Continuous Deployment Automation in
Supercomputer Operations:
Techniques, Experiences and Challenges

Nicholas P. Cardo, Matteo Chesi, Miguel Gila
Swiss National Supercomputing Centre (CSCS)
Lugano, Switzerland
Email: (cardo|chesi|gila)@cscs.ch

Abstract—Continuous Deployment (CD) is a software develop-
ment process that pursues the objective of immediately deploying
software in production to users as soon as it is developed. CD is
part of the DevOps methodology and has been widely adopted
in the industry including large web technology companies like
Facebook, Inc. and Amazon.com, Inc. to release new features to
their public.

The Swiss National Supercomputing Centre (CSCS) has an
interest in adopting CD for the software platform of their
supercomputer Piz Daint. The initial implementation provides
an automated Continuous Deployment Process (CDP) that is
capable of deploying new compute node configurations, including
changes to the Programming Environment. Changes can be
propagated across the whole system in a relatively short time
thereby minimising the use of resources and the possible impact
on user workloads.

In order to implement a more comprehensive CD workflow
in HPC Operations further barriers must be dismantled and
overcome in future supercomputer architecture designs.

Index Terms—Programming Environment; System Updates;
CLE; Cray XC; Continuous Deployment;

I. INTRODUCTION

Adopting a CD workflow yields large benefits such as reduc-
ing the time to deliver new features and time spent performing
manual activities. Achieving this requires a great effort on the
transformation of the whole software development process and
the complete automation of software testing and deployment
phases.

At the Swiss National Supercomputing Centre (CSCS), the
HPC Operations Compute Services Group (HPC-OPS-CS) is
responsible for maintaining the operational status of Piz Daint
and the deployment of the software platform in which the users
build and execute their own software applications. In order to
provide a reliable up-to-date software platform to the users,
HPC-OPS-CS has increased the cadence of software changes
and deployment on Piz Daint from the previous monthly
scheduled maintenance to a continuous process that evaluates
the urgency, criticality and risk of each change to be performed
both live or through system reboots.

Fig. 1. Piz Daint

Piz Daint is a Cray XC' = 40/50 system with 5704 Hybrid
Compute nodes and 1813 Multicore nodes in a single system
partition. Each Hybrid Compute Node consists of 1 Intel®
Xeon® E5-2690 V3 processor at 2.60 GHz (12 cores), 64
GB of DDR4 memory, and 1 NVIDIA® Tesla® P100 16GB.
Each Multicore node consists of 2 Intel® Xeon® E5-2695 V4
processors at 2.10 GHz (18 cores) and 64 or 128 GB of DDR
4 memory. [1]

II. OBJECTIVES

One of HPC-OPS-CS goals is the automation of common
system operations. In this scope, the effort of increasing soft-
ware update frequencies would benefit from the adoption of a
CD workflow. CD provides an ideal solution to the problem
of software feature and change deployments on Piz Daint
by removing the need for manual operations. Automation
provides the ease of reproducibility with the benefit of reduced
manpower to install updates across the system.

Unfortunately, the implementation of CD theory in an HPC
environment with supercomputers is more than just a matter of
will. CD and other DevOps practices are often associated with
cloud computing which is a totally different environment from
a supercomputer. Where cloud computing has standardized
generally available hardware resources to allow the creation
of development or testing environments on demand, a super-
computer like Piz Daint has very specialized hardware, 99%
resource occupancy and hours of queue wait time.

With the needs and benefits identified, the following design
objectives could be established:

1) Ease of use
2) Reproducability for subsequent updates
3) Reduction of required manpower

A. Ease Of Use

In the end, the solution had to be easy to use. Creating a
complicated solution that was difficult to use and understand
would only detract from the benefits and deter future use.

If the implementation of the solution is difficult to get
operational or difficult to maintain, this too would detract from
the benefits and deter future use.

Therefore, ”Ease of Use” could be quantified by the follow-
ing:

« Ease of installation and setup

o Easy to understand and use

o Simple to maintain

B. Reproducibility for Subsequent Updates

It is important that each time the same update is performed,
the solution responds consistently. The expectation is also that
applying an update to something that has already been updated
through this process, will complete in the same manner as the
first time.

Regardless of the update being applied, the solution should
perform similarly and predictably.

Therefore, ’Reproducibility for Subsequent Updates” can be
quantified by the following:

o Highly Reliable
o Reproducibility
o Consistency

C. Reduction of Required Effort

It is expected that the first time an update is performed that
an effort is required to set it up. However, with subsequent
updates, it is anticipated that this effort would be drastically
reduced or even eliminated.

Additionally, the effort required to setup an update should
be less than the time required to perform the update manually.
Automation should reduce the effort required to complete the
update, thereby freeing up human resources for additional
tasking.

Therefore, ”Reduction of Required Effort” could be quanti-
fied by the following:

o Quick setup for repetitive updates
o Improved timings for updates compared to manual efforts

III. DESIGN CHALLENGES

As a preliminary step towards CD implementation, HPC-
OPS-CS analyzed and compared the theoretical implementa-
tion of a CD workflow for their HPC Operations on the:

« Public Cloud

¢ CSCS OpenStack Private Cloud

o Flagship System Piz Daint

This provided the means to evaluate which of the various
platform specific features would affect the CDP and how to
best plan for a CD roadmap.

In order to design the CDP, it was necessary to develop
automation test-cases in order to validate the process. CSCS
implemented a set of quick tests for the Piz Daint hardware and
software components as well as a comprehensive application
regression test suite based on ReFramei [2]. By leveraging the
availability of already developed tests on Piz Daint, a semi-
automated workflow to remove and return compute nodes from
production service could be developed.

IV. BACKGROUND

With the introduction of Cray Linux Environment 6.0 (CLE
6), the reconfiguration of service and compute nodes on a
Cray xc™ system can be manually initiated by a System
Administrator at any time. This can potentially lead to a system
having service and/or compute nodes with a configuration out
of sync across the entire system.

In most cases, users expect to have a homogeneous system
in terms of software and configuration. The expectation is that
all compute nodes have similar configuration files, services,
software, and filesystems, thereby establishing a consistent
known computing environment. However, there are times
when it is desired to have multiple configurations active across
the system. This occurs when changes are applied to the
system in a rolling manner or when configuring and adapting
a system after a major change or upgrade.

Cray Scalable Services designates nodes as SoA (Server
of Authority), tierl, tier2, or tier3. The System Management
Workstation serves as the SoA while the Boot and System
DataBase (SDB) nodes serve as tierl nodes. Tier2 nodes are
either service nodes or repurposed compute nodes. Each tier
is therefore a client of its predecessor in the boot hierar-
chy [3]. Prior to CLE 6 update UP07 (CLE 6.0.UPQ7), the
Cray Programming Environment (PE) was deployed by the
tier2 nodes using a Cray Data Virtualisation Service (DVS)
projected filesystem to the compute nodes making it easy to
update the PE across the system. All that was required was
to update the image directory on the System Management
Workstation (SMW), push the changes with rsync to the
boot node, and compute nodes would automatically pick up
the new changes after a brief period of time. It is standard
operation procedure at CSCS to keep multiple versions of
the PE installed on the system, while changing the default
is performed less frequently. Users were amenable to this
because the same default PE would be in place for long periods
of time, but also provided access to newer releases of the PE
that was routinely installed shortly after release.

However, with CLE 6.0.UP0Q7, Cray introduced a change to
the way the PE is deployed across the the system by utilizing a
squashfs filesystem. The PE squashfs file is generated
on the SMW, then pushed to the boot node and projected
to the compute nodes by utilizing the same tier2 nodes. The
compute nodes then mount the squashfs filesystem locally
as a loop device. This process provides excellent performance

because the DVS layer only has to project a single squashfs
file instead of a few million small files. Unfortunately, the
consequence of this process is that the PE image cannot be
updated across the complete system while jobs are running.
This is due to the need to run Ansible which effectively
unmounts the old PE squashfs file and mounts the new one.
The end result is that the PE cannot be pushed out to nodes
that have jobs running on them without creating problems.

Keeping the configuration consistent across the system and
updating the PE has become a very costly manual operation
as nodes now need to be drained before the updates can
be applied. This becomes increasingly difficult with large-
scale systems such as Piz Daint, adding to the challenges of
implementing a CD workflow.

V. DESIGN ELEMENTS

Since the commissioning of Piz Daint and Piz Dom in
November 2016, both systems implemented a set of operations
that automatically drain unhealthy nodes and prepare them
for corrective actions. Nodes can be drained for a variety
of reasons, including hardware problems (i.e. GPU XID) or
software problems (i.e. Slurmd spooldir full). This process,
called Node LifeCycle Management (NLM), has been used as
the foundation for implementing the new CDP. Working from
the basic idea that a newly available update release could be
handled as a special case of node failure, the fundamentals of
the design could be established.

In the NLM workflow, the state of a node allocated by
Slurm is determined by the combined use of different features
including node state, reservation names and memberships, and
drain reasons. [4] NLM is currently a semi-automated process
where most of the operations are performed by cron and the
Slurm prolog and epilog. However, it also requires manual
intervention of an operator or adminstrator to perform the most
delicate parts.

P> vailanie

Production-Ready
node set

ontinuous o
check

passive
console log
analysis tool

P yscheckout

reservation

fai.

warmswap
reservation

epilog cksys
quick regression !
suite !

prolog cksys

appscheckout

reservation

Fig. 2. NLM Workflow

One of these critical operations on Piz Daint is a compute
node reboot.

HPC-OPS-CS’s experience with managing Piz Daint has
shown that in certain situations under specific conditions,
what would normally be a standard compute node reboot
degenerated into a system-wide incident.

The majority of these incidents were found to be categorized
into two specific cases. The first case being the result of the
SMW trying to maintain the health of the system at the scale
of Piz Daint. The second case is due to the nature of the
High Speed Network (HSN), the Cray developed Aries [5]
interconnect, that requires rerouting and network quiesces
when nodes are removed or added to the network.

Because of these criticalities on Piz Daint, node reboots
are always manual operations that require an operator or
system administrator monitoring and supervising the system.
Moreover, reboot operations are restricted to certain time
windows to prevent their impact on user performance tests.

For these reasons, it was decided to exclude node reboots
from our process design. This is one of the main differences
between the CSCS implemented process and a standard im-
plementation on cloud-based systems where spawning and
deleting node or container instances is the most common way
to deal with software or configuration updates.

The list of design features for the design of the new process
are:

e F1 - Exclude Node Reboots

o F2 - Idle Nodes

o F3 - Scalability

o F4 - Publish and Retire Udpates

¢ F5 - Node Selectability

o F6 - Restrict Simultaneous Updates
e F7 - Implied Boot State

o F8 - Fully Automated

o F9 - Single Reservation

A. Exclude Node Reboots (F1)

From HPC-OPS-CS’s perspective, excluding node reboots
from the process provided the opportunity to minimize the
time needed to perform update operations. This is due to
physical node reboots being more time consuming than re-
spawning a Virtual Machine (VM) or a container. The time
saved in service operations is additional compute time avail-
able for scientific research.

B. Idle Nodes (F2)

Applying an update to a compute node that is actively
processing an application could lead to unpredicatable results.
Rather than risk applying an update that causes problems for
the active application, it has been determined that updates
should only be applied to idle nodes.

C. Scalability (F3)

Future systems at CSCS could be even larger in scale than
the current Flagship System, Piz Daint. The CDP not only has
to work at the current scale of Piz Daint but also be capable
of running on future, and potentially larger, systems.

D. Publish and Retire Updates (F4)

To achieve reliability and servicability, the capability to
publish and retire an update bundle is needed. Conditions may
arise where in the middle of the deployment process a problem
is detected with the update. Rather than wait for the process
to complete incorrectly, a mechanism was required in order to
terminate the active update process, revise it, and restart it.

E. Node Selectability (F5)

There may be situations when an update only needs to be
applied to select groups of nodes. This may be due to the
specific functionality provided by individual nodes as all nodes
may not provide equivalent functionality. An added benefit
provided with this functionality is the ability to test an update
on a few nodes before applying it to the entire system.

F. Restrict Simultaneous Updates (F6)

Care must be taken to not apply the update to the entire
system at once. This would result in the system draining
and going idle. By limiting the number of nodes that can be
simultaneously taken out of service for updating, production
operations can be maintained. This holds true even if large
quantities of nodes have become idle on their own. Every
caution must be taken to prevent the CDP from blocking
production operations. The CDP needs to run in a manner
that is virtually undetected by the user community.

G. Implied Boot State (F7)

When nodes are booted they are considered to be already
updated. If a node is rebooted for any reason, it must return
to service without the need for further update operations. If
nodes were returned to service without being updated, then
they would need to be drained again, wasting valuable compute
time.

H. Fully Automated (FS8)

The objective of implementing a CDP is to complete the
repetitive task of applying updates in an automated manner that
is faster, thereby freeing up staff. Automation breeds efficiency
by reducing staff overhead.

1. Single Reservation (F9)

Nodes would be identified for updates by placing them into
a special Slurm reservation. There are a number of activities as
part of the NLM process already in place at CSCS which also
utilize Slurm reservations. It is very easy to create numerous
node reservations which can lead to confusion. Therefore, the
CDP needs to work within a single Slurm reservation. Keeping
it simple reduces the chances of confusion, making standard
operational activities and troubleshooting a bit easier.

VI. WORKFLOW

The CDP has been named the Node Update (NU) service.
It is designed to automatically perform updates on idle nodes,
checking them regularly via a cron job or by reserving a node
after the end of a scheduled job. This is accomplished by using
a specific hook in the slurm epilog script, delivering the feature
F2.

In the NU design, an update is provided in a specific
directory at a specific path on a shared file system. The
directory name is the codename of the update/deployment.
The directory contains a script called update. sh that will
perform the required update for a single node.

Node update reservation
(size limited)

Are there any free
slots in the [/reserve
reservation?

run update

node update “ updating
check hook
Idle nodes
update

check cron

update end

Available

Production-
Ready Node P——
-
Set 4 External

Monitor for
Failed Updates

Fig. 3. NU Workflow

Another file, active-updates.list on the shared file
system contains the list of active updates associated with
the nodes where they must be applied, accomplishing feature
F5. Publishing a new update consists of appending a line to
active-updates.list file. Removing the line disables
the update operation, providing feature F4.

The codename of each update bundle has a timestamp
format and every node at boot records the boot time with the
same format in the local configuration file local.version.
The timestamp format used is YYYYmmddHHMMSS where:

e YYYY represents the four digit year

o mm represents the two digit month number

o dd represents the two digit day of the month
o HH represents the two digit hour

e MM represents the two digit minutes

e SS represents the two digit seconds

After a successful update operation, the local.version
file’s contents will be updated with the codename/timestamp
of the newly applied update.

In this manner, the operation of checking the need for an
update is a simple comparison between the 1ocal.version
file’s contents and the active—updates.list file’s con-
tents. This check is performed locally on every node.

In order to perform the updates only on idle nodes without
any conflict with running jobs, all the update operations are
performed when the nodes are both idle and reserved in the

Slurm node_update reservation identified by feature FO.
The quantity of nodes in the reservation is artificially limited
by the NU workflow with a tunable parameter, RES_LIMIT.
This provided the means for delivering feature F6.

The complete NU workflow described in figure 3 consists
of the following states:

o IDLE

« READY

« UPDATING

« DONE

o FAIL

A well choreographed set of guidelines controls the flow of
nodes through the progression from one state to the next.

update available

node reserved

updates started

issues

UPDATING

success

remove from
reservation

Fig. 4. State Diagram

A. IDLE State

A node is in the IDLE state because it is either waiting
for a new allocation or the last job just finished. In the first
case, a cron job will check to see if a new update needs to be
applied and free slots exist in the node_update reservation.
The second case is handled by the Slurm epilog script which
performs the same actions. If there is a new update available
and there are free slots in the Slurm reservation, the node is
added to the node_update reservation. This action moves
the node into the READY state

B. READY State

A node is in the READY state when it is in the
node_update reservation and there is an update to apply.
Every node in this state can start update operations. Once the
updates start, the node transitions to the UPDATING state.

C. UPDATING State

A node will perform all available updates sequentially
one after the other. If any update operation fails, the node
transitions to the FAIL state, otherwise it continues the updates
until all are performed. When all the available updates have
completed successfully the node transitions to the DONE state.
These are the same system checks used in NLM process
and if no issues are identified, the node can transition to

the DONE state. As a last step before changing state, the
local.version file is updated.

D. DONE State

Once a node has completed its available update operations,
it can be returned to production service. As quickly as possible,
the node is removed from the node_update reservation and
it can transition back to the IDLE state.

E. FAIL State

Any node that has failed to successfuly perform an up-
date operation is placed in the FAIL state. It must stay in
the node_update reservation and manual intervention is
required to resolve the incident.

FE. Overcoming Limitations

In the NU workflow, on the contrary to NLM, the node
state is mapped to a local file and the interaction with Slurm
is limited to the addition and removal of nodes to/from the
node-update reservation.

In the initial phase of the implementation of the NU
workflow it was observed that the simple operation of checking
how many free slots are available for the node_update
reservation could result in scalability issues. The query to
determine how many nodes are in the reservation is a simple
Slurm command, but if performed by thousands of epilog
scripts simultaneously, could result in problems with the Slurm
daemon.

To solve this problem a new agent was introduced in the
workflow called the Orchestrator. This new agent is the only
one entitled to communicate with the slurmct1d in order to
protect it from too many simultaneous requests and to cache
the query results. To protect the Orchestrator itself from too
many concurrent requests, all the message handling between
the nodes and the Orchestrator happens via a message bus.
This was overcome by using Apache Kafka® as a scalable
solution to implement a many to one/one to many message
bus.

Kafka® is used for building real-time data pipelines
and streaming applications. It is scalable, fault-
tolerant, wicked fast, and runs in production opera-
tions in thousands of companies. [6]

Kafka® runs on an available service node in the system and
required the installation of Python pip.

The introduction of Apache Kafka® as a message bus
required that all compute nodes to be capable of acting as
Kafka® clients. This meant that each compute node had to
be able to produce and consume messages from a Kafka®
topic [6]. The standard Kafka® client is based on a Java
API, but in the design of the Orchestrator and compute
node client, it was decided to base the development on the
kafka-python library available through the python package
installer pip.

The Orchestrator agent’s design has several responsibilities:

o Manage the communication between the compute nodes
and the slurmct 1d, aggregating compute nodes request
into only a few Slurm commands. A small delay in
the communication is enforced in order to allow this
aggregation to happen.

o Manage the node_update Slurm reservation. Only the
Orchestrator is entitled to add/remove nodes to/from the
reservation, and also human operators are required to use
a specific API to manipulate the reservation.

e Schedule tasks on the compute nodes in the
node_update Slurm reservation in order to advance
the NU process workflow.

The creation of the Orchestrator agent provided the ability
to workaround Slurm scalability issues. At higher scales, the
Orchestrator can be scaled-out into a distributed agent thanks
to the scalability of the Kafka® message bus solution.

Indeed, the optimal solution to this problem would be to
enhance Slurm to allow the job scheduler to scale-out with
the size of clusters and their user base. Also, equiping it with
an cache-endowed API that is resistant to the clients’ abuses
will also improve scalability issues.

VII. EARLY RESULTS

Based on the foundation of previous work, HPC-OPS-CS’s
latest effort towards CD on Piz Daint was the implemen-
tation of an automated CDP. This enables the deployment
of new compute node configurations, including changes to
the Programming Environment on the whole system in just
a few hours/days. The approach taken minimized the impact
on the use of resources and the possible impact on the users
workload.

The deployment of changes on Piz Daint through CDP with-
out disrupting user workloads enabled CSCS to perform Blue-
Green Deployments in order to mitigate the risk associated
with the validation of any possible software change.

In order to evaluate the actions that such a process will
introduce into a running system, a dry-run mode has also
been implemented. This mode easily facilitates various test
scenarios without impacting the running system.

VIII. NEXT STEPS

With the early successes achieved during development
brings the next phase of full-scale production implementation.
The flexibility of the solution has shown benefits in other areas
which need to be explored.

A. Staged Production Rollout

This work has been developed on Piz Dom, a 64 node Cray
XC™ 40/50 Test and Development System (TDS). In the near
future the CDP will be evaluated at large scale. This will be
accomplished in three stages:

« First Ste%%e: Deploy on Grand Tave, our production
Cray XC KNL platform with 164 compute nodes. This
system is busier and larger than Piz Dom, which will

allow the identification of issues still at a somewhat larger
scale.

o Second stage: Identify and correct issues identified in
the first stage, then deploy the CDP on Piz Daint. By
utilizing the dry-run mode, the process can be used to
evaluated how the overall system, including the Kafka®
implementation, works at scale.

o Third stage: Turn off dry-run mode and evaluate how
this works in production at scale.

B. Additonal Features

Early testing has identified value in pursuing the incorpora-
tion of the steps currently being performed by cron jobs into
the CDP. This will add greater flexibility and control for all
the work performed within the CDP.

C. Expanded Scope

CSCS is planning to adopt CDs in more general terms and
will be investigating the introduction of a site-wide Kafka®
platform. This could potentially permit the synchronisation
of system-related tasks with other high-level organization-
wide operations. For instance, the population of the Slurm
database for each of our systems is currently done individually
per cluster at specific times via a set of complex cron jobs.
This could be replaced by a policy-event driven CDP that
links to the CDPs for each system. This will effectively
synchronise high-level events, such as account creations, with
the population of the Slurm database in moments suitable for
the scheduler running on each system or even in coordination
with storage and network operations.

IX. CONCLUSION

CD in HPC environments and on supercomputers can al-
ready be a fact for userlevel scientific applications; on the
other hand, some hurdles prevent a complete implementation
for the low-level software platform of a supercomputer like
Piz Daint. Some of the issues are related to traditional HPC
and scientific production workflows, while others are related
to the constraints of current system technologies and designs.

Following the strong interest in software automation at
scale, CSCS built a CD workflow for Piz Daint for com-
pute node configurations and the Programming Environment.
However, in order to achieve a more comprehensive result,
further barriers must be dismantled and overcome in future
supercomputer designs.

One of the design challenges of a CDP on production HPC
systems, is the lack of idle resources. Typical HPC systems
usually target a utilization of 99%, which makes on-demand,
real-time resources not commonly available. Overcoming this
required creativity when deciding how to select blocks of
resources that could be idled for updates.

HPC systems work to maximize the utilization of the com-
pute resources and minimize any idle resources. The scientific
workload not only can scale up in concurrency but also in
duration of the runs. The Continuous Deployment process
must work in symbiosis with the job scheduler by taking
advantage of the bits and pieces of idle time that naturally
emerge.

The job scheduler itself is a component that needs continu-
ous improvement in top-scale HPC platforms. CSCS protected
the job scheduler from the interaction with too many clients
by building an Orchestrator agent as a communication inter-
face. Scalability features of this interface could be integrated
in the job scheduler to allow future systems and user-base
expansions.

Continuous Deployment on standard IT platforms leverage
virtualization and containerization techniques. Today, HPC
centers use software abstraction as a solution to facilitate
software portability in extreme cases. However, in distributed
web platforms, software abstraction is usually the founda-
tion for any automation process. Caution towards software
abstraction in HPC is due mainly from the possibility of
performance loss or unpredictability. This problem can be
observed as a minor issue in web production environments,
but is a difficult hurdle in HPC. HPC must always chase
the highest possible performance of the hardware platform,
therefore, strong attention must be paid when integrating any
software abstraction layer.

In the scope of our experience with Piz Daint, Cray provides
a large portion of the software platform. In order to be able to
continuously deploy the platform in its whole, further collabo-
ration is needed from manufacturers in the design of software,
firmware, and hardware. In absence of any abstraction layer,
great care must be taken in how the software platform is
bundled, released, and tested. The effort to make changes and
revert them back (rollback) on busy production systems should
be taken into consideration by all architects and developers
involved in HPC system design.

Another barrier to overcome in future system designs is the
reliability of the High Speed Network (HSN). Experience with
Piz Daint’s Aries network demonstrated excellent performance
in standard operation scenarios. However, some design choices
limit the reliability of basic standard operations like compute

node reboots. [5] This fact influences system operation work-
flows at CSCS and the implementation of the CDP on Piz
Daint.

In future designs, the reliability of the HSN and of oper-
ations like node reboots, must be taken under serious con-
sideration. Moreover, in traditional HPC environments where
idle time is perceived as a threat to be fought, improving the
overall time needed by node reboots could be a key factor
for implementing more dynamic automation processes like
continuous deployment.

Besides the current system limitations, CSCS is looking
forward to bringing this feature from the current initial stages
to full production on Piz Daint. CSCS is confident that

introducing Continuous Deployment on HPC system platforms
like Piz Daint could be an important step forward in the

automation of traditional HPC system administration tasks.
Doing so could facilitate the transition to a more DevOps
oriented style of work within the HPC Operations Team at
CSCS.

X. ACKNOWLEDGMENTS

This work was supported by the Swiss National Supercom-
puting Centre (CSCS).

XI. TRADEMARKS

Kafka® is a registered trademark of The Apache Software
Foundation.

Intel® and Xeon® are registered trademarks of Intel Cor-
poration.

Aries is a trademark of Intel.

XC™ is a trademark of Cray Inc.

REFERENCES

[1] CSCS, “Piz Daint.” http://www.cscs.ch/computers/piz-daint. (Accessed
April 2019).

[2] CSCS, “RedFrame.” https://reframe-hpc.readthedocs.io. (Accessed April
2019).

[3] Cray Inc., XC'"' Series Boot Troubleshooting Guide (CLE 6.0.UP03) S-
2565, pp. 25-26.

[4] SchmedMD, “Slurm workload manager - documentation.” https://slurm.
schedmd.com. (Accessed April 2019).

[5] Bob Alverson, Edwin Froese, Larry Kaplan, Duncan Roweth, Cray Inc.,
“Cray® XC™ Series Network.” https://www.cray.com/sites/default/files/
resources/CrayXCNetwork.pdf. (Accessed April 2019).

[6] Apache Software Foundation, “Apache Kafka.” http://kafka.apache.org.
(Accessed April 2019).

