
Measuring and Mitigating Processor Performance Inconsistencies

Kevin Stroup
Cray, Inc.

Los Alamos National Laboratory
Los Alamos, NM, USA

kstroup@{cray.com,lanl.gov}

Paul Peltz Jr.
Oak Ridge National Laboratory

National Center for Computational Sciences
Oak Ridge, TN, USA

peltzpl@ornl.gov

Abstract—Application performance inconsistency is a prob-
lem that has plagued users and system engineers for a long
time. When a user reports that an application took longer
than normal to run or was running more slowly than usual,
the engineer is faced with a wide range of potential causes.
Some of them may be outside the engineer’s control, including
changes the user has made, interactions with other workload
and numerous other factors. One possibility that is detectable
and within the engineer’s control is that one or more nodes is
underperforming, or possibly overperforming. Some sophisti-
cated users may be able to detect this if they have instrumented
their application, but quite often the problem report is far
from specific or informative. Overperforming nodes can impact
application performance in unpredictable ways and may also
result in thermal issues that can impact processor lifetime
and reliability as well as impacting other components of the
system. Los Alamos National Laboratory (LANL) has worked
on a number of processes to detect, isolate, and where possible
resolve the issue of nodes performing outside expected levels.

Keywords-CPU; Processor; Performance; Variability; Xeon;
KNL; ARM

I. INTRODUCTION

During Trinity’s acceptance phase there were several
incidents in which the acceptance applications and bench-
marks did not perform consistently. As a reminder, LANL’s
Trinity[1] system is a 110 cabinet XC-40 heterogeneous
system with approximately 10,000 Intel Xeon Haswell nodes
and aproximately 10,000 Intel Xeon Phi Knights Landing
nodes. At first the acceptance team believed this was part
of the normal hardware shakeout that must be done to
weed out various issues, but after a year of the system
being in production the engineers were still being asked
about inconsistent performance issues with LANL codes
running on Trinity. The users were finding that on occasion

This work has been authored by an employee of Triad National Security,
LLC, operator of the Los Alamos National Laboratory under Contract
No. 89233218CNA000001 with the U.S. Department of Energy. The
United States Government retains and the publisher, by accepting this
work for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce this work, or allow others to do so for United States Government
purposes. Los Alamos National Laboratory strongly supports academic
freedom and a researcher’s right to publish; however, the Laboratory as
an institution does not endorse the viewpoint of a publication or guarantee
its technical correctness.
This paper is published under LA-UR-19-23142.

their jobs, which can take weeks to complete, were not
progressing as fast as they normally did. This was leading to
hours of wasted compute cycles because one node in their
applications was underperforming to such an extent that it
was causing nodes to sit idle while waiting for the slowest
one to complete its computational cycle.

There were a few cases that the engineers knew of that
could cause this that were not specifically a catastrophic
hardware failure. Frequently the problem would be that com-
pute nodes would boot and the CPU would underperform
and a simple CPU swap or reboot would fix the issue. In
the rarer circumstances a node would perform as expected at
boot, but then at some point start to underperform in some
way. The system engineers at LANL decided to develop a
testing strategy that could not only be performed by them
when doing maintenance, but that could also optionally be
used by users if they needed to be assured the nodes their
job was allocated would perform as expected. It was decided
that this should not be a universal procedure (like a node
health check) since small and short running jobs would see
little benefit relative to the overhead.

II. DEFINING SLOW

LANL has found that underperforming nodes seem to
come in two distinct types. On occasion a node may perform
extremely poorly, often many times slower than expected.
In other cases, the variation is a small percentage below, or
possibly above, expected performance. In the first case the
performance is always lower than expected and generally
associated with a hardware issue. A typical example is a
node having an extremely high rate of correctable DRAM
memory errors (often referred to as a “bursting DIMM”).
When the compute node has memory errors, we want the
linux kernel to remap the page(s), but if the affected area
is in use for Remote Direct Memory Access (RDMA) over
the Aries network then we are hit with a double-whammy:
The pages are locked and can not be remapped and we
have potentially thousands of other nodes requesting those
pages with large numbers of RDMA accesses and generating
millions or billions of errors that the kernel has to handle
and report. The performance impact then becomes huge due
to the kernel handling so many errors. No solution to this

page locking has been engineered into the Aries based XC
systems, but it is being addressed in the Shasta architecture.

In the second case, where the performance variation is
more marginal, the cause is less clearly associated with an
obvious hardware issue. The engineers found that many of
these were explained by inconsistent processor performance.
Differences in manufacturing of the silicon as well as
variations in system assembly and integration can impact
node performance. During some dedicated testing time, it
was found that a small number of nodes associated with
the slow jobs were performing below the rest of the nodes
in the allocation. The engineers decided that a strategy to
do testing was necessary before releasing the system to the
users after system maintenance was performed.

III. TESTING METHODOLOGIES

LANL has pursued two strategies intended to mitigate the
impact of performance discrepancies on workloads. One is
an administrative task that can be done before releasing the
system to users, and another that can be executed at the
user’s discretion.

A. Sweep the System

The first strategy is performed during system maintenance
windows. The entire system is swept to find any nodes
that are performing outside of what are determined to be
acceptable bounds. These nodes are then isolated from user
jobs with a scheduler reservation so that further testing and
fault analysis can be done.

To sweep the system for performance discrepancies
LANL chose to use the diagnostic tools provided in the
Cray diagnostic image. Specifically, xtcpuperf (or xtphiperf
for Xeon Phi type processors)[2] with flags selecting only
the distributed general matrix multiplication test (DGEMM)
to be run was the tool chosen. Multiple passes of DGEMM
were run simultaneously (generally 10 to 50 passes) across
all nodes in the system. The first pass was eliminated from
the analysis to avoid any artifact introduced by temperature
variations at start up or artifacts caused by power ramp-up
from an idle state. The runs were done as close to simulta-
neously as possible to ensure that the entire system was at a
thermal state typical of running under a full load. The matrix
size parameters chosen were typically the defaults provided
by the tool. Some limited parameter studies indicated that it
was not particularly useful to optimize these parameters, and
even testing with sub-optimal parameters was still sufficient
to identify performance discrepancies relative to the overall
node population.

B. Pre-Job Testing

The second strategy LANL developed was to provide
users with an optional utility that the user can choose to
run as a preliminary step of a job when the benefits of
consistency outweigh the overhead of testing. Again, LANL

chose to use the xtcpuperf tool from the Cray diagnostics
as it was readily available on all nodes and the runtime
parameters were suitable to LANL’s needs. This utility will
conduct a brief test, lasting less than 10 minutes, of the nodes
that the user’s job has been allocated. Then subsequent steps
of the job can exclude any nodes that fail the performance
test. The runtime of the tests were acceptable to the users,
given the potential performance impacts that a slow node
could cause jobs which typically run for multiple days. The
user can over-allocate nodes to their job and thus end up with
the desired node count once any of the nodes that do not
fall within the acceptable performance range are excluded.
To understand how much to over allocate, the user needs
to have an estimate of the probability of a given percentage
of their allocation being excluded due to not falling within
the chosen performance thresholds. This requires the system
engineers to have some idea of the overall performance
profile of the nodes in their system in order to advise
users on the appropriate percentage to over allocate. The
screening of nodes during system maintenance windows
provides the data to inform this analysis. By using bounds
that are approximately three standard deviations from the
mean it is possible to project that less than 1% of nodes
will be out of range and suggest that jobs that wish to be
able to exclude nodes should only need to over allocate by
about 1% or 1 node, whichever is greater, to ensure being
allocated the desired number of performant nodes. Below is
a sample slurm job script.

! / b i n / bash
#SBATCH −p kn l any
#SBATCH −N 10
#SBATCH − t 0 0 : 1 0 : 0 0

Check f o r s low nodes
echo ” $ (d a t e) − S t a r t i n g i d e n t i f i c a t i o n

o f s low nodes ”
n o d e c h e c k e r = ” /$HOME/ n o d e c h e c k e r . sh ”
i f [−f ” ${ n o d e c h e c k e r }”] ; t h e n

e x c l u d e n o d e s =$ (${ n o d e c h e c k e r })
e l s e

echo ” ${ n o d e c h e c k e r } does n o t
e x i s t . E x i t i n g . ” 1>&2

e x i t 1
f i
echo ” $ (d a t e) − Done i d e n t i f y i n g slow

nodes ”

s r u n −N $ (($SLURM JOB NUM NODES −
$ (($ (wc − l < ${ e x c l u d e n o d e s }) − 1))
)) −−e x c l u d e =${ e x c l u d e n o d e s }
/$HOME/ h e l l o m p i

i f [−f ” ${ e x c l u d e n o d e s }”] ; t h e n

2

rm −f ” ${ e x c l u d e n o d e s }”
f i

This is the slow nodes script referenced in the sbatch job
above.

! / b i n / bash
#
Dete rmine i f t h e r e a r e any slow KNL

nodes .
Modify t h e s c r a t c h h o m e v a r i a b l e t o

w r i t e t o where you want your
t e m p o r a r y j o b f i l e s .

Modify t h e s low nodes v a r i a b l e t o
c o l l e c t t h e s low nodes i n t o a f i l e
f o r k e e p i n g .

Pau l P e l t z <p e l t z p l @ o r n l . gov> Kevin
S t r o u p <ks t roup@cray . com>

#
S e t t i n g t h e e n v i r o n m e n t v a r i a b l e

GFLOPS t o t h e d e s i r e d minimum
a c c e p t a b l e p e r f o r m a n c e

w i l l over−r i d e t h e d e f a u l t o f 1700 .
#
S e t t i n g t h e e n v i r o n m e n t v a r i a b l e

SCRATCH HOME t o a p e r s i s t e n t
l o c a t i o n a l l o w s f o r

long te rm r e t e n t i o n o f t h e
s l o w n o d e s l i s t . t x t f i l e s f o r
h i s t o r i c a l t r a c k i n g .

i f [−z $SLURM JOB ID] ; t h e n
echo ” Only run t h i s s c r i p t w i t h i n a

j o b . E x i t i n g ” 1>&2
e x i t 1

f i
s c r a t c h h o m e =${SCRATCH HOME:−”/ tmp ”}
e x c l u d e n o d e s =”${ s c r a t c h h o m e } /

. e x c l u d e n o d e s . ${SLURM JOB ID}”
x t p h i p e r f i n i =”${ s c r a t c h h o m e } /

x t p h i p e r f . i n i . ${SLURM JOB ID}”
n o d e r e s u l t s = ” / tmp /

n o d e r e s u l t s . ${SLURM JOB ID}”
s low nodes =”${ s c r a t c h h o m e } /

s l o w n o d e s l i s t . t x t . ${SLURM JOB ID}”

l o g h o s t =$ (g rep ˆ l o g h o s t =
/ e t c / o p t / c r a y / l lm / l lm . con f | awk −F
= ’{ p r i n t $2 } ’)

i f [! −f ” ${ s low nodes }”] ; t h e n
t o u c h ${ s low nodes }

f i

c a t <<EOF > ” ${ x t p h i p e r f i n i }”

u s e r s p e c i f i e d e x p e c t e d p e r f o r m a n c e
[Xeon Phi]
GFLOPS = ${GFLOPS:−1700}
EOF

i f [[$SLURM JOB PARTITION == ∗” k n l ”∗
]] ; t h e n
We w i l l p u t b l a h f o o i n so i t

doesn ’ t match , b u t some th ing has
t o be i n t h e f i l e o r s r u n w i l l
f a i l

echo ” b l a h f o o ” > ” ${ e x c l u d e n o d e s }”
echo ” Running s low no de ch ec ke r on

j o b $SLURM JOB ID . ” |
/ u s r / b i n / l o g g e r −n $ l o g h o s t −p
u s e r . e r r o r − t ” s l o w no de ch ec ke r ”

/ o p t / s lu rm / b i n / s r u n −N
$SLURM JOB NUM NODES
/ o p t / c r a y / d i a g / b i n / k n l / x t p h i p e r f
−v 1 − l 3 −k 35000 −m 35000 −n
35000 −p ” ${ x t p h i p e r f i n i }” 2>&1
>/ dev / n u l l | g rep F a i l | sed
’ s / , / / g ’ > ” ${ n o d e r e s u l t s }”

w h i l e r e a d −r l i n e ; do
echo ” $ l i n e ” | / u s r / b i n / l o g g e r
−n $ l o g h o s t −p u s e r . e r r o r − t
” s l o w no de ch ec ke r ”

echo ” $ l i n e ” >> ${ s low nodes }
echo ” $ l i n e ” | awk ’{ p r i n t $3 } ’

>> ” ${ e x c l u d e n o d e s }”
done < ” ${ n o d e r e s u l t s }”

f i

i f [−f ${ x t p h i p e r f i n i }] ; t h e n
rm −f ${ x t p h i p e r f i n i }

f i

echo ” ${ e x c l u d e n o d e s }”

IV. PERFORMANCE PROFILES

One advantage of analyzing data from large-scale systems
is that the quantity of data allows for a large enough data
set to have significant confidence in the expected distribution
of node and processor performance. LANL’s systems have
yielded data on approximately 10,000 Intel Xeon Haswell
nodes with 20,000 processors and 10,000 Intel Xeon Phi
Knights Landing nodes. With the benefit of multiple passes
over time, LANL now has hundreds of thousands of data
points from which to determine an expected performance
profile for various types of nodes. With the acquisition of
two XC-50 systems with ARM nodes, LANL now also has
data on approximately 350 nodes and 700 processors to
project an expected performance profile for that processor

3

Figure 1. Haswell DGEMM Results. Blue is Smoothed

Figure 2. KNL DGEMM Results

type as well. Repeated testing has also given the site an
understanding of what to expect in terms of consistency and
variability of individual processors over time. This helps
inform the decision about how frequently and under what
circumstances testing should be repeated.

A. Intel Xeon Haswell Processors

Intel Xeon Haswell processors (model E5-2698v3 - 32
core CPU dual socket) perform in a range that shows a

good fit to a standard distribution with a node mean of
960 GFLOPs and a standard deviation of 8 GFLOPs. LANL
chose to define anything over 3 sigma as out of compliance
and address those processors. The procedures that LANL
uses are explained in Section V. That gives a definition
for the acceptable performance range for those nodes whose
performance is between 930 and 990 GFLOPs. See Figure
1 for the results. The vertical bars represent the acceptable
performance range.

4

B. Intel Xeon Phi Knights Landing Processors

The Intel Xeon Phi Knights Landing processors (model
KNL 7250 - 68 cores single socket) in LANL’s systems
perform in a range that shows a fairly good fit to a
standard distribution with a node mean of 1900 GFLOPs
and a standard deviation of 60 GFLOPs. LANL chose to
define anything over 3 sigma as out of compliance and
address those processors. The procedures that LANL uses
are explained in Section V. That gives a definition for
the acceptable performance range for those nodes whose
performance is between 1700 and 2100 GFLOPs. See Figure
2 for the results.

C. ARM Processors

Marvell ThunderX2[5] processors (model CN9975 - 28
cores dual socket) in LANL’s systems perform in a range
that shows a very narrow distribution with a node mean of
590 GFLOPs and a standard deviation under 5 GFLOPs.
These are early models that do not support ’turbo’ mode.
See Figure 3 for the results.

Figure 3. Marvell ThunderX2 DGEMM Results

V. RESOLVING ISSUES

A. Obvious Repairs

Resolving performance issues with a node is relatively
straightforward where a problematic component can be
clearly identified and replaced. An excessive rate of cor-
rectable memory errors (often called a bursting DIMM)
can have an extremely significant impact on performance,
sometimes slowing processing down by an order of magni-
tude or more. The delineation of what error rate constitutes
excessive is somewhat arbitrary, but by looking at the
distribution of error counts it becomes fairly obvious. Error
rates that are orders of magnitude larger than normal are a
clear indicator that a node should be acted upon. Cray does
have service guidelines on error rates that warrant hardware
action, but a site will need to make its own determination
on what error rate will have an impact on their workload
throughput.

B. Minimizing Impacts

By implementing procedures to automatically exclude
nodes with high rates of non-fatal errors it is possible to
avoid additional jobs being impacted. A node health script
running regularly on the System Management Workstation
(SMW) can detect that a node has an error rate over a
given threshold and notify the Slurm scheduler that the node
should not be used for future jobs (in Slurm parlance it
drains the node). One question that occurred was if it was
better to allow the job being impacted by a node with a
high error rate to continue running or to terminate the job.
LANL engineers chose to generally err on the side of caution
and not terminate jobs without the user’s permission. In
some cases where the job is long-running or has checkpoint
and restart capability or the ability to resize the job to use
fewer nodes, the users have instructed us to immediately take
the node down. Again, the script that detects the condition
notified the scheduler, in this case to “down” the node
immediately as opposed to draining it and allowing the job to
finish with the node still in its allocation. In this case, Slurm
notifies the job that the aberrant node has failed and the
job, assuming the job is properly configured, goes through a
process to reallocate to the remaining number of nodes and
restart from the latest good checkpoint.

C. Marginal Cases

If no obvious error conditions exist on a node that is
performing anomalously, then identifying the fault may
require problem determination procedures such as specific
diagnostic tools, swapping or scattering parts among nodes
and rebooting or reconfiguring the nodes. The Cray diag-
nostic image provides several tools to check things like
memory and memory bandwidth behavior, etc. Other factors
to consider include the power profile (for processors that
support this) and temperature behavior of the processor
or node, any performance discrepancy between sockets on
multi-socket nodes, and the maintenance history of the node.

D. Thermal Impact

Data from the Power Management database (PMDB) was
used to check nodes for thermal throttling. KNL processors
were seen to reach 88 degrees C and exhibit a sawtooth
temperature and power profile. Several aspects of running
at LANL made this unsurprising. LANL uses warm-water
cooling and is located at an altitude of over 7,000 feet (well
over 2 km) and so experiences thinner and drier air than most
sites. This makes heat transfer less efficient. See Figure 4
for the graph.

VI. THE UNEXPLAINED

There were a number of cases where the detected per-
formance inconsistency was never traced back to any root
cause. Either the behavior changed, or action was taken

5

Figure 4. Thermal Throttling Sawtooth Effect

(such as a part replacement) that eliminated the possibility
of further diagnosis.

One KNL that was performing at 25% of normal had the
components of that node scattered to (swapped with) the
other nodes on the same blade as a diagnosis technique.
However, rather than the behavior following a part to a
new node, the inconsistency simply went away and all
nodes were performing normally. In another case a KNL
processor which performed 10x slower than normal in a
particular NUMA mode was performing normally in all
other modes. This CPU was sent back to Intel for further
analysis. In another case, a compute blade had two nodes
underperforming in the production system but performed
normally in the hardware diagnostic system.

In each of these cases a hardware action was performed
to fix the problem. It was not always the case that some part
was faulty. Sometimes simply reseating a part or moving it to
another blade has resolved the issue. While this doesn’t get
to the root cause of the issue, it is an expedient way to return
the system to operation quickly with optimal performance
consistency.

VII. CONCLUSION

The results of these efforts have been worthwhile for
LANL. Aside from a better understanding and awareness of
the performance characteristics of nodes and their systems
overall, the engineers have seen a reduction in reports of
job runtime irregularities. The scientists who were most

impacted by performance inconsistency tended to be our
most sophisticated users running some of the largest and
highest profile workloads. They are also the users who have
seen the greatest benefits from these efforts. They were saved
the effort of having to instrument collective performance
checking in their code. By reducing the pain points for
LANL’s scientists this work has made a significant positive
impact on how LANL’s systems are perceived by the users,
the laboratory’s management, and the Department of Energy.

ACKNOWLEDGMENT

The authors would like to thank the entire LANL systems
support team for their time and dedication to Trinity. Special
thanks to Jim Lujan of LANL for his support of this work.
Thanks to Norm Troullier and Larry Kaplan of Cray for
their assistance in reviewing and improving this paper. The
authors appreciate the guidance they received from the Cray
management team.

REFERENCES

[1] Hemmert, Karl Scott, et al. Trinity: Architecture and Early Ex-
perience. No. SAND2016-4315C. Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States), 2016.

[2] https://cug.org/proceedings/cug2017 proceedings/includes/files/
pap140s2-file2.pdf

[3] https://ark.intel.com/content/www/us/en/ark/products/94035/
intel-xeon-phi-processor-7250-16gb-1-40-ghz-68-core.html

6

[4] https://ark.intel.com/content/www/us/en/ark/products/
81060/intel-xeon-processor-e5-2698-v3-40m-cache-2-30-
ghz.html

[5] https://en.wikichip.org/wiki/cavium/thunderx2/cn9975

7

