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Abstract— From its earliest versions, Lustre has included 

striping files across multiple data targets (OSTs).  This 

foundational feature enables scaling performance of shared-file 

I/O workloads by striping across additional OSTs. Current 

Lustre software places one file stripe on each OST and for 

many I/O workloads this behavior is optimal. However, faster 

OSTs backed by non-rotational storage show individual stripe 

bandwidth limitations due to the underlying file systems 

(ldiskfs, ZFS). Additionally, shared file write performance, for 

I/O workloads that don't use optimizations such as Lustre lock 

ahead, may be limited by write-lock contention since Lustre 

file locks are granted per-stripe.  A new Lustre feature known 

as ‘overstriping’ addresses these limitations by allowing a 

single file to have more than one stripe per OST.  This paper 

discusses synthetic I/O workload performance using 

overstriping and implications for achieving expected 

performance of next-generation file systems in shared file I/O 

workloads. 
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I.  INTRODUCTION 

Lustre [1] is a large scale, distributed file system which 
presents a POSIX file system to user applications, 
maintaining the same consistency semantics as a local file 
system.  A Lustre file system back end consists of metadata 
targets (MDTs) and data targets (OSTs), which are served by 
metadata servers (MDS) and data servers (OSS). There is 
also a management server or MGS used for configuration.  
The basic model for scaling a Lustre file system is adding 
additional metadata and data targets. 

Performance scaling in a parallel system is generally 
divided into vertical scaling, increasing the performance of 
individual components, and horizontal scaling, increasing the 
number of components in the system.  Lustre enables 
horizontal scaling by distributing data across OSTs, 
including within individual files by striping the file contents 
across many OSTs.  This capability – present since the 
earliest releases – allows scaling of both multi-file and single 
file workloads. 

This simple approach works well for many scenarios and 
allows Lustre to scale from small clusters to the largest 
machines, but Lustre currently imposes some restrictions 
around striping. In particular, there is a one-to-one 
relationship between file stripes and OSTs, with only one 
stripe of a file placed on each OST.  At the on-disk file 

system level, each file stripe is stored in a single object. A 
Lustre file is composed of one or more stripes and the data of 
each stripe is stored in an object in the on-disk file system. 
The term object will be used when referring to local file 
system behavior and stripe will be used when referring to the 
Lustre file. A shared file with a single stripe per OST is 
limited to a single object per OST; whereas with multiple 
files there are multiple objects per OST since each file has a 
different stripe.  

The bandwidth available to a single object is restricted by 
limitations at several layers of Lustre, this is why peak I/O 
performance on new systems generally requires multiple 
files per OST.  These limitations have been present for a long 
time, but new storage technologies have made them more 
acute. 

A. Emerging Issues 

For many years, growth in CPU frequency, which is the 

primary driver of single object and single stream 

performance, kept pace with growth in storage speeds.  The 

slowing of Moore’s Law and the advent of SSDs have 

altered these trends significantly. New distributed parity raid 

technologies such as GridRAID [2] and DCR [3] have also 

enabled extremely large arrays further exacerbating the 

problem.  The result is that the fastest, modern OSTs are 

capable of 10 GB/s write bandwidth and trends suggest near 

future systems will be capable of several times that. 

The limitations for single object performance fall in to 

two main categories, which we will discuss separately (1) 

local file system performance (2) shared file Lustre 

distributed locking (LDLM) contention 

1) Local File System Performance 

Each Lustre stripe corresponds to a single on-disk object 

in the on-disk file system of an OST.  Lustre supports either 

the ext4 derived ldiskfs or ZFS as the on-disk file system, 

which leads to different specific limitations for each, but the 

general problems are similar.  When adding data to an 

object in an on-disk file system, blocks must be allocated, 

local metadata updated, and, if page caching is in use, pages 

must be tracked in either the Linux page cache (ldiskfs) or 

ARC (ZFS). 

Both the ARC and the Linux page cache have limitations 

to how much data they can add to a single object at a time. 

This limit is partly because very high bandwidth 



applications require freeing pages to add pages, but it is also 

due to the general overhead of page tracking and data 

copying, all of which are CPU bound.  In practice, both 

have single object limitations in the single digit GB/s range. 

Specific rate limitations vary depending on kernel version 

and hardware but are generally 5-10 GB/s for modern 

systems. Work is ongoing to improve performance in the 

Linux page cache, but the page cache and ZFS ARC 

implementations are already heavily optimized, so the scope 

for large improvements is limited. 

Leaving aside caching, which can be disabled in some 

scenarios, we are left with the on-disk file system 

limitations.  The upper limits of bandwidth to a single file in 

each file system have not been well explored, but there is 

reason to believe they are below the 10s of GB/s expected of 

future OSTs.  These limits stem from the work and locking 

required to allocate blocks/extents and mange other local 

file system metadata. 

In both the case of the page cache/ARC and the local file 

system limitations, it is possible and desirable to raise the 

limit by applying engineering effort, but each limitation 

represents significant engineering effort to overcome.  

Additionally, certain fundamental requirements mean that 

while the limitations can be increased, they will never be 

removed entirely. 

2) Shared File Lustre Distributed Locking Contention 

To manage file and object access between different 

clients, Lustre uses a distributed locking mechanism known 

as the Lustre distributed lock manager (LDLM). LDLM 

manages locking between distinct Lustre clients, and is 

fundamental to how Lustre presents a standard POSIX file 

system abstraction in a distributed environment with 

concurrent updates from many clients.  This section is 

effectively an abbreviated version of the discussion in our 

previous paper [4], those looking for more information are 

encouraged to review the Lustre Locking Behavior section 

of that paper. 

For this discussion, understand that LDLM extent locks 

are range locks granted by the OSTs upon request from 

clients.  It is impossible for two clients to hold write locks 

on the same range, so when the server receives a conflicting 

write request, the existing lock must be cancelled before the 

new lock can be granted. 

To write to a file a Lustre client must have a write lock 

covering the file range for the intended write.  The Lustre 

client determines which stripe contains that portion of the 

file, and, if it does not already have the required lock, sends 

a lock request to the OST which contains that stripe. This 

lock request covers only the region required for the write. 

While the client only asks for the region strictly required, it 

is inefficient to request a lock for every write, so the server 

attempts to return the largest non-conflicting lock.  If an 

existing lock conflicts with the actual request from the 

client, that existing lock must be cancelled, and is cancelled 

before determining the “largest non-conflicting lock”.  

Generally, this means clients acquiring write locks will 

acquire write locks on the entire stripe.  This is desirable 

behavior in most scenarios, where the client will write 

repeatedly to the same stripe but can be problematic when 

more than one client wants to write to the same stripe as 

depicted in Fig. 1. 

Multiple writers to a single file generally write in a 

strided pattern, where different writers alternate different 

blocks of the file depicted in Fig 2. Unless the client count 

and write size are perfectly aligned with the stripe 

boundaries, this means multiple clients will be writing to the 

same stripe of the file.  Critically, they do not write to the 

same bytes of the file, so they should be able to proceed in 

parallel, but the default LDLM behavior prevents this. 

Because of the optimization to grant the largest possible 

lock on each write, multiple clients writing to the same 

stripe result in false conflicts, where the optimistic locking 

behavior generates conflicts where none existed.   

 

 
Figure 1. LDLM lock contention on a single stripe 

 

Figure 2. Multiple rank access for shared file with strided pattern 

 



The result of this is extremely poor performance, as the 

clients essentially take turns waiting for one another. The 

obvious solution is to disable this behavior, but this does not 

improve performance [5]. 

There are only partial solutions currently available for 

this problem.  The first is to make sure that the number of 

stripes equals the number of clients and align writes such 

that each client writes only to a single stripe.  This works 

well, and the MPI-IO I/O library allows coercing arbitrary 

access patterns to this form via collective buffering and 

aggregation [6].  However, this has limitations and requires 

the application to use the collective MPI-IO interface.  

Notably, it means only one client is writing to each OST. 

For various reasons, one Lustre client can only write to a 

single OST at 3-5 GB/s.  This is lower than the bandwidth 

of some OSTs in systems today, and far lower than the per 

OST bandwidth projected for future systems.  This means 

that directly addressing the LDLM locking problem is 

necessary to achieve expected single OST performance for 

shared files.  Unfortunately, this is only possible by using 

complex mechanisms such as Lustre Lockahead [4] or 

relaxing the POSIX consistency of Lustre by using Lustre 

group locks, which can risk data corruption.  These choices 

have costs in complexity, time, and effort.  It would be 

better to avoid such complexity and still access the full 

bandwidth of each OST. This discussion raises a simple 

question, obvious in hindsight: why do we allow only one 

stripe per OST? 

II. LUSTRE OVERSTRIPING 

To extract the maximum performance from an OST on 
current hardware and software, benchmarks and applications 
use multiple stripes per OST; the stripes are simply in 
separate files.  The central insight of overstriping is that this 
solution can be applied within a single file. There is nothing 
intrinsically necessary about the one-to-one relationship 
between stripes and OSTs within a file.  Relaxing that 
requirement to allow more than one stripe on each OST is 
straightforward, and as the benchmark section shows, for 
many workloads, has benefits similar to using multiple files. 

Fig. 3 and Fig. 4 contrasting standard Lustre striping and 
and overstriping.  Normal Lustre file striping places one 
stripe per OST. A file using four OSTs with a single stripe 
on each OST creates a layout as shown in Fig. 3. In contrast, 
with overstriping, the same number of OSTs can be used for 
more than four stripes. Placing two stripes on each of four 
OSTs creates a layout with eight stripes as shown in Fig. 4.  

 

 
Figure 3. Lustre default stripe layout; 1 stripe per OST 

Figure 4. Lustre overstripe layout; 2 stripes per OST 

A. Lustre Overstriping and Compatability 

Due to the flexibility of the Lustre striping 

implementation, the implementation of overstriping is 

straightforward.  Lustre has a layered design, with 

responsibilities clearly delineated between different layers, 

and significant independence between neighboring 

components. This design means that Lustre does not care  

which OST a stripe is present on, or even if more than one 

stripe is present on an OST.  Historically, more than one 

stripe per OST was considered undesirable, so creating such 

layouts was prevented by sanity checks. However, those 

checks did not reflect an underlying limitation in the 

software or architecture.  Thus, the implementation of 

overstriping consisted largely of removing these checks, and 

creating a userspace interface to express layouts with more 

than one stripe per OST.  This leaves us without much 

technical detail to discuss directly about the implementation, 

so instead, we will highlight a few of the complications that 

emerged.  

Overstriping makes it trivial to explore file striping 

settings that were previously the preserve of only a few 

extremely large systems.  With overstriping it is possible to 

put 2,000 stripes on a single OST.  This exposed several 

bugs which had not previously been identified.  Lustre has a 

long-standing limit of 2000 stripes per layout component 

but no deployed system has ever used more than around 

1,000 OSTs.  With overstriping, it becomes trivial to reach 

higher stripe counts, and it was discovered values near 2,000 

stripes cause a crash due to an incorrect check on the 

maximum allowed layout size [7]. 

Previously it was possible to create layouts which 

exceeded the maximum layout size by, for example, 

creating a progressive file layout (PFL) with multiple 

components with large numbers of stripes. If the total 

number of stripes in a PFL file exceeds approximately 

2,700, it is possible to crash Lustre systems.  This was not 

practical to test, nor did it represent a useful configuration, 

prior to overstriping.  The issue was resolved as a 

prerequisite for overstriping, so versions of Lustre with 

overstriping will now reject these “too large” layouts, giving 

an error rather than crashing [8]. 

It was also noted that Lustre’s handling of extremely 

large extended attributes (file layout is stored as an extended 

attribute (xattr)) was inconsistent, with ldiskfs allowing 

xattrs beyond the maximum supported by Linux, and ZFS 

limiting xattrs to less than this size.  Resolving this required 

tweaks to the client/server negotiation in order to correctly 

provide the true maximum size and respect it in the size 

checks described in the previous paragraph [9]. 



There are several other examples of unusual issues 

discovered when pushing the limits of file striping, but these 

are representative: Issues discovered were significant, but 

required only straightforward fixes and enhancements to 

existing code.  The main lesson to draw is that when adding 

new functionality to existing systems, many problems stem 

not from errors in the new functionality itself, but from 

latent issues in existing code which are exposed by new 

usage. 

1) Users Application Compatibility 

Since overstriping uses Lustre file striping, it is invisible 

to user applications that do not directly interact with the 

layout via lfs getstripe and setstripe subcommands.  An 

application that doesn’t interact with Lustre layout 

information directly will see no change except, hopefully, 

improved performance. If an application does use lfs 

getstripe, the output format is unchanged except for a 

change to indicate when overstriping is used. Unless 

application logic assumes and verifies one stripe per OST 

the application should not require modifications. For the lfs 

setstripe subcommand, overstriping is accessible via slightly 

modified versions of the existing arguments. Example usage 

of current syntax is provided in Section 4.  

2) Version Compatibility 

Despite the simplicity of the implementation, clients 

which have not been updated to support overstriped files 

cannot use them.  The sanity checks mentioned in the 

implementation section will cause older clients to crash 

when exposed to an overstriped file.  The server uses the 

standard approach for new file layout features (such as PFL 

[10] and FLR [11]) and does not allow clients to open 

overstriped files unless they support the feature.  This means 

that both client and server must support the new feature to 

use it, which is typical.  The feature is scheduled for release 

in Lustre 2.13 from WhamCloud. Availability in Cray CLE 

and ClusterStor software is planned.  

III. I/O PERFORMANCE 

A. Test Environment 

Tests of Lustre overstriping were performed using a Cray 
ClusterStor file system composed of two ClusterStor L300N 
SSUs and one L300F SSU using the NEO 3.1 software stack. 
However, the Lustre build included the addition of Lustre 
overstriping support. Lustre overstriping is not currently 
available in released ClusterStor software. The L300F SSU 
was configured in a non-standard, non-redundant manner as 
a striped, RAID-0 device using ldiskfs. This configuration 
allows a single OST access to the full disk bandwidth by 
eliminating parity overhead. This was done to allow 
evaluation of overstriping and the limitations described in 
Section 1. The results described in the following sections 
using the L300F are not representative of a production 
L300F configuration and are referred to as a “flash OST”. 
The L300N SSUs were configured normally with a 41 disk 
GridRAID OST using ldiskfs. 

A set of 48 heterogenous Lustre clients in an Infiniband 
cluster were used to perform I/O. The Lustre clients were 
dual socket Intel Ivy Bridge compute nodes with 64 GB of 
memory. The same Lustre build was used on both servers 
and clients. The clients used a CentOS 7.5 operating system. 

B. Local Performance Testing 

Obdfilter-survey is a synthetic benchmark used to 
directly measure performance of OSTs. Obdfilter-survey was 
used to generate load directly on the OSSes to demonstrate 
the local file system limitations of a single OST. Generating 
file system requests directly on the OSSes eliminates client 
locking and network overhead. Obdfilter-survey creates 
several threads on the OSS to generate I/O across a 
configurable number of local file system objects which are 
accessed in configurable size records.  

A set of tests were performed on an L300N OST and a 
flash OST varying the number of threads and objects. A 4 
MiB record size was used for all tests corresponding to the 
typical size of RPCs configured on ClusterStor systems. 
Each test was performed three times and the median value 
reported. 

The write and read performance of an L300N GridRAID 
OST is shown in Fig 4 and Fig. 5 respectively. As the 
number of threads increases both write and read performance 
plateau with no clear delineation between object counts. 
Since two or more objects do not significantly improve 
performance the local file system limitation is above the 
peak performance of a single L300N OST. Concurrent 
access to a single object from progressively higher thread 
counts marginally limits the single object performance. For 
these results, write and read operation performance tends to 
improve with higher thread counts so that more I/O requests 
in flight. 

Figure 5. L300N obdfilter-survey write performance 

 



Figure 6. L300N obdfilter-survey read performance 

 
The write and read performance of a flash OST is given 

in Fig. 6 and Fig. 7 respectively. For the flash OST the 
performance curve is relatively flat regardless of thread 
count. The reduced latency of servicing I/O requests using 
flash devices requires fewer threads to achieve expected 
performance. The variation in performance across the 
number of threads is very low compared to the L300N 
results. Important to our discussion of local file system 
limitations, the performance of all single object tests is 
significantly lower than higher object counts. Single object 
performance is 6.8 – 7.1 GB/s for writes and 7.1 – 7.5 GB/s 
for reads. All other object counts show expected peak 
performance of the OST: 11.2 – 11.7 GB/s for write and 
read. For this flash OST, hardware configuration, and 
software stack the single object performance limit is 6.8 – 
7.5 GB/s. With a single object Lustre is only able to achieve 
approximately 60% of the expected OST performance. 

Figure 7. Flash OST obdfilter-survey write performance 

 
Figure 8. Flash OST obdfilter-survey read performance 

 
 

Obdfilter-survey was used to evaluate the current local 
file system limitation described in Section 1 on a disk and 
flash based OST. Test results demonstrated that the local file 
system performance limit in the test environment is around 7 
GB/s for a single object. The potential performance of the 
flash OST exceeded 7 GB/s and, as expected, multiple 
objects were required to achieve peak bandwidth. The 
L300N OST was able to achieve near peak performance with 
a single object indicating there was not a local file system 
limitation, although additional objects saw marginally 
improved performance at high thread counts. In the next 
section, we evaluate the ability of overstriping to address the 
second limitation, LDLM contention.  

C. Lustre Client Performance Testing 

IOR [12] is a synthetic benchmark used to generate 

specific I/O access patterns. Due to time and system 

constraints IOR is used as a proxy for application 

workloads. Each IOR test writes a fixed amount of data, 

64GB per node, which is equal to the amount of node 

memory. Between each write and read test the client cache 

is flushed to eliminate any client cache effects. For all tests, 

if more than one MPI process per node is used the MPI 

processes were packed on a node e.g. rank 0 – 15 are placed 

on node 0. The access pattern is a shared, strided pattern 

where each process accesses multiple segments at a fixed 

stride throughout the file as depicted in Fig. 2. The Lustre 

stripe size was set equal to the segment size, known as the 

block size in IOR, and to the record size, known as the 

transfer size in IOR. Many applications access data in a 

similar pattern either directly or through higher-level I/O 

libraries. For shared file workloads, parameters such as node 

count, OST count, record size and Lustre stripe size all 

interplay to impact performance. These tests focus on record 

sizes equal to the Lustre stripe size with all nodes accessing 

a single OST to demonstrate the effect of LDLM contention. 

The term “overstripe count” generally refers to the total 



number of stripes of a file when using more than one stripe 

per OST. In the following discussions, since a single OST is 

used, the overstripe count and number of stripes per OST is 

equal.  

 

1) Disk Shared File Performance 
Initial tests used an L300N disk-based OST focused on 

the performance of the shared, strided access pattern while 
scaling the number of Lustre stripes on a single OST. Local 
file system testing of an L300N OST didn’t require multiple 
objects to achieve expected performance and since LDLM 
contention doesn’t affect read performance, read data is not 
presented. Fig. 9 and Fig. 10 show the write performance of 
varying compute node counts for one process per CPU core 
(16) using 1 MiB and 16 MiB record sizes respectively. 
Generally, the performance for this specific workload, even 
with overstriping, fails to approach optimal OST 
performance. However, there are significant improvements 
in write performance using overstriping. All node counts 
show at least a doubling of performance comparing the write 
performance of a single stripe and optimal Lustre stripe per 
OST count. This improvement is due to more stripes 
providing additional locking domains since each stripe can 
grant a single lock. The incremental improvement in write 
performance from left to right in the figures illustrate the 
reduced LDLM contention, and increased concurrency, 
allowed by multiple stripes. The cause of the dramatically 
improved performance in the 4 node case at 16 or 32 stripes 
was not investigated further.  

Comparing 1 MiB and 16 MiB record sizes shows 
improved write performance with the larger 16 MiB records 
and corresponding 16 MiB Lustre stripe size. Although 16 
MiB records improve performance the rate is still below 
peak file per process rates which indicates LDLM contention 
is still reducing performance for this workload. With a larger 
Lustre stripe size more data is written per granted lock and 
fewer locks are required to cover the same amount of data. 
Additional stripes per OST, beyond 32, may provide further 
performance improvements but were not investigated. 

 

 
Figure 9. L300N OST shared file 1 MiB record write performance 

Figure 10. L300N OST shared file 16 MiB record write performance 

 

To illustrate the write performance improvement using 

Lustre overstriping for an L300N OST Fig. 11 and Fig. 12 

show the comparative performance of the current single 

stripe per OST and the maximum measured performance 

using overstriping. The “Overstriping” value in the figures 

represents the highest observed performance for any stripes 

per OST count tested: 2, 4, 8,16, or 32. The benefits of 

overstriping is more compelling for both 1 MiB and 16 MiB 

record sizes as the number of compute nodes accessing the 

shared file increases. This observation matches expectations 

that additional Lustre clients introduce more lock contention 

and by increasing the number of stripes per OST the 

concurrency increases. In the overstriping tests for 1 MiB 

and 16 MiB and single stripe tests for 16 MiB, using 

additional processes per node shows reduced performance 

when more than 4 nodes are used. This is likely due to 

increased lock contention due to process placement i.e. each 

node with 4 processes write 4 records which corresponds to 

4 stripes. A single process would allow each client to only 

write to a single stripe without contention from other nodes. 

Depending on the node and process count, record and stripe 

size, and stripe count the alignment of accesses to Lustre 

stripes can eliminate lock contention by only having a single 

node access a stripe as described in section 1. 

  



 
Figure 11. L300N OST Shared file write performance using 1 MiB record 

 
Figure 12. L300N OST shared file write performance using 16 MiB record 

 

Shared file performance on an L300N OST using 

overstriping showed consistent, significant improvements in 

write performance. The benefit of additional stripes to 

reduce LDLM lock contention was shown in the 

incremental improvement of write performance as the 

number of stripes per OST increased. With adequate 

compute nodes to drive performance most tests showed a 

50% to 100% increase in performance with some tests 

showing an improvement of up to 6 times single stripe  per 

OST performance. Most tests showed 16 or 32 stripes per 

OST as highest performing although using more than 32 

stripes per OST was not tested and may yield further 

improvements for some workloads.  

 

2) Flash Shared File Performance 

Tests on the flash OST began with the same workload as 

the L300N testing, a shared, strided access pattern with one 

process per CPU core. Due to the higher performance of the 

flash OST, higher node counts were used in these tests. As 

seen in local file system tests, multiple stripes are needed to 

achieve expected performance so read tests were also 

performed and presented. Fig. 13 shows the incremental 

write performance increase from 3-6 GB/s, depending on 

record size, for a single stripe per OST to 11.1 – 11.4 GB/s 

for multiple stripes per OST which is nearly equal to 

optimal file-per-process performance. The incremental write 

performance improvements point to LDLM contention as 

also seen in testing of the L300N. The performance curve 

also indicates there isn’t a performance penalty, at this scale, 

for using stripe counts larger than needed to achieve 

expected performance on a flash OST i.e. performance 

plateaus once adequate stripes are used. The performance of 

larger record sizes, with an equal Lustre stripe size, show 

reduced LDLM contention as seen in the L300N tests. The 

read tests in Fig. 14 demonstrate the read performance 

limitation is due to the local file system as all test results 

show a large increase and subsequent plateau at 11.7 GB/s 

once more than one stripe is used. Record sizes larger than  

  
Figure 13. Flash OST shared file write performance, 48 compute nodes 

Figure 14. Flash OST shared file read performance, 48 compute nodes  

 



1 MiB match the observed local file system rate in Fig.8. 

Second, the effect of varying compute nodes was 

investigated using the same access pattern and processes per 

node. The “Overstriping” rate in Fig. 15 and Fig. 16 is the 

same as described for Fig. 11 and Fig. 12. Fig. 15 and Fig. 

16 show roughly similar single stripe performance across all 

node counts although the 48-node test with a 1 MiB record 

size is 40% lower than 32 nodes indicating LDLM 

contention is still an issue, even on the flash OST. The 

results indicate the effect of LDLM contention on 

performance for flash-based OSTs is less than disk based 

OSTs. The reduced latency of servicing requests on flash 

likely reduces the time a lock is held to service an I/O 

request. Further microbenchmarks were not performed to 

confirm this. Additionally, in this testing shared file 

performance using 32 and 48 nodes achieves file per process 

write rates which was not possible at the same stripes per 

OST count in L300N OST testing.  

Figure 15. Flash OST shared file write performance, 1 MiB record 

Figure 16. Flash OST shared file write performance, 16 MiB record 

 

Testing using a flash based OST for a shared, strided 

workload showed the expected incremental write 

performance improvement as the number of stripes per OST 

was increased. Comparing the default, single stripe per OST 

performance to the best Lustre overstriping performance 

shows an improvement for all tests and up to an 

improvement of 4 times for specific workloads. Read 

performance is also improved by using more than one stripe 

per OST in order to overcome the local file system 

limitation.  

The IOR tests to this point focused on a node with one 

process per compute core which is a common workload. 

However, many of the workloads that use this access pattern 

use collective MPI-IO. The optimizations provided by 

collective MPI-IO calls, specifically collective buffering, is 

another important use case for Lustre overstriping which we 

investigate in the next section.  

3) Collective MPI-IO  

One of the main application use cases for shared file 

access is using higher level I/O libraries such as HDF5 that 

make use of collective MPI-IO. Collective MPI-IO 

implementations, such as Cray MPICH, use optimizations 

such as collective buffering and advanced placement of data 

on aggregators to optimize shared file performance [4,6]. 

Although collective MPI-IO tests were not performed due to 

system software and time constraints the following results 

provide a similar workload from the aggregator point of 

view to evaluate how Lustre overstriping may benefit 

collective MPI-IO write performance.  

Although a full discussion of collective MPI-IO is 

beyond the scope of this paper, collective MPI-IO uses a set 

of MPI processes in collective buffering known as 

aggregators to perform calls to the underlying file system on 

behalf of all the ranks involved in the collective operation. 

We’ve discussed the challenges of shared file performance 

and LDLM contention. One optimization used by collective 

buffering to address the contention is to use a small number 

of ranks as aggregators. The collective buffering aggregator 

ranks are performing POSIX shared file accesses which is 

the same workload used in the benchmarks. The default 

behavior for Cray MPICH is to use a number of aggregators 

equal to the number of OSTs placing one aggregator rank 

per node up to the number of aggregators needed.  

To emulate the workload of MPI-IO collective buffering 

aggregators the same IOR tests were performed using only a 

single process per node. Although the record sizes tested are 

1 MiB aligned, an application doesn’t need to issue requests 

of that size due to collective buffering. The requests will be 

correctly aligned to Lustre stripe sizes by collective 

buffering. Fig. 17 and Fig. 18 show the single stripe, per 

OST performance in the left-hand grouping and the 

maximum measured performance for multiple stripes per 

OST in the right-hand grouping. 

In Fig. 17, with fewer processes per node, the benefit of 

overstriping is much larger than previous single OST 

L300N tests with one process per core. For 4 MiB, 16 MiB, 



and 64 MiB record sizes the shared, strided write 

performance achieves peak file per process performance of 

6 GB/s. Additionally, the benefits of overstriping for small 

record sizes is dramatic, a 5x improvement for 1 MiB record 

size using 8 or 16 nodes. The tests for the flash OST are 

similar to results previously seen; the effect of higher 

process per node counts has less effect on flash-based OSTs  

than disk-based OSTs. As with previous flash OST results, 

all record sizes are able to achieve expected file per process 

OST performance using some stripe count and node count 

combination.  

Emulating the access patterns and process count of MPI-

IO aggregator ranks the test results indicate that overstriping 

is another way to improve shared file write performance for 

collective MPI-IO using collective buffering. The results 

show that with proper data placement, where each 

aggregator accesses a single stripe, shared file performance 

for collective MPI-IO can achieve near file per process rates 

even as OST performance continues to increase.  

Figure 17. L300N OST 1 PPN shared file write performance 

 
Figure 18. Flash OST 1 PPN shared file write performance 

IV. USING LUSTRE OVERSTRIPING IN APPLICATIONS 

As described in Section 2, Lustre striping is controlled 

using the same utility, lfs, whether striping is a single stripe 

per OST or overstriped. Use of the Lustre Library API 

(llapi) [13] is beyond the scope of this paper but can also be 

used to programmatically set Lustre striping. 

A. Setting Lustre Overstriping 

The lfs setstripe subcommand is used to specify striping 

information. There are two methods to specify the stripe 

layout to use overstriping detailed in Table 1.  Note that 

these options are as implemented in the pre-release version 

used for testing, they may differ slightly in the released 

version (details will be available in lfs setstripe help and 

man pages). Typically, a balanced count of stripes on all 

OSTs is desired and for that use case the -C / --overstripe-

count option is sufficient. The command to create a file with 

overstriping depicted in Fig. 3 is provided in Listing 1. 

Assuming a file system with 4 OSTs, as depicted in Fig. 3, 8 

overstripes will have two stripes placed across the 4 OSTs. 

Lustre, by default, will place stripes on all available 

OSTs while following placement heuristics based on OST 

capacity utilization or placement within a Lustre pool if that 

option is provided to the lfs setstripe command. Stripe 

placement policies are still present with overstriping so 

allowing Lustre to select where stripes are placed can lead 

to unbalanced placement if OST capacity utilization is 

unbalanced. However, it’s recommended to allow Lustre to 

handle stripe placement within a pool. 

An alternative to Lustre selecting the file stripe layout is 

manually specifying all OSTs the stripes will be placed on. 

This may be necessary if a pool with the desired OSTs is not 

available or for experimentation with unbalanced stripe 

placement. Continuing the previous example of 8 stripes 

across 4 OSTs Listing 2 provides an alternate file layout by 

manually specifying each stripe using the existing -o / --ost 

option which will now support duplicated OST indices. 

TABLE I.  LFS SETSTRIPE OVERSTRIPING OPTIONS 

Overstripe Layout lfs setstripe Argument 

Automatic -C / --overstripe-count <count> 

Manual -o / -- ost <ost1,ost2, … ostN> 

 

Listing 1. lfs command for 8 automatically placed overstripe layout 

 

Listing 2. lfs command for 8 manually placed overstripe layout 

 

 

$lfs setstripe -o 0,1,0,2,1,2,3,3 \   

 testfile 

$lfs setstripe -C 8 testfile 



As referenced in section 2 lfs getstripe reports the use of 

overstriping for a file’s layout. Specifically, the 

lmm_pattern attribute will indicate overstriping is in use.  

Continuing the layout example, the corresponding lfs 

getstripe layout information is provided in Listing 3 and 

Listing 4. In Listing 3 the OST index cycles between the list 

of 4 OSTs for a total of 8 stripes. In Listing 4 the order of 

stripes matches the specific OST list order provided to lfs in 

Listing 2. 

 

Listing 3. lfs stripe listing for automatic overstriping layout 

 

Listing 4. lfs stripe listing for manually placed overstripe layout 
 

B. Overstripe Count Tuning 

Test results presented in Section 3 indicate that for many 

workloads, using overstriping to create 16 or 32 stripes per 

OST provides the best performance for the configuration 

and workloads tested. However, the use of overstriping does 

require additional stripes to be created on OSTs and tracked 

in file metadata. The additional file metadata does consume 

inodes in the file system and capacity on the MDT. It’s 

recommended overstriping only be used in cases where 

shared files with a single stripe per OST are a bottleneck, 

similar to how widely striped files are managed today.  

The number of stripes per OST needed to achieve 

optimal write or read performance will depend on the 

specifics of the application workload, job size, API, and file 

system characteristics. In cases where the number of nodes 

accessing an OST is similar in size to the test environment, 

results presented in section 3 show using a stripe count per 

OST equal to or greater than the number of nodes accessing 

the OST is a good rule of thumb. 

In the case of collective MPI-IO using collective 

buffering with Cray MPICH the number of nodes per OST 

is specified by the MPI-IO hint cray_cb_nodes_multiplier. 

Although it was not directly, it’s expected the multiplier 

should be equal to the number of stripes per OST. Support 

for Lustre overstriping in Cray MPICH is planned but is not 

available in released versions as of this writing. However, 

Lustre overstriping can be used by setting the Lustre 

striping using lfs setstripe. Using MPI-IO hints to set 

overstriping on files will require support in Cray MPICH. 

The second major factor influencing the number of 

stripes needed per OST is the record size and Lustre stripe 

size. As an example, in test results presented for a flash 

OST, a 16 MiB record size requires only 8 stripes per OST 

to achieve optimal performance while a 1 MiB record size 

requires 32 stripes per OST. For disk-based OSTs the 

number of stripes are higher, presented results indicate 16 

stripes per OST are needed for a 16 MiB record and 32 or 

more stripes are needed for a 1 MiB record. 

Of the two limitations motivating the Lustre overstriping 

feature the local file system limitation will require a 

minimum number of overstripes to overcome. Testing 

indicates for current software and hardware an overstripe 

count of two stripes per OST is adequate given a single 

stripe performance limit of 7 GB/s and a peak OST 

performance of 11.7 GB/s. The specific values for the per 

stripe limit will vary depending on hardware and software. 

Generally, it’s expected that the overstripe count will be 

driven by reducing LDLM contention.  

V. CONCLUSION 

Current Lustre striping behavior places a single stripe 

per OST. The increasing performance of single OSTs due to 

software and hardware changes has made two issues 

limiting shared file performance more acute. The first issue, 

local file system performance limitations, places single 

stripe performance and subsequently shared file 

performance below expected OST performance. 

Experimental results show that multiple stripes on an OST, 

the contribution of the new Lustre overstriping feature, 

overcome this limitation so an OST can achieve expected 

performance for a single file.  

The second issue, LDLM contention, has been addressed 

with other file system features and optimizations in APIs 

but continues to cause challenges in achieving expected 

shared file performance across a variety of workloads. 

$ lfs getstripe testfile 

testfile 

lmm_stripe_count:  8 

lmm_stripe_size:   1048576 

lmm_pattern:       raid0_overstriping 

lmm_layout_gen:    0 

lmm_stripe_offset: 8 

lmm_pool:          disk 

  obdidx   objid      objid          group 

  2       39748073    0x25e81e9      0 

  0       39840878    0x25fec6e      0 

  3       39789909    0x25f2555      0 

  1       39826705    0x25fb511      0 

  2       39748074    0x25e81ea      0 

  0       39840879    0x25fec6f      0 

  3       39789910    0x25f2556      0 

  1       39826706    0x25fb512      0 

$ lfs getstripe testfile 

testfile 

lmm_stripe_count:  8 

lmm_stripe_size:   1048576 

lmm_pattern:       raid0_overstriping 

lmm_layout_gen:    0 

lmm_stripe_offset: 0 

  obdidx   objid      objid          group 

  0        39840884   0x25fec74      0 

  1        39826711   0x25fb517      0 

  0        39840885   0x25fec75      0 

  2        39748078   0x25e81ee      0 

  1        39826712   0x25fb518      0 

  2        39748079   0x25e81ef      0 

  3        39789915   0x25f255b      0 

  3        39789916   0x25f255c      0 



Presented results show the effect of LDLM contention on 

write performance can be reduced by creating additional 

stripes on an OST. In all cases, both disk and flash OSTs, 

shared file write performance was improved by using 

overstripes. Also, both disk and flash OSTs had 

combinations of record size, node count, and process per 

node counts that could achieve file per process rates for a 

shared, strided workload. Finally, the role of overstriping for 

collective MPI-IO shared file performance was assessed. 

Synthetic benchmarks showed aggregators, with a single 

process per node, can achieve file per process rates for disk 

and flash based OSTs for specific record sizes and node 

counts. Future work in evaluating Lustre Overstriping 

includes (1) testing applications using collective MPI-IO 

with Cray MPICH (2) testing at larger scale. 

ACKNOWLEDGMENT 

We would like to acknowledge the assistance of Alexey 
Lyashkov, Chris Horn, and Justin Miller for Lustre build 
assistance for the test environment, Bill Loewe, Chris 
Walker, and John Fragalla for ClusterStor and test 
environment assistance, Nathan Rutman and Andreas Dilger 
for guidance on design, and John Bauer and Richard Walsh 
for manuscript review. 

 

REFERENCES 

[1] (2019) Lustre. [Online]. Available: http://lustre.org/ 

[2] M. Swan, “Sonexion GridRAID Characteristics” presented at CUG 
2014, 2014.  

[3] (2017) DDN SFA Updates. [Online]. Available: 
https://youtu.be/jgrIBHSOh7s. 

[4] M. Moore, P. Farrell, and B. Cernohous, “Lustre Lockahead: Early 
Experience and Performance using Optimized Locking,” presented at 
CUG 2017, 2017.  

[5] (2015) Shared file performance improvements LDLM lock ahead. 
[Online]. Available: http://wiki.lustre.org/images/f/f9/Shared-File-
Performance-in-Lustre_Farrell.pdf 

[6] R. Thakur, W. Gropp, and E. Lusk, “Data sieving and collective i/o in 

ROMIO,” in Proceedings of the The 7th Symposium on the Frontiers 
of Massively Parallel Computation, ser. FRONTIERS ’99. 
Washington, DC, USA: IEEE Computer Society, 1999, pp. 182–. 

[7] (2019)  Remove LASSERT(r0->lo_nr <= lov_targets_nr(dev)) in 
maintenance branches. [Online]. Available: 
https://jira.whamcloud.com/browse/LU-11796. 

[8] (2019) lfs getstripe buffer overflows with very large stripe counts. 
[Online]. Available: https://jira.whamcloud.com/browse/LU-11691. 

[9] (2019) ZFS ea size limited to 32K. [Online]. Available: 
https://jira.whamcloud.com/browse/LU-11868. 

[10] (2018) Progressive File Layouts – Lustre Wiki. [Online]. Available: 
http://wiki.lustre.org/Progressive_File_Layouts 

[11] (2018) File Level Replication High Level Dsign – Lustre Wiki . 
[Online]. Available: 
http://wiki.lustre.org/File_Level_Replication_High_Level_Design  

[12] (2019) IOR. [Online]. Available: https://sourceforge.net/projects/ior-
sio/ 

[13]  (2019) Lustre Software Release 2.x Operations Manual. [Online]. 
Available: http://doc.lustre.org/lustre_manual.xhtml. 

 

 

 


