
Exploring Lustre Overstriping For Shared File Performance on Disk and Flash

Michael Moore

Cray, Inc.

Austin, TX, USA

mmoore@cray.com

Patrick Farrell

Whamcloud

St. Paul, MN, USA

pfarrell@whamcloud.com

Abstract— From its earliest versions, Lustre has included

striping files across multiple data targets (OSTs). This

foundational feature enables scaling performance of shared-file

I/O workloads by striping across additional OSTs. Current

Lustre software places one file stripe on each OST and for

many I/O workloads this behavior is optimal. However, faster

OSTs backed by non-rotational storage show individual stripe

bandwidth limitations due to the underlying file systems

(ldiskfs, ZFS). Additionally, shared file write performance, for

I/O workloads that don't use optimizations such as Lustre lock

ahead, may be limited by write-lock contention since Lustre

file locks are granted per-stripe. A new Lustre feature known

as ‘overstriping’ addresses these limitations by allowing a

single file to have more than one stripe per OST. This paper

discusses synthetic I/O workload performance using

overstriping and implications for achieving expected

performance of next-generation file systems in shared file I/O

workloads.

Keywords-Lustre; Performance;

I. INTRODUCTION

Lustre [1] is a large scale, distributed file system which
presents a POSIX file system to user applications,
maintaining the same consistency semantics as a local file
system. A Lustre file system back end consists of metadata
targets (MDTs) and data targets (OSTs), which are served by
metadata servers (MDS) and data servers (OSS). There is
also a management server or MGS used for configuration.
The basic model for scaling a Lustre file system is adding
additional metadata and data targets.

Performance scaling in a parallel system is generally
divided into vertical scaling, increasing the performance of
individual components, and horizontal scaling, increasing the
number of components in the system. Lustre enables
horizontal scaling by distributing data across OSTs,
including within individual files by striping the file contents
across many OSTs. This capability – present since the
earliest releases – allows scaling of both multi-file and single
file workloads.

This simple approach works well for many scenarios and
allows Lustre to scale from small clusters to the largest
machines, but Lustre currently imposes some restrictions
around striping. In particular, there is a one-to-one
relationship between file stripes and OSTs, with only one
stripe of a file placed on each OST. At the on-disk file

system level, each file stripe is stored in a single object. A
Lustre file is composed of one or more stripes and the data of
each stripe is stored in an object in the on-disk file system.
The term object will be used when referring to local file
system behavior and stripe will be used when referring to the
Lustre file. A shared file with a single stripe per OST is
limited to a single object per OST; whereas with multiple
files there are multiple objects per OST since each file has a
different stripe.

The bandwidth available to a single object is restricted by
limitations at several layers of Lustre, this is why peak I/O
performance on new systems generally requires multiple
files per OST. These limitations have been present for a long
time, but new storage technologies have made them more
acute.

A. Emerging Issues

For many years, growth in CPU frequency, which is the

primary driver of single object and single stream

performance, kept pace with growth in storage speeds. The

slowing of Moore’s Law and the advent of SSDs have

altered these trends significantly. New distributed parity raid

technologies such as GridRAID [2] and DCR [3] have also

enabled extremely large arrays further exacerbating the

problem. The result is that the fastest, modern OSTs are

capable of 10 GB/s write bandwidth and trends suggest near

future systems will be capable of several times that.

The limitations for single object performance fall in to

two main categories, which we will discuss separately (1)

local file system performance (2) shared file Lustre

distributed locking (LDLM) contention

1) Local File System Performance

Each Lustre stripe corresponds to a single on-disk object

in the on-disk file system of an OST. Lustre supports either

the ext4 derived ldiskfs or ZFS as the on-disk file system,

which leads to different specific limitations for each, but the

general problems are similar. When adding data to an

object in an on-disk file system, blocks must be allocated,

local metadata updated, and, if page caching is in use, pages

must be tracked in either the Linux page cache (ldiskfs) or

ARC (ZFS).

Both the ARC and the Linux page cache have limitations

to how much data they can add to a single object at a time.

This limit is partly because very high bandwidth

applications require freeing pages to add pages, but it is also

due to the general overhead of page tracking and data

copying, all of which are CPU bound. In practice, both

have single object limitations in the single digit GB/s range.

Specific rate limitations vary depending on kernel version

and hardware but are generally 5-10 GB/s for modern

systems. Work is ongoing to improve performance in the

Linux page cache, but the page cache and ZFS ARC

implementations are already heavily optimized, so the scope

for large improvements is limited.

Leaving aside caching, which can be disabled in some

scenarios, we are left with the on-disk file system

limitations. The upper limits of bandwidth to a single file in

each file system have not been well explored, but there is

reason to believe they are below the 10s of GB/s expected of

future OSTs. These limits stem from the work and locking

required to allocate blocks/extents and mange other local

file system metadata.

In both the case of the page cache/ARC and the local file

system limitations, it is possible and desirable to raise the

limit by applying engineering effort, but each limitation

represents significant engineering effort to overcome.

Additionally, certain fundamental requirements mean that

while the limitations can be increased, they will never be

removed entirely.

2) Shared File Lustre Distributed Locking Contention

To manage file and object access between different

clients, Lustre uses a distributed locking mechanism known

as the Lustre distributed lock manager (LDLM). LDLM

manages locking between distinct Lustre clients, and is

fundamental to how Lustre presents a standard POSIX file

system abstraction in a distributed environment with

concurrent updates from many clients. This section is

effectively an abbreviated version of the discussion in our

previous paper [4], those looking for more information are

encouraged to review the Lustre Locking Behavior section

of that paper.

For this discussion, understand that LDLM extent locks

are range locks granted by the OSTs upon request from

clients. It is impossible for two clients to hold write locks

on the same range, so when the server receives a conflicting

write request, the existing lock must be cancelled before the

new lock can be granted.

To write to a file a Lustre client must have a write lock

covering the file range for the intended write. The Lustre

client determines which stripe contains that portion of the

file, and, if it does not already have the required lock, sends

a lock request to the OST which contains that stripe. This

lock request covers only the region required for the write.

While the client only asks for the region strictly required, it

is inefficient to request a lock for every write, so the server

attempts to return the largest non-conflicting lock. If an

existing lock conflicts with the actual request from the

client, that existing lock must be cancelled, and is cancelled

before determining the “largest non-conflicting lock”.

Generally, this means clients acquiring write locks will

acquire write locks on the entire stripe. This is desirable

behavior in most scenarios, where the client will write

repeatedly to the same stripe but can be problematic when

more than one client wants to write to the same stripe as

depicted in Fig. 1.

Multiple writers to a single file generally write in a

strided pattern, where different writers alternate different

blocks of the file depicted in Fig 2. Unless the client count

and write size are perfectly aligned with the stripe

boundaries, this means multiple clients will be writing to the

same stripe of the file. Critically, they do not write to the

same bytes of the file, so they should be able to proceed in

parallel, but the default LDLM behavior prevents this.

Because of the optimization to grant the largest possible

lock on each write, multiple clients writing to the same

stripe result in false conflicts, where the optimistic locking

behavior generates conflicts where none existed.

Figure 1. LDLM lock contention on a single stripe

Figure 2. Multiple rank access for shared file with strided pattern

The result of this is extremely poor performance, as the

clients essentially take turns waiting for one another. The

obvious solution is to disable this behavior, but this does not

improve performance [5].

There are only partial solutions currently available for

this problem. The first is to make sure that the number of

stripes equals the number of clients and align writes such

that each client writes only to a single stripe. This works

well, and the MPI-IO I/O library allows coercing arbitrary

access patterns to this form via collective buffering and

aggregation [6]. However, this has limitations and requires

the application to use the collective MPI-IO interface.

Notably, it means only one client is writing to each OST.

For various reasons, one Lustre client can only write to a

single OST at 3-5 GB/s. This is lower than the bandwidth

of some OSTs in systems today, and far lower than the per

OST bandwidth projected for future systems. This means

that directly addressing the LDLM locking problem is

necessary to achieve expected single OST performance for

shared files. Unfortunately, this is only possible by using

complex mechanisms such as Lustre Lockahead [4] or

relaxing the POSIX consistency of Lustre by using Lustre

group locks, which can risk data corruption. These choices

have costs in complexity, time, and effort. It would be

better to avoid such complexity and still access the full

bandwidth of each OST. This discussion raises a simple

question, obvious in hindsight: why do we allow only one

stripe per OST?

II. LUSTRE OVERSTRIPING

To extract the maximum performance from an OST on
current hardware and software, benchmarks and applications
use multiple stripes per OST; the stripes are simply in
separate files. The central insight of overstriping is that this
solution can be applied within a single file. There is nothing
intrinsically necessary about the one-to-one relationship
between stripes and OSTs within a file. Relaxing that
requirement to allow more than one stripe on each OST is
straightforward, and as the benchmark section shows, for
many workloads, has benefits similar to using multiple files.

Fig. 3 and Fig. 4 contrasting standard Lustre striping and
and overstriping. Normal Lustre file striping places one
stripe per OST. A file using four OSTs with a single stripe
on each OST creates a layout as shown in Fig. 3. In contrast,
with overstriping, the same number of OSTs can be used for
more than four stripes. Placing two stripes on each of four
OSTs creates a layout with eight stripes as shown in Fig. 4.

Figure 3. Lustre default stripe layout; 1 stripe per OST

Figure 4. Lustre overstripe layout; 2 stripes per OST

A. Lustre Overstriping and Compatability

Due to the flexibility of the Lustre striping

implementation, the implementation of overstriping is

straightforward. Lustre has a layered design, with

responsibilities clearly delineated between different layers,

and significant independence between neighboring

components. This design means that Lustre does not care

which OST a stripe is present on, or even if more than one

stripe is present on an OST. Historically, more than one

stripe per OST was considered undesirable, so creating such

layouts was prevented by sanity checks. However, those

checks did not reflect an underlying limitation in the

software or architecture. Thus, the implementation of

overstriping consisted largely of removing these checks, and

creating a userspace interface to express layouts with more

than one stripe per OST. This leaves us without much

technical detail to discuss directly about the implementation,

so instead, we will highlight a few of the complications that

emerged.

Overstriping makes it trivial to explore file striping

settings that were previously the preserve of only a few

extremely large systems. With overstriping it is possible to

put 2,000 stripes on a single OST. This exposed several

bugs which had not previously been identified. Lustre has a

long-standing limit of 2000 stripes per layout component

but no deployed system has ever used more than around

1,000 OSTs. With overstriping, it becomes trivial to reach

higher stripe counts, and it was discovered values near 2,000

stripes cause a crash due to an incorrect check on the

maximum allowed layout size [7].

Previously it was possible to create layouts which

exceeded the maximum layout size by, for example,

creating a progressive file layout (PFL) with multiple

components with large numbers of stripes. If the total

number of stripes in a PFL file exceeds approximately

2,700, it is possible to crash Lustre systems. This was not

practical to test, nor did it represent a useful configuration,

prior to overstriping. The issue was resolved as a

prerequisite for overstriping, so versions of Lustre with

overstriping will now reject these “too large” layouts, giving

an error rather than crashing [8].

It was also noted that Lustre’s handling of extremely

large extended attributes (file layout is stored as an extended

attribute (xattr)) was inconsistent, with ldiskfs allowing

xattrs beyond the maximum supported by Linux, and ZFS

limiting xattrs to less than this size. Resolving this required

tweaks to the client/server negotiation in order to correctly

provide the true maximum size and respect it in the size

checks described in the previous paragraph [9].

There are several other examples of unusual issues

discovered when pushing the limits of file striping, but these

are representative: Issues discovered were significant, but

required only straightforward fixes and enhancements to

existing code. The main lesson to draw is that when adding

new functionality to existing systems, many problems stem

not from errors in the new functionality itself, but from

latent issues in existing code which are exposed by new

usage.

1) Users Application Compatibility

Since overstriping uses Lustre file striping, it is invisible

to user applications that do not directly interact with the

layout via lfs getstripe and setstripe subcommands. An

application that doesn’t interact with Lustre layout

information directly will see no change except, hopefully,

improved performance. If an application does use lfs

getstripe, the output format is unchanged except for a

change to indicate when overstriping is used. Unless

application logic assumes and verifies one stripe per OST

the application should not require modifications. For the lfs

setstripe subcommand, overstriping is accessible via slightly

modified versions of the existing arguments. Example usage

of current syntax is provided in Section 4.

2) Version Compatibility

Despite the simplicity of the implementation, clients

which have not been updated to support overstriped files

cannot use them. The sanity checks mentioned in the

implementation section will cause older clients to crash

when exposed to an overstriped file. The server uses the

standard approach for new file layout features (such as PFL

[10] and FLR [11]) and does not allow clients to open

overstriped files unless they support the feature. This means

that both client and server must support the new feature to

use it, which is typical. The feature is scheduled for release

in Lustre 2.13 from WhamCloud. Availability in Cray CLE

and ClusterStor software is planned.

III. I/O PERFORMANCE

A. Test Environment

Tests of Lustre overstriping were performed using a Cray
ClusterStor file system composed of two ClusterStor L300N
SSUs and one L300F SSU using the NEO 3.1 software stack.
However, the Lustre build included the addition of Lustre
overstriping support. Lustre overstriping is not currently
available in released ClusterStor software. The L300F SSU
was configured in a non-standard, non-redundant manner as
a striped, RAID-0 device using ldiskfs. This configuration
allows a single OST access to the full disk bandwidth by
eliminating parity overhead. This was done to allow
evaluation of overstriping and the limitations described in
Section 1. The results described in the following sections
using the L300F are not representative of a production
L300F configuration and are referred to as a “flash OST”.
The L300N SSUs were configured normally with a 41 disk
GridRAID OST using ldiskfs.

A set of 48 heterogenous Lustre clients in an Infiniband
cluster were used to perform I/O. The Lustre clients were
dual socket Intel Ivy Bridge compute nodes with 64 GB of
memory. The same Lustre build was used on both servers
and clients. The clients used a CentOS 7.5 operating system.

B. Local Performance Testing

Obdfilter-survey is a synthetic benchmark used to
directly measure performance of OSTs. Obdfilter-survey was
used to generate load directly on the OSSes to demonstrate
the local file system limitations of a single OST. Generating
file system requests directly on the OSSes eliminates client
locking and network overhead. Obdfilter-survey creates
several threads on the OSS to generate I/O across a
configurable number of local file system objects which are
accessed in configurable size records.

A set of tests were performed on an L300N OST and a
flash OST varying the number of threads and objects. A 4
MiB record size was used for all tests corresponding to the
typical size of RPCs configured on ClusterStor systems.
Each test was performed three times and the median value
reported.

The write and read performance of an L300N GridRAID
OST is shown in Fig 4 and Fig. 5 respectively. As the
number of threads increases both write and read performance
plateau with no clear delineation between object counts.
Since two or more objects do not significantly improve
performance the local file system limitation is above the
peak performance of a single L300N OST. Concurrent
access to a single object from progressively higher thread
counts marginally limits the single object performance. For
these results, write and read operation performance tends to
improve with higher thread counts so that more I/O requests
in flight.

Figure 5. L300N obdfilter-survey write performance

Figure 6. L300N obdfilter-survey read performance

The write and read performance of a flash OST is given

in Fig. 6 and Fig. 7 respectively. For the flash OST the
performance curve is relatively flat regardless of thread
count. The reduced latency of servicing I/O requests using
flash devices requires fewer threads to achieve expected
performance. The variation in performance across the
number of threads is very low compared to the L300N
results. Important to our discussion of local file system
limitations, the performance of all single object tests is
significantly lower than higher object counts. Single object
performance is 6.8 – 7.1 GB/s for writes and 7.1 – 7.5 GB/s
for reads. All other object counts show expected peak
performance of the OST: 11.2 – 11.7 GB/s for write and
read. For this flash OST, hardware configuration, and
software stack the single object performance limit is 6.8 –
7.5 GB/s. With a single object Lustre is only able to achieve
approximately 60% of the expected OST performance.

Figure 7. Flash OST obdfilter-survey write performance

Figure 8. Flash OST obdfilter-survey read performance

Obdfilter-survey was used to evaluate the current local
file system limitation described in Section 1 on a disk and
flash based OST. Test results demonstrated that the local file
system performance limit in the test environment is around 7
GB/s for a single object. The potential performance of the
flash OST exceeded 7 GB/s and, as expected, multiple
objects were required to achieve peak bandwidth. The
L300N OST was able to achieve near peak performance with
a single object indicating there was not a local file system
limitation, although additional objects saw marginally
improved performance at high thread counts. In the next
section, we evaluate the ability of overstriping to address the
second limitation, LDLM contention.

C. Lustre Client Performance Testing

IOR [12] is a synthetic benchmark used to generate

specific I/O access patterns. Due to time and system

constraints IOR is used as a proxy for application

workloads. Each IOR test writes a fixed amount of data,

64GB per node, which is equal to the amount of node

memory. Between each write and read test the client cache

is flushed to eliminate any client cache effects. For all tests,

if more than one MPI process per node is used the MPI

processes were packed on a node e.g. rank 0 – 15 are placed

on node 0. The access pattern is a shared, strided pattern

where each process accesses multiple segments at a fixed

stride throughout the file as depicted in Fig. 2. The Lustre

stripe size was set equal to the segment size, known as the

block size in IOR, and to the record size, known as the

transfer size in IOR. Many applications access data in a

similar pattern either directly or through higher-level I/O

libraries. For shared file workloads, parameters such as node

count, OST count, record size and Lustre stripe size all

interplay to impact performance. These tests focus on record

sizes equal to the Lustre stripe size with all nodes accessing

a single OST to demonstrate the effect of LDLM contention.

The term “overstripe count” generally refers to the total

number of stripes of a file when using more than one stripe

per OST. In the following discussions, since a single OST is

used, the overstripe count and number of stripes per OST is

equal.

1) Disk Shared File Performance
Initial tests used an L300N disk-based OST focused on

the performance of the shared, strided access pattern while
scaling the number of Lustre stripes on a single OST. Local
file system testing of an L300N OST didn’t require multiple
objects to achieve expected performance and since LDLM
contention doesn’t affect read performance, read data is not
presented. Fig. 9 and Fig. 10 show the write performance of
varying compute node counts for one process per CPU core
(16) using 1 MiB and 16 MiB record sizes respectively.
Generally, the performance for this specific workload, even
with overstriping, fails to approach optimal OST
performance. However, there are significant improvements
in write performance using overstriping. All node counts
show at least a doubling of performance comparing the write
performance of a single stripe and optimal Lustre stripe per
OST count. This improvement is due to more stripes
providing additional locking domains since each stripe can
grant a single lock. The incremental improvement in write
performance from left to right in the figures illustrate the
reduced LDLM contention, and increased concurrency,
allowed by multiple stripes. The cause of the dramatically
improved performance in the 4 node case at 16 or 32 stripes
was not investigated further.

Comparing 1 MiB and 16 MiB record sizes shows
improved write performance with the larger 16 MiB records
and corresponding 16 MiB Lustre stripe size. Although 16
MiB records improve performance the rate is still below
peak file per process rates which indicates LDLM contention
is still reducing performance for this workload. With a larger
Lustre stripe size more data is written per granted lock and
fewer locks are required to cover the same amount of data.
Additional stripes per OST, beyond 32, may provide further
performance improvements but were not investigated.

Figure 9. L300N OST shared file 1 MiB record write performance

Figure 10. L300N OST shared file 16 MiB record write performance

To illustrate the write performance improvement using

Lustre overstriping for an L300N OST Fig. 11 and Fig. 12

show the comparative performance of the current single

stripe per OST and the maximum measured performance

using overstriping. The “Overstriping” value in the figures

represents the highest observed performance for any stripes

per OST count tested: 2, 4, 8,16, or 32. The benefits of

overstriping is more compelling for both 1 MiB and 16 MiB

record sizes as the number of compute nodes accessing the

shared file increases. This observation matches expectations

that additional Lustre clients introduce more lock contention

and by increasing the number of stripes per OST the

concurrency increases. In the overstriping tests for 1 MiB

and 16 MiB and single stripe tests for 16 MiB, using

additional processes per node shows reduced performance

when more than 4 nodes are used. This is likely due to

increased lock contention due to process placement i.e. each

node with 4 processes write 4 records which corresponds to

4 stripes. A single process would allow each client to only

write to a single stripe without contention from other nodes.

Depending on the node and process count, record and stripe

size, and stripe count the alignment of accesses to Lustre

stripes can eliminate lock contention by only having a single

node access a stripe as described in section 1.

Figure 11. L300N OST Shared file write performance using 1 MiB record

Figure 12. L300N OST shared file write performance using 16 MiB record

Shared file performance on an L300N OST using

overstriping showed consistent, significant improvements in

write performance. The benefit of additional stripes to

reduce LDLM lock contention was shown in the

incremental improvement of write performance as the

number of stripes per OST increased. With adequate

compute nodes to drive performance most tests showed a

50% to 100% increase in performance with some tests

showing an improvement of up to 6 times single stripe per

OST performance. Most tests showed 16 or 32 stripes per

OST as highest performing although using more than 32

stripes per OST was not tested and may yield further

improvements for some workloads.

2) Flash Shared File Performance

Tests on the flash OST began with the same workload as

the L300N testing, a shared, strided access pattern with one

process per CPU core. Due to the higher performance of the

flash OST, higher node counts were used in these tests. As

seen in local file system tests, multiple stripes are needed to

achieve expected performance so read tests were also

performed and presented. Fig. 13 shows the incremental

write performance increase from 3-6 GB/s, depending on

record size, for a single stripe per OST to 11.1 – 11.4 GB/s

for multiple stripes per OST which is nearly equal to

optimal file-per-process performance. The incremental write

performance improvements point to LDLM contention as

also seen in testing of the L300N. The performance curve

also indicates there isn’t a performance penalty, at this scale,

for using stripe counts larger than needed to achieve

expected performance on a flash OST i.e. performance

plateaus once adequate stripes are used. The performance of

larger record sizes, with an equal Lustre stripe size, show

reduced LDLM contention as seen in the L300N tests. The

read tests in Fig. 14 demonstrate the read performance

limitation is due to the local file system as all test results

show a large increase and subsequent plateau at 11.7 GB/s

once more than one stripe is used. Record sizes larger than

Figure 13. Flash OST shared file write performance, 48 compute nodes

Figure 14. Flash OST shared file read performance, 48 compute nodes

1 MiB match the observed local file system rate in Fig.8.

Second, the effect of varying compute nodes was

investigated using the same access pattern and processes per

node. The “Overstriping” rate in Fig. 15 and Fig. 16 is the

same as described for Fig. 11 and Fig. 12. Fig. 15 and Fig.

16 show roughly similar single stripe performance across all

node counts although the 48-node test with a 1 MiB record

size is 40% lower than 32 nodes indicating LDLM

contention is still an issue, even on the flash OST. The

results indicate the effect of LDLM contention on

performance for flash-based OSTs is less than disk based

OSTs. The reduced latency of servicing requests on flash

likely reduces the time a lock is held to service an I/O

request. Further microbenchmarks were not performed to

confirm this. Additionally, in this testing shared file

performance using 32 and 48 nodes achieves file per process

write rates which was not possible at the same stripes per

OST count in L300N OST testing.

Figure 15. Flash OST shared file write performance, 1 MiB record

Figure 16. Flash OST shared file write performance, 16 MiB record

Testing using a flash based OST for a shared, strided

workload showed the expected incremental write

performance improvement as the number of stripes per OST

was increased. Comparing the default, single stripe per OST

performance to the best Lustre overstriping performance

shows an improvement for all tests and up to an

improvement of 4 times for specific workloads. Read

performance is also improved by using more than one stripe

per OST in order to overcome the local file system

limitation.

The IOR tests to this point focused on a node with one

process per compute core which is a common workload.

However, many of the workloads that use this access pattern

use collective MPI-IO. The optimizations provided by

collective MPI-IO calls, specifically collective buffering, is

another important use case for Lustre overstriping which we

investigate in the next section.

3) Collective MPI-IO

One of the main application use cases for shared file

access is using higher level I/O libraries such as HDF5 that

make use of collective MPI-IO. Collective MPI-IO

implementations, such as Cray MPICH, use optimizations

such as collective buffering and advanced placement of data

on aggregators to optimize shared file performance [4,6].

Although collective MPI-IO tests were not performed due to

system software and time constraints the following results

provide a similar workload from the aggregator point of

view to evaluate how Lustre overstriping may benefit

collective MPI-IO write performance.

Although a full discussion of collective MPI-IO is

beyond the scope of this paper, collective MPI-IO uses a set

of MPI processes in collective buffering known as

aggregators to perform calls to the underlying file system on

behalf of all the ranks involved in the collective operation.

We’ve discussed the challenges of shared file performance

and LDLM contention. One optimization used by collective

buffering to address the contention is to use a small number

of ranks as aggregators. The collective buffering aggregator

ranks are performing POSIX shared file accesses which is

the same workload used in the benchmarks. The default

behavior for Cray MPICH is to use a number of aggregators

equal to the number of OSTs placing one aggregator rank

per node up to the number of aggregators needed.

To emulate the workload of MPI-IO collective buffering

aggregators the same IOR tests were performed using only a

single process per node. Although the record sizes tested are

1 MiB aligned, an application doesn’t need to issue requests

of that size due to collective buffering. The requests will be

correctly aligned to Lustre stripe sizes by collective

buffering. Fig. 17 and Fig. 18 show the single stripe, per

OST performance in the left-hand grouping and the

maximum measured performance for multiple stripes per

OST in the right-hand grouping.

In Fig. 17, with fewer processes per node, the benefit of

overstriping is much larger than previous single OST

L300N tests with one process per core. For 4 MiB, 16 MiB,

and 64 MiB record sizes the shared, strided write

performance achieves peak file per process performance of

6 GB/s. Additionally, the benefits of overstriping for small

record sizes is dramatic, a 5x improvement for 1 MiB record

size using 8 or 16 nodes. The tests for the flash OST are

similar to results previously seen; the effect of higher

process per node counts has less effect on flash-based OSTs

than disk-based OSTs. As with previous flash OST results,

all record sizes are able to achieve expected file per process

OST performance using some stripe count and node count

combination.

Emulating the access patterns and process count of MPI-

IO aggregator ranks the test results indicate that overstriping

is another way to improve shared file write performance for

collective MPI-IO using collective buffering. The results

show that with proper data placement, where each

aggregator accesses a single stripe, shared file performance

for collective MPI-IO can achieve near file per process rates

even as OST performance continues to increase.

Figure 17. L300N OST 1 PPN shared file write performance

Figure 18. Flash OST 1 PPN shared file write performance

IV. USING LUSTRE OVERSTRIPING IN APPLICATIONS

As described in Section 2, Lustre striping is controlled

using the same utility, lfs, whether striping is a single stripe

per OST or overstriped. Use of the Lustre Library API

(llapi) [13] is beyond the scope of this paper but can also be

used to programmatically set Lustre striping.

A. Setting Lustre Overstriping

The lfs setstripe subcommand is used to specify striping

information. There are two methods to specify the stripe

layout to use overstriping detailed in Table 1. Note that

these options are as implemented in the pre-release version

used for testing, they may differ slightly in the released

version (details will be available in lfs setstripe help and

man pages). Typically, a balanced count of stripes on all

OSTs is desired and for that use case the -C / --overstripe-

count option is sufficient. The command to create a file with

overstriping depicted in Fig. 3 is provided in Listing 1.

Assuming a file system with 4 OSTs, as depicted in Fig. 3, 8

overstripes will have two stripes placed across the 4 OSTs.

Lustre, by default, will place stripes on all available

OSTs while following placement heuristics based on OST

capacity utilization or placement within a Lustre pool if that

option is provided to the lfs setstripe command. Stripe

placement policies are still present with overstriping so

allowing Lustre to select where stripes are placed can lead

to unbalanced placement if OST capacity utilization is

unbalanced. However, it’s recommended to allow Lustre to

handle stripe placement within a pool.

An alternative to Lustre selecting the file stripe layout is

manually specifying all OSTs the stripes will be placed on.

This may be necessary if a pool with the desired OSTs is not

available or for experimentation with unbalanced stripe

placement. Continuing the previous example of 8 stripes

across 4 OSTs Listing 2 provides an alternate file layout by

manually specifying each stripe using the existing -o / --ost

option which will now support duplicated OST indices.

TABLE I. LFS SETSTRIPE OVERSTRIPING OPTIONS

Overstripe Layout lfs setstripe Argument

Automatic -C / --overstripe-count <count>

Manual -o / -- ost <ost1,ost2, … ostN>

Listing 1. lfs command for 8 automatically placed overstripe layout

Listing 2. lfs command for 8 manually placed overstripe layout

$lfs setstripe -o 0,1,0,2,1,2,3,3 \

 testfile

$lfs setstripe -C 8 testfile

As referenced in section 2 lfs getstripe reports the use of

overstriping for a file’s layout. Specifically, the

lmm_pattern attribute will indicate overstriping is in use.

Continuing the layout example, the corresponding lfs

getstripe layout information is provided in Listing 3 and

Listing 4. In Listing 3 the OST index cycles between the list

of 4 OSTs for a total of 8 stripes. In Listing 4 the order of

stripes matches the specific OST list order provided to lfs in

Listing 2.

Listing 3. lfs stripe listing for automatic overstriping layout

Listing 4. lfs stripe listing for manually placed overstripe layout

B. Overstripe Count Tuning

Test results presented in Section 3 indicate that for many

workloads, using overstriping to create 16 or 32 stripes per

OST provides the best performance for the configuration

and workloads tested. However, the use of overstriping does

require additional stripes to be created on OSTs and tracked

in file metadata. The additional file metadata does consume

inodes in the file system and capacity on the MDT. It’s

recommended overstriping only be used in cases where

shared files with a single stripe per OST are a bottleneck,

similar to how widely striped files are managed today.

The number of stripes per OST needed to achieve

optimal write or read performance will depend on the

specifics of the application workload, job size, API, and file

system characteristics. In cases where the number of nodes

accessing an OST is similar in size to the test environment,

results presented in section 3 show using a stripe count per

OST equal to or greater than the number of nodes accessing

the OST is a good rule of thumb.

In the case of collective MPI-IO using collective

buffering with Cray MPICH the number of nodes per OST

is specified by the MPI-IO hint cray_cb_nodes_multiplier.

Although it was not directly, it’s expected the multiplier

should be equal to the number of stripes per OST. Support

for Lustre overstriping in Cray MPICH is planned but is not

available in released versions as of this writing. However,

Lustre overstriping can be used by setting the Lustre

striping using lfs setstripe. Using MPI-IO hints to set

overstriping on files will require support in Cray MPICH.

The second major factor influencing the number of

stripes needed per OST is the record size and Lustre stripe

size. As an example, in test results presented for a flash

OST, a 16 MiB record size requires only 8 stripes per OST

to achieve optimal performance while a 1 MiB record size

requires 32 stripes per OST. For disk-based OSTs the

number of stripes are higher, presented results indicate 16

stripes per OST are needed for a 16 MiB record and 32 or

more stripes are needed for a 1 MiB record.

Of the two limitations motivating the Lustre overstriping

feature the local file system limitation will require a

minimum number of overstripes to overcome. Testing

indicates for current software and hardware an overstripe

count of two stripes per OST is adequate given a single

stripe performance limit of 7 GB/s and a peak OST

performance of 11.7 GB/s. The specific values for the per

stripe limit will vary depending on hardware and software.

Generally, it’s expected that the overstripe count will be

driven by reducing LDLM contention.

V. CONCLUSION

Current Lustre striping behavior places a single stripe

per OST. The increasing performance of single OSTs due to

software and hardware changes has made two issues

limiting shared file performance more acute. The first issue,

local file system performance limitations, places single

stripe performance and subsequently shared file

performance below expected OST performance.

Experimental results show that multiple stripes on an OST,

the contribution of the new Lustre overstriping feature,

overcome this limitation so an OST can achieve expected

performance for a single file.

The second issue, LDLM contention, has been addressed

with other file system features and optimizations in APIs

but continues to cause challenges in achieving expected

shared file performance across a variety of workloads.

$ lfs getstripe testfile

testfile

lmm_stripe_count: 8

lmm_stripe_size: 1048576

lmm_pattern: raid0_overstriping

lmm_layout_gen: 0

lmm_stripe_offset: 8

lmm_pool: disk

 obdidx objid objid group

 2 39748073 0x25e81e9 0

 0 39840878 0x25fec6e 0

 3 39789909 0x25f2555 0

 1 39826705 0x25fb511 0

 2 39748074 0x25e81ea 0

 0 39840879 0x25fec6f 0

 3 39789910 0x25f2556 0

 1 39826706 0x25fb512 0

$ lfs getstripe testfile

testfile

lmm_stripe_count: 8

lmm_stripe_size: 1048576

lmm_pattern: raid0_overstriping

lmm_layout_gen: 0

lmm_stripe_offset: 0

 obdidx objid objid group

 0 39840884 0x25fec74 0

 1 39826711 0x25fb517 0

 0 39840885 0x25fec75 0

 2 39748078 0x25e81ee 0

 1 39826712 0x25fb518 0

 2 39748079 0x25e81ef 0

 3 39789915 0x25f255b 0

 3 39789916 0x25f255c 0

Presented results show the effect of LDLM contention on

write performance can be reduced by creating additional

stripes on an OST. In all cases, both disk and flash OSTs,

shared file write performance was improved by using

overstripes. Also, both disk and flash OSTs had

combinations of record size, node count, and process per

node counts that could achieve file per process rates for a

shared, strided workload. Finally, the role of overstriping for

collective MPI-IO shared file performance was assessed.

Synthetic benchmarks showed aggregators, with a single

process per node, can achieve file per process rates for disk

and flash based OSTs for specific record sizes and node

counts. Future work in evaluating Lustre Overstriping

includes (1) testing applications using collective MPI-IO

with Cray MPICH (2) testing at larger scale.

ACKNOWLEDGMENT

We would like to acknowledge the assistance of Alexey
Lyashkov, Chris Horn, and Justin Miller for Lustre build
assistance for the test environment, Bill Loewe, Chris
Walker, and John Fragalla for ClusterStor and test
environment assistance, Nathan Rutman and Andreas Dilger
for guidance on design, and John Bauer and Richard Walsh
for manuscript review.

REFERENCES

[1] (2019) Lustre. [Online]. Available: http://lustre.org/

[2] M. Swan, “Sonexion GridRAID Characteristics” presented at CUG
2014, 2014.

[3] (2017) DDN SFA Updates. [Online]. Available:
https://youtu.be/jgrIBHSOh7s.

[4] M. Moore, P. Farrell, and B. Cernohous, “Lustre Lockahead: Early
Experience and Performance using Optimized Locking,” presented at
CUG 2017, 2017.

[5] (2015) Shared file performance improvements LDLM lock ahead.
[Online]. Available: http://wiki.lustre.org/images/f/f9/Shared-File-
Performance-in-Lustre_Farrell.pdf

[6] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in

ROMIO,” in Proceedings of the The 7th Symposium on the Frontiers
of Massively Parallel Computation, ser. FRONTIERS ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 182–.

[7] (2019) Remove LASSERT(r0->lo_nr <= lov_targets_nr(dev)) in
maintenance branches. [Online]. Available:
https://jira.whamcloud.com/browse/LU-11796.

[8] (2019) lfs getstripe buffer overflows with very large stripe counts.
[Online]. Available: https://jira.whamcloud.com/browse/LU-11691.

[9] (2019) ZFS ea size limited to 32K. [Online]. Available:
https://jira.whamcloud.com/browse/LU-11868.

[10] (2018) Progressive File Layouts – Lustre Wiki. [Online]. Available:
http://wiki.lustre.org/Progressive_File_Layouts

[11] (2018) File Level Replication High Level Dsign – Lustre Wiki .
[Online]. Available:
http://wiki.lustre.org/File_Level_Replication_High_Level_Design

[12] (2019) IOR. [Online]. Available: https://sourceforge.net/projects/ior-
sio/

[13] (2019) Lustre Software Release 2.x Operations Manual. [Online].
Available: http://doc.lustre.org/lustre_manual.xhtml.

