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Background

• The Model of the Earth Magnetic Environment (MEME) 
captures time-varying and the spatially-varying 
components of the magnetic field.
• Developed by BGS

• Takes input from
• Ørsted, CHAMP and ESA swarm satellites

• Ground based observatories 

• Output used for
• Scientific study & new geophysical understanding

• BGS Global Geomagnetic Model (BGGM)

• World Magnetic Model (WMM)



Background

• A model of the 
vertical 
component of 
the lithospheric 
field
• Earth's 

lithosphere 
includes the crust 
and the 
uppermost 
mantle (hard and 
rigid outer layer 
of the earth.)



Existing model performance
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• Benchmarking run on ARCHER, Cray XC30, with 8000 
parameters and 4 million data points

• Solver is sequential

• Parallelism limited to around 500 processes

• The entire matrix and RHS (containing the normal equations then 
fed into the solver) must be on every process

7200 

seconds Approximately 

5000 seconds



Existing model approach
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• Input data are observation from 

satellites and ground locations

• Number of parameters 

depends on the length of time 

to model, number of levels of 

the crust etc…

• The matrix is number of 

parameters by number of 

parameters
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Givens reduction 

to solve 

eigenvalue 

problem

From eigenvalues 
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find fit to the data

Write to file with 

original input data



Why PETSc/SLEPc?

• PETSc already part of the Cray module environment

• PETSc has good support for parallelism

• PETSc/SLEPc has good support for Fortran

• Can easily take advantage of PETSc functionality

• Seemed like results would agree

• But

• SLEPc is best suited to sparse systems, and our system 

here is quite dense

Portable, Extensible Toolkit for Scientific Computation (PETSc)

Scalable Library for Eigenvalue Problem Computations (SLEPc)



The plan

1. Use PETSc and SLEPc to perform Eigen solve

2. Decompose on matrix of normal equations instead of 
the input data
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Sequential normal equation matrix building

• With entirety of matrix on each process, the symmetry is very 
simple to deal with as only compute the diagonal and upper 
part, then copy upper elements into their corresponding 
lower element locations
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Local copying into 

opposite location

n

n

• Or could compute all elements, but duplication of 
work

• When we split the matrix up could just calculate 

upper elements and communicate to the lower 

elements

• But significant load imbalance!
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Distributed normal equation matrix building
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• Total number of points  to 

be explicitly calculated

• Base points per row to 

be explicitly calculated

n

n

f =
𝑛2 − 𝑛

2
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• Starting at the diagonal, start calculating 

r local points.

• If r is fractional (n is even), alternate between 

ceil(r) and floor(r) points for each row

• If the number of rows/2 is even, then in the 

second half of the matrix swap over ceil/floor

f=21

r=3.5



Distributed matrix building
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Each entry is the value as well as the 

global row and column (16 bytes per entry)
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• Next we copy all local values (between 
locally held rows)

• Once we have done this wait for all 
communications to complete
• Overlapping the local data copy with the 

communications



Distributed matrix building
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3,0,2 4,0,3 8,1,2 9,1,3

Received by P1 from P0

E,2,4 F,2,5 H,3,4 I,3,5

Received by P2 from P1

5,4,0 A,4,1 6,5,0 B,5,1

Received by P0 from P2

Write data 

into the 

appropriate 

place

As each received data 

value also has 

associated its global 

row and column, it is 

trivial to place it in the 

appropriate location

• Whilst we still need communication of the values, we don’t 

need communication to coordinate which process 

calculates what

• At worst each process needs to communicate with every other 

process, but this is 1 single large message



Irregular & indirect memory accesses

• 35% of the runtime when building 

the normal equations is in a 

procedure where we have this 

indirect memory access

do j=1, n

do i=1, n

matrix(dataloc(i), j)=equations(inputdata(i,j)) + ....

end do

end do

impossible for HW prefetcher

• This is a potential problem as the memory access pattern is 
highly irregular and-so it is impossible for the cache, 
bringing in lines, to benefit here.

• Unpredictability also makes it



Irregular memory accesses
• Used software pipelining and software prefetching to fetch the data 

ahead of time in a non-blocking fashion

do j=1, n

do i=1, n

k=i+PREFETCH_DISTANCE

if (k .le. n) then

call do_prefetch(matrix(dataloc(k), j))

call do_prefetch(equations(inputdata(k,j)))

end if

matrix(dataloc(i), j)=equations(inputdata(i,j)) + ....

end do

end do

• Over 3 times the 
number of 
instructions, but 
reduces overall 
runtime of this 
procedure by almost 
three times 

With software pipelining & 

prefetching

Original procedure, no 

prefetching 



Integration with SLEPc

• Once the normal equations are built, actually integrating 

the SLEPc solver into the code is fairly easy.

• Search for all eigenpairs on the normal equations matrix 

and then apply the eigenvalue and eigenvector to the 

RHS with some weighting.

• Experimented with all the different solvers and options, found the 

default Krylov-Schur gives the best performance, both in terms of 

result accuracy and runtime

• We found it important to tell SLEPc our matrix is Hermitian



Performance and scaling

• 10,000 model coefficients with 4.8 million items of data on 
ARCHER, Cray XC30 using Cray compiler version 8.6.5, 
PETSc version 3.8.4 and SLEPc version 3.8.3.

36 times faster

52 times 

faster



Performance and scaling

• Using SLEPc our results still 
match closely with the 
previous Givens reduction 
approach

• For the solver the new model 
takes 194 seconds over 4 
nodes and 97 seconds over 64 
nodes in contrast to 28,500 
seconds for the previous 
model!

• Building of the normal equations 
is also significantly faster, but this 
is the largest gain



Scaling beyond 10,000 parameters: 

Memory usage challenges

• When scaling beyond the 10,000 

coefficients limit of the current model, we 

start seeing non parallelisable memory 

limitations in SLEPc.

• There are very many options in SLEPc, but from detailed 

experimentation with all of these we were unable to avoid 

the very high memory overhead (per process)

• This is because we are working with a very large matrix and 

searching for all eigenpairs in this matrix, so it’s a hard problem to 

solve



Hybridising the model using MPI/OpenMP

• This memory requirement is on a process 

by process basis, hence we aim to reduce 

the number of processes and use 

OpenMP to thread over cores
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process each calculate portion 

of data for their matrix area



Large scaling of the new model

• On 40 nodes of ARCHER, Cray XC30 using Cray 
compiler version 8.6.5, PETSc version 3.8.4 and 
SLEPc version 3.8.3.



Iterative vs direct solver
• So far the scientists have replied on a direct Eigen solver, but 

what about an iterative solver?
• Replace the SLEPc direct solver with an iterative one from PETSc

(e.g. GMRES.)

• From a code perspective this is trivial, and that’s a major benefit of 
SLEPc

• Ran experiment on 40 nodes of ARCHER, Cray XC30

• Fixes the memory issue 

and the performance is 

significantly better

• But not fully stable and 

less so as we increased 

the problem size



Conclusions

• Building of the normal equations required some thought

• As it is a symmetric matrix had to consider how best to build in a 

manner that avoided co-ordination between processes and replica 

computation whilst maintaining a reasonable load balance

• Considerations of indirect memory accesses to bear in mind

• Further work needed on the iterative solver, especially from the 

geomagnetisism perspective

• Further work on dynamically tuning the 
prefetching distance

• PETSc OpenMP/MPI hybrid mode

• PETSc and SLEPc are a good combination

• Lots of options and trivial to change between them

• Possible to get great performance, especially if not 

after all the Eigenvalues

• Memory is an issue with the direct solver


