray-tests, 2019. [Online; accessed 01-March-2019].

[25] Intel, “Intel MPI benchmark.” https://github.com/intel/mpi-benchmarks,
2019. [Online; accessed 01-March-2019].

[26] D. Doerfler, B. Austin, B. Cook, J. Deslippe, K. Kandalla, and P. Mendy-
gral, “Evaluating the networking characteristics of the Cray XC-40 Intel
Knights Landing-based Cori supercomputer at NERSC,” Concurrency
and Computation: Practice and Experience, vol. 30, no. 1, 2018.

[27] S.-A. Reinemo, T. Skeie, T. Sodring, O. Lysne, and O. Trudbakken,
“An overview of QoS capabilities in Infiniband, advanced switching
interconnect, and ethernet,” IEEE Communications Magazine, vol. 44,
no. 7, pp. 32–38, 2006.

[28] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade:
A scalable HPC system based on a Dragonfly network,” in Proceed-

[36] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,”
in Proceedings of the Conference of the ACM Special Interest Group on

ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, (Los Alamitos, CA, USA),
pp. 103:1–103:9, IEEE Computer Society Press, 2012.

[29] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry in
large datacenter networks,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, SIGCOMM ’15,
(New York, NY, USA), pp. 479–491, ACM, 2015.

[30] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-C. Chen, and
G. Zhang, “SketchVisor: Robust network measurement for software
packet processing,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, (New York,
NY, USA), pp. 113–126, ACM, 2017.

[31] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely
and precise triggers in data centers,” in ACM SIGCOMM, 2016.

[32] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with Beamer,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), (Renton, WA), pp. 125–
139, USENIX Association, 2018.

[33] Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib, A. Yajurvedi,
P. Dapolito, IV, X. Yan, M. Bykov, C. Liang, M. Talwar, A. Mathur,
S. Kulkarni, M. Burke, and W. Lloyd, “Sve: Distributed video processing
at facebook scale,” in Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, (New York, NY, USA), pp. 87–103,
ACM, 2017.

[34] A. Saeed, N. Dukkipati, V. Valancius, T. Lam, C. Contavalli, and
A. Vahdat, “Carousel: Scalable traffic shaping at end-hosts,” in ACM
SIGCOMM 2017, 2017.

[35] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, and M. Wójcik, “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proceedings of the Conference
of the ACM Special Interest Group on Data Communication, SIGCOMM
’17, (New York, NY, USA), pp. 29–42, ACM, 2017.
Data Communication, SIGCOMM ’17, (New York, NY, USA), pp. 225–
238, ACM, 2017.

[37] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded conges-
tion control for datacenters,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17,
(New York, NY, USA), pp. 239–252, ACM, 2017.

12

https://github.com/ofi-cray/cray-tests
https://github.com/ofi-cray/cray-tests
https://github.com/intel/mpi-benchmarks

	Introduction
	FLESnet Communication Pattern
	Offset-Based Round-Robin Data Distribution
	Scalability Constraints and Coordination
	Synchronization Aspects

	Data-Flow Scheduler
	System Assumptions
	Distributed Deterministic Engine
	History Manager
	Proposer Module
	Clock Synchronizer

	Input Engine
	Fault Tolerance

	Implementation
	Evaluation
	Libfabric/MPI Micro-Benchmark
	DFS Performance
	Achieved Throughput
	Synchronization Overhead
	Bandwidth Recovery
	Buffer Usage

	Related Work
	Conclusion
	Acknowledgements

	References

