
Tonglin Li, Quincey Koziol, Houjun
Tang, Jialin Liu, Suren Byna

H5Prov: I/O Performance
Analysis of Science
Applications Using HDF5
File-level Provenance

Cray User Group 2019, Montréal, Canada

Outline

§ Motivation
§ HDF5 in DOE labs
§ Virtual Object Layer (VOL)
§ Provenance VOL: H5Prov
§ Design and implementation
§ Experiment setup
§ Provenance overhead
§ Provenance trace analysis

Complex systems are hard to understand!

§ More layers introduced to the HPC storage system hierarchy
§ Much more complex center-wide I/O behaviors and performance issues
§ Current I/O profiling tools:

§ Darshan (ANL): application I/O (from outside)
§ TOKIO (LBL): combining multiple infrastructure levels

§ Component-level monitoring logs
§ Topology related info (Slurm logs, Cray SDB)
§ Application I/O (Darshan)
§ Filesystem load (LMT)

The missing piece:
I/O tracing inside the applications

§ Current provenance and profiling/logging systems skips
intra-application level I/O behaviors for a reason (or two):
§ Hard to find a generic way to collect from different

applications
§ Need to insert code to applications: changing code is painful!

Our approach:
Tracking at the I/O middle-ware level

§ H5Prov: A provenance logging system within HDF5
§ Application data semantic is visible
§ Non-invasive: no code change
§ Generic to all HDF5 applications (they are a lot!)

HDF5

§ HDF5 is designed to organize, store, discover, access, analyze, share, and
preserve diverse, complex data in continuously evolving heterogeneous computing
and storage environments.

§ For every size and type of system: several KB ~ TB
§ Imagine a filesystem in a file:

§ A H5 file as a root directory, contains
§ Groups (subdirectories)
§ Datasets (data files)

Usage of HDF5 at DOE Labs

§ NASA/NOAA satellite data (Aura, JPSS-1, etc.)
§ Highest Technology Readiness Level (TRL 9) - “Flight

proven” through successful mission operations
§ Heavily used on DOE supercomputing systems

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

gcc
	

atp
	

mp
ich
	

da
rsh
an
	

int
el	

lib
sci
	
HD
F5
	

7
w	 mk

l	

bo
os
t	

N
o.
	o
f	l
in
ki
ng
	in
st
an

ce
s	

1	

10	

100	

1000	

10000	

gc
c	

mp
ich
	

atp
	

int
el	

da
rsh
an
	

lib
sci
	

hd
f5	 mk

l	
6
w	

ne
tcd
f	

N
um

be
r	o

f	u
ni
qu

e	
us
er
s	

a. Number of linking instances on Edison (NERSC) b. Number of unique users on Edison (NERSC) c. Number of linking instances on Mira (ALCF)

NetCDF - HDF5 Parallel
7%

HDF5
90%

HDF5 NetCDF - HDF5 Parallel NetCDF PnetCDF ADIOS
SILO MATIO

HDF5

OLCF I/O libraries

Figure courtesy of HDF Group

Virtual Object Layer (VOL)

§ VOL: an abstract layer intercepts object level
operations, customized implementation of
VOL interface.

§ Provide the same HDF5 data model and API,
but allow different storage solution.

§ Examples:
§ Openstack Swift
§ Ceph Rados
§ and Intel DAOS

Provenance VOL: H5Prov

§ Timer on
§ Unwrap request (and object) and get

context
§ Pass to native calls

§ Native call execution
§ Update metadata and prepare new

context
§ Wrap native return/result with context
§ Write provenance

§ Timer off
§ Return wrapped object

Features

§ What to capture
§ Runtime info: user name, process ID, thread ID, MPI rank, etc.
§ HDF5 function name, start time, lasting time
§ Statistics:

§ Accessed/created dataset, group count, etc.
§ Read/write size, etc.

§ Non-invasive deployment
§ Setup a ENV variable to enable/disable
§ No change of application code

Experiment setup

§ Test-bed: Cori@NERSC
§ 2-128 Haswell nodes
§ 32 physical cores and 128GB RAM per node
§ 64-4096 MPI ranks

§ Storage system configuration
§ Lustre stripe count 64 and 128, stripe size of 16MB
§ Burst-Buffer

§ Benchmark
§ VPIC-IO
§ BDCATS-IO

Invested HDF5 functions

§ file_create
§ file_open
§ file_close
§ group_create
§ group_open
§ group_close
§ dataset_create
§ dataset_open
§ dataset_close
§ dataset_read
§ dataset_write

40960

40960

40960

5120

5120

5120

5120

file_close

file_open

group_close

group_open

dataset_close

dataset_open

dataset_read

0 10000 20000 30000 40000
Function count (1024 processors)

H
D

F5
 fu

nc
tio

n
ca

lls40960

40960

40960

5120

5120

5120

5120

file_close

file_create

group_close

group_create

dataset_close

dataset_create

dataset_write

0 10000 20000 30000 40000
Function count (1024 processors)

H
D

F5
 fu

nc
tio

n
ca

lls

H5Prov overhead: trace file sizes

H5Prov overhead: time consumption

11519
23039

46079
92159

184319
368639

737279

1e+01

1e+03

1e+05

64 128 256 512 1024 2048 4096
Scales: Number of processors

C
nt

 o
f p

ro
ve

na
nc

e
op

s:
 fo

r V
PI

C
 a

nd
 B

D
C

AT
S

Trace sample: Dataset read and write
§ Burst-buffer helps read

and write differently
§ Read/write
§ Latency numbers
§ Variance
§ Scalability

Trace sample: Group create and open

Slower open than to
create?

Trace sample: File create and open

Something odd…

§ VPIC: read/write
§ BDCATS: read-only

Future work

§ Optimization on staging provenance trace files
§ Extend capturing coverage
§ Add parallel support
§ Data mining/machine learning for I/O pattern discovery

Conclusion

§ H5Prov provides provenance with application in mind
§ Low overhead
§ High scalability
§ Non-invasive deployment
§ Fine granularity

Thank You

