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Complex systems are hard to understand!

§ More layers introduced to the HPC storage system hierarchy
§ Much more complex center-wide I/O behaviors and performance issues
§ Current I/O profiling tools:

§ Darshan (ANL): application I/O (from outside)
§ TOKIO (LBL): combining multiple infrastructure levels

§ Component-level monitoring logs
§ Topology related info (Slurm logs, Cray SDB)
§ Application I/O (Darshan)
§ Filesystem load (LMT)



The missing piece:
I/O tracing inside the applications

§ Current provenance and profiling/logging systems skips
intra-application level I/O behaviors for a reason (or two):
§ Hard to find a generic way to collect from different

applications
§ Need to insert code to applications: changing code is painful!



Our approach:
Tracking at the I/O middle-ware level

§ H5Prov: A provenance logging system within HDF5
§ Application data semantic is visible 
§ Non-invasive: no code change
§ Generic to all HDF5 applications (they are a lot!)



HDF5

§ HDF5 is designed to organize, store, discover, access, analyze, share, and 
preserve diverse, complex data in continuously evolving heterogeneous computing 
and storage environments.

§ For every size and type of system: several KB ~ TB
§ Imagine a filesystem in a file:

§ A H5 file as a root directory, contains
§ Groups (subdirectories)
§ Datasets (data files)



Usage of HDF5 at DOE Labs

§ NASA/NOAA satellite data (Aura, JPSS-1, etc.)
§ Highest Technology Readiness Level (TRL 9) - “Flight 

proven” through successful mission operations
§ Heavily used on DOE supercomputing systems
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Figure courtesy of HDF Group

Virtual Object Layer (VOL)

§ VOL: an abstract layer intercepts object level
operations, customized implementation of
VOL interface.

§ Provide the same HDF5 data model and API, 
but allow different storage solution.

§ Examples:
§ Openstack Swift
§ Ceph Rados
§ and Intel DAOS



Provenance VOL: H5Prov

§ Timer on
§ Unwrap request (and object) and get

context
§ Pass to native calls

§ Native call execution
§ Update metadata and prepare new

context
§ Wrap native return/result with context
§ Write provenance

§ Timer off
§ Return wrapped object



Features

§ What to capture
§ Runtime info: user name, process ID, thread ID, MPI rank, etc.
§ HDF5 function name, start time, lasting time
§ Statistics:

§ Accessed/created dataset, group count, etc.
§ Read/write size, etc.

§ Non-invasive deployment
§ Setup a ENV variable to enable/disable
§ No change of application code



Experiment setup

§ Test-bed: Cori@NERSC
§ 2-128 Haswell nodes
§ 32 physical cores and 128GB RAM per node
§ 64-4096 MPI ranks

§ Storage system configuration
§ Lustre stripe count 64 and 128, stripe size of 16MB
§ Burst-Buffer

§ Benchmark
§ VPIC-IO
§ BDCATS-IO



Invested HDF5 functions

§ file_create
§ file_open
§ file_close
§ group_create
§ group_open
§ group_close
§ dataset_create
§ dataset_open
§ dataset_close
§ dataset_read
§ dataset_write
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H5Prov overhead: trace file sizes



H5Prov overhead: time consumption
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Trace sample: Dataset read and write
§ Burst-buffer helps read

and write differently
§ Read/write
§ Latency numbers
§ Variance
§ Scalability



Trace sample: Group create and open

Slower open than to
create?



Trace sample: File create and open



Something odd…

§ VPIC: read/write
§ BDCATS: read-only



Future work

§ Optimization on staging provenance trace files
§ Extend capturing coverage
§ Add parallel support
§ Data mining/machine learning for I/O pattern discovery



Conclusion

§ H5Prov provides provenance with application in mind
§ Low overhead
§ High scalability
§ Non-invasive deployment
§ Fine granularity



Thank You


