
© 2019 Cray Inc.

Running Alchemist on Cray XC
and CS Series Supercomputers:
Dask and PySpark Interfaces, Deployment

Options, and Data Transfer Times

Kristyn Maschhoff, Ph.D., Cray Inc.

© 2019 Cray Inc.

Running Alchemist on Cray XC and
CS Series Supercomputers:

Dask and PySpark Interfaces, Deployment Options, and

Data Transfer Times

Kai Rothauge, Haripriya Ayyalasomayajula, Kristyn J. Maschhoff,
Michael Ringenburg, Michael W. Mahoney

© 2019 Cray Inc.

• Introduction
• Python, Dask and PySpark Interfaces
• Alchemist Containers
• Summary
• Q&A

• Not covered today, but included in paper
• Discussion of communication overheads

Talk Overview

© 2019 Cray Inc. 4

• Apache Spark shown to have significant overheads when performing linear
algebra computations compared to MPI-based implementations

• Alchemist interfaces between Apache Spark and high-performance
computing (HPC) libraries

• Idea:
• Use Spark for regular data analysis workflow
• When computationally intensive calculations are required, call relevant

MPI-based codes from Spark using Alchemist, send results to Spark
• Combines high productivity of Spark with high performance of MPI

.

© 2019 Cray Inc.

Example: Truncated SVD

• Use Alchemist and Spark’s MLlib to get rank-20 truncated SVD
• Experiments run on NERSC supercomputer Cori (a Cray XC40) - each node of

Cori has 128GB RAM and 32 cores.

© 2019 Cray Inc.

Experiment Setup:

Example: Truncated SVD
• Spark: 22 nodes; Alchemist: 8 nodes
• A: m-by-10K, where m = 5M, 2.5M, 1.25M, 625K, 312.5K
• Ran jobs for at most 30 minutes (1800 s)

© 2019 Cray Inc.

Target users:
• Scientific & engineering communities:

Use Spark for analysis of large scientific datasets or computationally intensive
workflows by calling existing or custom HPC libraries where appropriate

• Machine learning practitioners and data analysts:
Better performance of a wide range of large-scale, computationally intensive
ML and data analysis algorithms (principal component analysis, recommender
systems, leverage scores, etc.)

© 2019 Cray Inc.

Basic Framework

• Alchemist: Acts as bridge between the Spark application and HPC libraries
• Alchemist-Client Interface (ACI): API for user; communicates with Alchemist

via TCP/IP sockets; responsible for data serialization and deserialization
• Alchemist-Library Interface (ALI): Shared object, imports HPC library, provides

generic interface for Alchemist to communicate with HPC libraries

© 2019 Cray Inc.

• Server-based architecture
• Support for sparse data sets
• Docker image Github: project-alchemist/AlchemistDocker

Docker Hub: projectalchemist/alchemist

• New Alchemist-Client Interfaces (ACI):

Github: project-alchemist/ACIPython

Github: project-alchemist/ACIDask

Github: project-alchemist/ACIPySpark

New Features

© 2019 Cray Inc.

Python, Dask and
PySpark Interfaces

© 2019 Cray Inc.

Interface

Python is the most popular language for data analysis and machine learning
tasks

ACIPython allows Python users to connect to Alchemist and make use of existing
HPC libraries for their data analysis and machine learning needs

Design of ACIPython resembles that of the Spark interface:
• User imports ACIPython and uses it to connect to Alchemist and request a

certain number of workers
• Communication is primarily with the Alchemist driver, but large matrices (or

other large data sets) are sent directly to the Alchemist workers

© 2019 Cray Inc.

Interface

© 2019 Cray Inc.

Interface

© 2019 Cray Inc.

Interface

© 2019 Cray Inc.

Interface

• ACIPython interface assumes that the underlying application is running on a
single process, i.e. ACIPython does not support distributed data sets

• Use cases:
• Data can be loaded from file by Alchemist directly
• The client application can load or generate data that is too large to fit in

memory in chunks, and then transfer each chunk to Alchemist
• Some computations generate large data sets during intermediate stages of

computation that have to be stored as distributed matrices, but the input
and output data sets may easily fit inside the memory of a single node

• Use Dask or PySpark interfaces for distributed data sets

© 2019 Cray Inc.

Interface

Dask is a popular scalable data analytics platform for Python
• Data structures such as arrays and dataframes for storing data in larger-than-

memory or distributed environments
• Dynamic task schedulers that are optimized for computation

ACIDask built on top of ACIPython for connecting Dask applications to HPC
libraries using Alchemist
• Sends data in Dask Arrays to Alchemist, and stores data sent from Alchemist

in Dask Arrays
• Support for Dask DataFrames may be introduced in future

© 2019 Cray Inc.

Interface

Dask Arrays are actually a collection of smaller arrays (chunks) that fit in memory:
• Chunks are NumPy arrays or

functions that produce arrays
• These arrays are arranged into

a grid
• Dask Array coordinates their

interaction with each other or
other Dask arrays

ACIDask treats each chunk as a NumPy array and sends the data in each chunk to
the appropriate Alchemist workers

© 2019 Cray Inc.

PySpark is the Python API for Spark

• Built using popular Py4J library that allows Python to dynamically interface
with JVM objects

ACIPySpark built on top of ACIPython for connecting PySpark applications to
HPC libraries using Alchemist

• As with ACISpark, ACIPySpark supports RDD-based distributed data
structures defined in MLlib's linalg.distributed module.

Interface

© 2019 Cray Inc.

Deploying Alchemist
on Different
Platforms using
Containers

© 2019 Cray Inc.

• Ease of use on any platform that supports containers
• Flexibility of deployment across different platforms
• Relatively painful and time consuming to deploy natively

• Elemental, ARPACK, Eigen, asio, spdlog and dependencies
• Need to tweak install process if switching platforms
• Difficult port limits availability to different kinds of users

• Common Dockerfile base:
• Easily build and deploy Alchemist across several platforms using different container

technologies (Shifter on XC, Singularity on CS, Kubernetes (local and cloud))
• Some customization is necessary, e.g. building to target system-optimized MPI

(need to support both MPICH and openMPI API)

Running Alchemist in a Container

© 2019 Cray Inc.

Running Alchemist on Laptop using Docker

// Pull the image
docker pull projectalchemist/alchemist:latest

// Run Alchemist using docker
docker run -it --name alchemist -p 24960-
24963:24960-24963 \

projectalchemist/alchemist:latest sh -c \
”start_alchemist"

// Connect to alchemist using your favorite
interface: Spark/Python/Dask/PySpark

© 2019 Cray Inc.

Commands to run Alchemist on a Kubernetes Cluster

Run the Alchemist container in a Kubernetes Pod

// Pull the image

docker pull projectalchemist/alchemist:latest
// Create a Kubernetes namespace for Alchemist

kubectl create namespace alchemist

// Run Alchemist using the Docker image

kubectl run -it --namespace=alchemist alchemist-k8s

--image=projectalchemist/alchemist:latest

--port=24960 --port=24961 --port=24962 --port=24963

-- /bin/bash -c ”start_alchemist”

© 2019 Cray Inc.

Initial Integration with Urika-XC/CS
• Leverage existing container launch scripts (run_training, start_analytics)
• Using a modified image which includes alchemist

// Grab an allocation from the existing cluster resource manager
qsub -I -l nodes = 4

// Run alchemist using the run_training script
run_training -v --no-node-list -n 4 \
"$ALCHEMIST_EXE"

// Connect to alchemist using your favorite interface
Spark/Python/DASK/PySpark

Commands to run Alchemist on Cray Platforms

© 2019 Cray Inc.

Conclusions and
Future Work

© 2019 Cray Inc. 25

• We introduced new interfaces for Python, Dask and PySpark
• New Docker container allows for easy deployment, can be used with Shifter and

Singularity on Cray systems, or with Kubernetes to run locally or on the cloud
• Future work:

• Connect Alchemist with RLlib in Ray to enable reinforcement learning using
HPC libraries

• Support for ScaLAPACK-based HPC libraries
• Currently Alchemist supports only Elemental-based HPC libraries

Github: project-alchemist/Alchemist

© 2019 Cray Inc. 26

Introduced at CUG 2018 as

Alchemist: An Apache Spark ⇔ MPI Interface

Github: project-alchemist/Alchemist

© 2019 Cray Inc. 27

Introduced at CUG 2018 as

Alchemist: An Apache Spark ⇔ MPI Interface
Now:

Alchemist: An HPC Interface for Data Analysis and Machine
Learning Frameworks

Github: project-alchemist/Alchemist

THANK YOU
QUESTIONS?

kristyn@cray.com

© 2019 Cray Inc.

SAFE HARBOR STATEMENT

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

29

