Machine learning on Crays to
optimise petrophysical workflows In
oll and gas exploration
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Driven by a collaboration with Rock
7 Solid Images (RSI)

RSI

RSI develop a successful software package

known as RockAVO™ which enables oil and T
gas companies to virtually explore geological o

regions to inform decision making around
exploration and exploitation

This is fed with well atlases, which are interpreted
from the raw well log data
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Estimate about 20,000 key wells should be accessible



Where does machine learning come Iin?

- A time consuming manual
Interpretation process is needed to
convert raw well log data into atlases

- Over 7 days per well

- This is fundamentally a pattern
recognition problem, so can we use
machine learning?

- For instance could we go from over 7 days

to 7 minutes per well?
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Existing data base

Norwegian Sea Barents Sea
211 wells 124 wells
Central Graben North Sea

150 wells 150 wells

East Java Sea Gulf of Mexico (US)
50 wells 1200 wells

o o

East Timor Sea Alaska N Slope
15 wells 30 wells

2000 wells in the existing database
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L
The real world data can be messy!

- The data itself it incomplete -
and unpredictable

- Our truths are themselves
Interpreted, and the human
doesn’t always get it right! r
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L
Machine learning methods

Learing - Focussed on supervised learning
l methods here
- Use 80% of the wells for training and
Tk e arm o 20% of wells for testing (sight unseen)

|~ &3 L X
- We mostly use boosted trees / \

via the XGBoost library on :-5 ?: :-5 i-: :-5 E-:
ARCHER, a Cray XC30
Simple Neural Network Deep Learning Neural Network \ ’{/

N K7 \‘ = \:
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The petrophysical workflow

Raw

input

data

P-wave and
density
curve
cleaning

A 4

Mineralogy

| composition

Porosity

n

Fluid
Saturation

Lithoclass Conditioned
determination | wel

- Starting with raw data a preliminary cleaning phase is

performed

- Then the four main phases are performed

- Other people have looked at ML for of these stages (especially
lithoclass determination), but this is the first time that ML has been

used for the entire workflow and some of the stages too

- There is an iterative feedback loop when done manually

- Can this knowledge be captured by a machine learning model?
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Depth (m)

Data cleaning: p-wave *Z
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- Some input curves

can be cleaned
manually, although it
can be a time
consuming process

- Here p-wave is being
“cleaned”, although
there isn’t too much
to do (note the
reduction in
magnitude at 3000m)
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Data cleaning: density

 Cleaned Truth Cleaned prediction ~ Rawcurve
2000 2000 - For this well the
density curve is
2200 2200 more difficult as
there are significant
2400 2400 amounts of it that
are missing
E B 0 .
= = = - Our model is able to
*% "%zsm ‘%mﬂ fill in the blanks and
o a a matches reasonably
3000 3000 closely to the
manual curve which
2200 3200 takes many hours to
produce.
3400 3400
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Depth (m)

Mineralogy composition =1 ===

Truth
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Clay composition

Number of predictions

7000
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-40 -20 0 20 40

% relative
difference

-« There are thirteen minerals
that we predict

- With a trained model,

Inference takes less than a

second per mineral

Feature importance for clay predictions

00 400 500
Importance score
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Mineralogy composition — the limit

Truth Prediction Mineral ~ RMS error
Clay 0.136427
16000 Quartz  (.145153
500 500 Calcite  0.049276
Pyrite  0.004348
14000 Dolomite  0.011489
Coal 0.050087
1000 1000 2 so06 TOC  0.000394
.g Anhydrite  0.003198
— — o Volcanic 0.005829
£ £ | 910000 Feldspar  0.023668
g £ - Talte 0000514
Q Q G 8000 e :
[ v | n ..
a 0 8 - But geology is inherently
2000 2000 £ 6000 biased and as such other
- E minerals don’t work as
— 2000 well because the model
2500 2500 simply doesn’'t see them
000 enough
- This is a fundamental
limitation of the approgchﬁ,

40 -20 0 20 40
% relative

difference s

0.0 0.2 0.4 0.6 0.8 1.0
Calcite

composition

0.0 02 0.4 0.6 0.8 1.0
Calcite
composition




Mineralogy: Adding formations

500 500 500
1000 1000 1000
— — —
£ 1500 £ 1500 £ 1500 RANA - NG
— T S A &;..\L\u..s)y ﬂ.a.:\;"\..su 's.h\;\\m
5 £ £
Q Q Q 3000 VlS d
0 0 0
Q Q Q

:
i
:

- Added formation
Information from the NPD
website as extra Boolean

2500 2500 fields to the data to see if

this would help

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 e ‘ :‘ :
Clay truth Clay prediction Clay prediction

(no formations) (with formations)




Raw P-wave and l |

P O r O S |ty Dol Coney o S— Sotoaton [ denmee | "
Truth Prediction
1000 1000 - Just works! The vast
12000 majority of our
1250 1250 predictions are within
0 to 10% of the truth
1500 1500 10000 value and this is
2 highly accurate.
1750 1750 -E
.° 8000 o :
—_ — 5 - But it is crucial to use
£ 2000 £ 2000 £ the cleaned p-wave
= = 5 coon and density curves,
Qs & 2250 < but not as important
a) a o to use the
1500 2500 g mineralogy and there
> 4000 IS only a small
Impact in prediction
2750 2750 accuracy
2000
3000 3000
ﬁfo
0.0 0.2 04 0.6 08 1.0 0.0 0.2 0.4 06 0.8 10 " a0-30 20 -10 0 10 20 3040 |epCC o
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Raw P-wave and l |
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- The petrophysicists suspect a reservoir contains fluid
- Is it hydrocarbons (oil and gas) or water?

Truth saturations Predicted saturations
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Fluid saturations

- It is either water or hydrocarbons. Water is far more
common, so the model is more familiar with this quantity.
Hence predict water and invert it to get hydrocarbons

Truth saturations Predicted saturations

1500 1500 - The regression model
wiggles around 100%, so
we use a boosted trees
classifier and then only
regression on points not
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E E entirely water

. 2500 ‘;:"2500 .

£ ] — - But this tends to under
3 2 = predict water, as the

classifier thinks it sees

. something and then the
regressor predicts some
value here
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Truth saturations Predicted saturations

Fluid saturations - -

- Instead, a deep neural
network, but this is the

=
=

opposite; good at classification | £, E_
. = £
but not so much regression g — |3 —
Q Q
Truth saturations Predicted saturations 3000 3000
==
Ezsoo %2500 " wat:fsatmatiooﬁ . * %atg#satodsratig; ?
E‘ — E‘ — - In the end we found the best

g
e

approach was to mix the models

- Use a DNN for the classification and
p— — then boosted trees for regression

E— = epcc
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Raw P-wave and 1 »
input, density Mineralogy L'lh sssssssssssssss
ta curve composition [ | Forost ity i

cleaning

Lithoclass determination ., e
* to classify :

- The lithology, or facies, is the geological 3| % **} et
rock type i ;‘3\';’ K24 \AA

- This is fairly simple to classify and many \ NEY Y A
people have had success here N as A

- But how simple can we get? ,

X-Axis

- We started with data without any lithology information (which is
common), applied some very general rules to label this and
trained our models on this data using K nearest neighbours.

- The question was how much accuracy this would give us
- It is not perfect but is reasonable!

HC Sand
Shale 2 27833 2259 653

Shaly Sand 4 1735 2431 1228 | e p CC

Wet Sand 18 306 2313 9369
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L
Taking advantage of the XC30

- Our boosted trees models are highly sensitive to seven

hyper-parameters
- These are interlinked and changing one will impact the optimal

value of others Name Description
colsample_bytre | e each nee
- Used Hyper-opt Python library to Step size shrinkage,
search through the parameter space | (o prevenoveridng
- Each run generates an error metric, which | =™ | ke paiion node
it then uses to intelligently chose the next Maximum tree depth, the decper
hyper parameters and runs again max_depth e ool Tl
* Via a tree-structured Parzen estimator o Mimimom sam of instance
- Typically it takes between 120 to 160 runs | ™" weight nceded in a child

to find good hyperparameters, with each surn_rounds Number of boosting
individual run taking around 15 minutes. r

- Hyper-opt is serial, so it takes a long time
to train the models

- Once they are trained, runtime for inference e CC
is less than a second

Sub sample ratio of the training

subsample . .
P instances, useful to prevent over-fitting
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L
Taking advantage of the XC30

- Model training time was a major issue

- Especially for experimenting with the data, as if using an untuned
model we don’t know if it's the data or the lack of tuning

- We parallelised Hyperopt using MPI4Py and typically run
over twenty nodes of ARCHER

The master selects a set of - Very simply parallelisation via the

hyperparameters to search and

sends out individual paremeter - master/worker pattern and
’ | MPI4Py meant it this was less
than an hours work

- But model training time went from
W W W W between 20 and 40 hours, to
between a half and one hour.

Workers execute a single boosted trees model per NUMA

region, using the hyper-parameters supplied by the master.

Once the model training has completed they send back the e CC
correspanding absolute error of the model and wait for the

hyper-parameter settings for the next model training

iteration.
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Conclusions & further work

The good news for the

o ] Base 0.1364
petrophysicists is that MLP (Sklearn) 0.1772
they won't be replaced  PNN (Pytorch) e

. I Boosted trees 0.1003
any tlme Soon: Boosted trees (missing data for training) 0.0838

This is a complex and involved process which requires their knowledge
and expertise, but we believe ML can assist here

There is significant low hanging fruit when it comes to machine learning
and data science frameworks that we are the community can help with

This works as a general tool

,&(mdmg-{i*:ﬁ Jort o Py A first pass to refine the data fairly
Worwss = significantly before interpretation
i WL 3 Optimise the use of the human
= Quick pass for a client to check
o whether further analysis is worth it

inverted and interpreted

epCC|:




