
Modelling the earth’s geomagnetic

environment on Cray machines

using PETSc and SLEPc

Nick Brown, Data Architect at EPCC

n.brown@epcc.ed.ac.uk

Background

• The Model of the Earth Magnetic Environment (MEME)
captures time-varying and the spatially-varying
components of the magnetic field.
• Developed by BGS

• Takes input from
• Ørsted, CHAMP and ESA swarm satellites

• Ground based observatories

• Output used for
• Scientific study & new geophysical understanding

• BGS Global Geomagnetic Model (BGGM)

• World Magnetic Model (WMM)

Background

• A model of the
vertical
component of
the lithospheric
field
• Earth's

lithosphere
includes the crust
and the
uppermost
mantle (hard and
rigid outer layer
of the earth.)

Existing model performance

0

5000

10000

15000

20000

25000

30000

35000

72 144 288 516

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

Number of processes

Solver time

Matrix build time

• Benchmarking run on ARCHER, Cray XC30, with 8000
parameters and 4 million data points

• Solver is sequential

• Parallelism limited to around 500 processes

• The entire matrix and RHS (containing the normal equations then
fed into the solver) must be on every process

7200

seconds Approximately

5000 seconds

Existing model approach

P0 P1 P2 P3

Input data

size of n

Add distributed

values together to

determine global

matrix values

• Input data are observation from

satellites and ground locations

• Number of parameters

depends on the length of time

to model, number of levels of

the crust etc…

• The matrix is number of

parameters by number of

parameters

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Data n/4 Data n/4 Data n/4 Data n/4

4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

Givens reduction

to solve

eigenvalue

problem

From eigenvalues

and eigenvectors

find fit to the data

Write to file with

original input data

Why PETSc/SLEPc?

• PETSc already part of the Cray module environment

• PETSc has good support for parallelism

• PETSc/SLEPc has good support for Fortran

• Can easily take advantage of PETSc functionality

• Seemed like results would agree

• But

• SLEPc is best suited to sparse systems, and our system

here is quite dense

Portable, Extensible Toolkit for Scientific Computation (PETSc)

Scalable Library for Eigenvalue Problem Computations (SLEPc)

The plan

1. Use PETSc and SLEPc to perform Eigen solve

2. Decompose on matrix of normal equations instead of
the input data

Input data

size of n

P0

P1

P2

PETSc/

SLEPc

PETSc/

SLEPc

PETSc/

SLEPc

Extract

Eigen

values and

vectors and

use these

determine

magnetic

coefficients

Write

result files

P0

P1

P2

Sequential normal equation matrix building

• With entirety of matrix on each process, the symmetry is very
simple to deal with as only compute the diagonal and upper
part, then copy upper elements into their corresponding
lower element locations

1 2 3 4 5 6

7 8 9 A B

C D E F

G H I

J K

L

1 2 3 4 5 6

2 7 8 9 A B

3 8 C D E F

4 9 D G H I

5 A E H J K

6 B F I K L

Local copying into

opposite location

n

n

• Or could compute all elements, but duplication of
work

• When we split the matrix up could just calculate

upper elements and communicate to the lower

elements

• But significant load imbalance!

P0

P1

P2

Distributed normal equation matrix building

P0

P1

P2
1 2 3 4

7 8 9

C D E F

G H I

5 A J K

6 B L

• Total number of points to

be explicitly calculated

• Base points per row to

be explicitly calculated

n

n

f =
𝑛2 − 𝑛

2
+ 𝑛

𝑟 =
𝑓

𝑛

• Starting at the diagonal, start calculating

r local points.

• If r is fractional (n is even), alternate between

ceil(r) and floor(r) points for each row

• If the number of rows/2 is even, then in the

second half of the matrix swap over ceil/floor

f=21

r=3.5

Distributed matrix building

1 2 3 4

7 8 9

C D E F

G H I

5 A J K

6 B L

3,0,2 4,0,3 8,1,2 9,1,3

E,2,4 F,2,5 H,3,4 I,3,5

5,4,0 A,4,1 6,5,0 B,5,1

From P0

to P1

From P1

to P2

From

P2 to

P0

Issue non-

blocking

sends &

register

corresponding

non-blocking

receives

Each entry is the value as well as the

global row and column (16 bytes per entry)

1 2 3 4

2 7 8 9

C D E F

D G H I

5 A J K

6 B K L

• Next we copy all local values (between
locally held rows)

• Once we have done this wait for all
communications to complete
• Overlapping the local data copy with the

communications

Distributed matrix building

1 2 3 4 5 6

2 7 8 9 A B

3 8 C D E F

4 9 D G H I

5 A E H J K

6 B F I K L

3,0,2 4,0,3 8,1,2 9,1,3

Received by P1 from P0

E,2,4 F,2,5 H,3,4 I,3,5

Received by P2 from P1

5,4,0 A,4,1 6,5,0 B,5,1

Received by P0 from P2

Write data

into the

appropriate

place

As each received data

value also has

associated its global

row and column, it is

trivial to place it in the

appropriate location

• Whilst we still need communication of the values, we don’t

need communication to coordinate which process

calculates what

• At worst each process needs to communicate with every other

process, but this is 1 single large message

Irregular & indirect memory accesses

• 35% of the runtime when building

the normal equations is in a

procedure where we have this

indirect memory access

do j=1, n

do i=1, n

matrix(dataloc(i), j)=equations(inputdata(i,j)) +

end do

end do

impossible for HW prefetcher

• This is a potential problem as the memory access pattern is
highly irregular and-so it is impossible for the cache,
bringing in lines, to benefit here.

• Unpredictability also makes it

Irregular memory accesses
• Used software pipelining and software prefetching to fetch the data

ahead of time in a non-blocking fashion

do j=1, n

do i=1, n

k=i+PREFETCH_DISTANCE

if (k .le. n) then

call do_prefetch(matrix(dataloc(k), j))

call do_prefetch(equations(inputdata(k,j)))

end if

matrix(dataloc(i), j)=equations(inputdata(i,j)) +

end do

end do

• Over 3 times the
number of
instructions, but
reduces overall
runtime of this
procedure by almost
three times

With software pipelining &

prefetching

Original procedure, no

prefetching

Integration with SLEPc

• Once the normal equations are built, actually integrating

the SLEPc solver into the code is fairly easy.

• Search for all eigenpairs on the normal equations matrix

and then apply the eigenvalue and eigenvector to the

RHS with some weighting.

• Experimented with all the different solvers and options, found the

default Krylov-Schur gives the best performance, both in terms of

result accuracy and runtime

• We found it important to tell SLEPc our matrix is Hermitian

Performance and scaling

• 10,000 model coefficients with 4.8 million items of data on
ARCHER, Cray XC30 using Cray compiler version 8.6.5,
PETSc version 3.8.4 and SLEPc version 3.8.3.

36 times faster

52 times

faster

Performance and scaling

• Using SLEPc our results still
match closely with the
previous Givens reduction
approach

• For the solver the new model
takes 194 seconds over 4
nodes and 97 seconds over 64
nodes in contrast to 28,500
seconds for the previous
model!

• Building of the normal equations
is also significantly faster, but this
is the largest gain

Scaling beyond 10,000 parameters:

Memory usage challenges

• When scaling beyond the 10,000

coefficients limit of the current model, we

start seeing non parallelisable memory

limitations in SLEPc.

• There are very many options in SLEPc, but from detailed

experimentation with all of these we were unable to avoid

the very high memory overhead (per process)

• This is because we are working with a very large matrix and

searching for all eigenpairs in this matrix, so it’s a hard problem to

solve

Hybridising the model using MPI/OpenMP

• This memory requirement is on a process

by process basis, hence we aim to reduce

the number of processes and use

OpenMP to thread over cores

Input

data

size

of n

PETSc/

SLEPc

PETSc/

SLEPc

PETSc/

SLEPc

Extract

Eigen

values and

vectors and

use these

determine

magnetic

coefficients

Write

result files

P0

Data n/2

Data n/2

P1
Data n/2

Data n/2

P2

Data n/2

Data n/2

Threads running within a

process each calculate portion

of data for their matrix area

Large scaling of the new model

• On 40 nodes of ARCHER, Cray XC30 using Cray
compiler version 8.6.5, PETSc version 3.8.4 and
SLEPc version 3.8.3.

Iterative vs direct solver
• So far the scientists have replied on a direct Eigen solver, but

what about an iterative solver?
• Replace the SLEPc direct solver with an iterative one from PETSc

(e.g. GMRES.)

• From a code perspective this is trivial, and that’s a major benefit of
SLEPc

• Ran experiment on 40 nodes of ARCHER, Cray XC30

• Fixes the memory issue

and the performance is

significantly better

• But not fully stable and

less so as we increased

the problem size

Conclusions

• Building of the normal equations required some thought

• As it is a symmetric matrix had to consider how best to build in a

manner that avoided co-ordination between processes and replica

computation whilst maintaining a reasonable load balance

• Considerations of indirect memory accesses to bear in mind

• Further work needed on the iterative solver, especially from the

geomagnetisism perspective

• Further work on dynamically tuning the
prefetching distance

• PETSc OpenMP/MPI hybrid mode

• PETSc and SLEPc are a good combination

• Lots of options and trivial to change between them

• Possible to get great performance, especially if not

after all the Eigenvalues

• Memory is an issue with the direct solver

