
Significant Advances in Cray System Architecture for Diagnostics, Availability,
Resiliency and Health

Christer Lundin
Research & Development

Cray
Seattle, USA

clundin@cray.com

Stephen Fisher
Research & Development

Cray
Seattle, USA

sfisher@cray.com

Abstract— Keeping the system healthy and able to run compute
jobs is one of the primary goals of the Shasta architecture. In
the end, no matter how complex the infrastructure is, the main
reason the system exists is to allow users to run customer
workflows; everything else is really just to support this
capability.

Keywords — system health, resiliency, diagnosability, ava

ilability, redundancy, serviceability

I. INTRODUCTION
System health can be viewed as a set of services that

provides various capabilities for maintained health that span
across the spectrum of components and subsystems that make
up the Shasta system. System Health consists of
diagnosability, which is the collecting and reporting of the
system's health, resiliency, which is the determination of what
automatic or manual action to take to fix the system given the
specific diagnosis information, and serviceability, which
covers how to fix and maintain system health.

The following diagram shows a high-level overview of

system health in Shasta:

II. SYSTEM HEALTH, WHAT IS IT?
This section defines diagnosability, resiliency, and

serviceability.

A. Diagnosability
The basic dictionary definition of “diagnosability” is “the

condition of being diagnosable” (Wiktionary definition).
Following that, we see that “being diagnosable” means
“having a cause that can be determined”.

An illustrative analogy to diagnosing what is wrong with

a large computer system is that of diagnosing what is wrong
with a human being (which is also a large system, albeit a bit
more complex than a supercomputer).

When a patient goes to the doctor with some symptom, say

a joint that will not move correctly or a high fever, at that point
in time there are several potential possibilities that might be
the root cause. The main job of the doctor is to use various
techniques to gather information, analyze that information,
run tests, and narrow down those possibilities to provide a
diagnosis and course of action. One of the first things they will
have the patient do in this case is to fill out information on
health history and recent health events (e.g. recent injuries,
history of illness, trend information).

This can involve measuring streams of constant data

coming from the patient, such as heart rate, O2 absorption,
blood pressure, and other telemetry. It can also involve
running diagnostic tests, as well as taking point in time
snapshot measurements of the patient’s various components.

This troubleshooting process is an adaptive one that takes

the results of the measurements and tests, analyzes them, and
applies them to the next step in the decision process in
narrowing down the root cause of a given problem. During
measuring and testing, other problems may be found that can
range from small items to major ones. As these are
encountered during troubleshooting, a decision can be made
on whether to fix that problem then or defer it. Also, at times
a doctor's analysis will result in 'do no harm', take no action,
or avoid taking destructive actions if the source of the problem
is not well understood. We are looking for diagnostics not to

Fig.1. System Health Overview

just find problems and suggest solutions but to also provide
context. If a solution has side effects (for instance taking a
medicine with significant adverse reactions) and the problem
is not known, the negative consequences or collateral
impact/damage may increase.

Similarly, in the case of a large computer system, this same

basic overall approach can be used. We can instrument the
system with the capability to generate data, we can develop
tools to measure this data, we can develop tests that measure
the functionality and health of the system, we can use the data
streams to derive information from them, we can develop
tools that interpret this information, and we can provide the
ability to display this information in a form that can be used
to diagnose the system. For diagnosing systems, the
equivalent to filling out health history and recent health events
is log collection, log analysis, system event collection, and
critical event/change notifications/recording. To add to the
analogy with diagnosing a human, if a solution has side effects
(e.g. rebuilding a compute node, giving more/unbounded
compute capacity to an app, rerunning a broken app) and the
problem is not well known, the negative consequences or
collateral impact/damage may increase.

Some other analogous aspects between diagnosing a

human and diagnosing a computer system are:
• Annual physicals – Proactive diagnostic checks on

full system (e.g. running diagnostics when no
failure/fault is expressed)

• Crisis/acute management – Body/system is sick,
which includes reactive diagnostic tests to try and find
the source of the problem

• Ongoing health monitoring – E.g. FitBits, health
monitors that are proactively and passively
monitoring the system

The intent here is to highlight that we always want to keep
the system healthy, not just wait for faults or downtime to
diagnose and address system health.

One other aspect of this analogy is the potential to leverage

live or offline data from large groups. In the case of a human,
this can take the form of population study and analysis (for
example rates of recurrence among cancer patients in
remission); in the case of large systems like Cray, this can take
the form of the services/support data warehousing and higher-
level support analysis (even from other customers in an
anonymized way) to help identify issues. The problem space
is not strictly local to one system, one body at that point, one
can build up wisdom about specific problem occurrences into
a knowledge base.

B. Resiliency
Resiliency is the ability of a customer application or

system and its services to recover from failures and continue
to function. It is not about avoiding failures; it is about
responding to failures in a way that avoids downtime or data
loss. The goal of resiliency is to return the application or
system to a fully functioning state following a failure, while
minimizing the impact on running workloads.

As an example, system resiliency is the ability of an
application or a service to react to a problem in one of its
components and still provide the best possible service. This is
even more important as software is implemented more and
more across multitier, multiple-technology infrastructure
(architectural layering). Always-on architecture enables
resiliency through several layers of architecture constructs,
like infrastructure as a service, platform as a service, and
software as a service. Similarly, in a team sport like football,
a coach many times can see if a player is injured and can
substitute the injured player with a healthy player. Sometimes
it can be hard for the coach to tell if a player is healthy or not.
To be a resilient football team, all players needs to help
proactively watch for unhealthy players, by checking in on
each other, asking if someone is hurt and how bad. Players
themselves can inform if they are injured and even take
themselves out of rotation to help their team.

System resiliency for a modular, service-based

architecture like Shasta allows for decoupling the components
and services from each other, which improves resiliency since
it allows the system to load-balance and distribute services
across multiple hosts.

There are some important aspects and types of resiliency

required for this type of architecture:
• High Availability – An application or service can

recover or continue to run without significant
downtime. The application is responsive, and users
can connect to the application and continue to use it.

• Reliability – The probability that an item will function
(compile, compute, and access data) without failure
under stated conditions (network, power, etc.) for a
specified amount of time.

• Checkpoint and Restart or Backup and Restore –
Protect against hardware errors (e.g. processor,
memory, network), bad code, other service failures,
and accidental deletion of any type of data, such as
application or configuration data.

• Disaster Recovery – The ability to continue operation
from rare but major incidents, like large-scale failures
such as service interruptions that affect an entire
region. Disaster Recovery starts when the impact of
failures exceeds the ability of the High Availability
design to handle it.

• Incidents – This may be a subcategory, but it is also
important to have resiliency in control systems to
allow the system to defend, protect, and/or respond to
a malicious cybersecurity attack, or to an accidental
manual operation that can put the entire system or
parts of the system in a bad or harmful state,
potentially impacting the confidentiality, integrity,
and availability of information.

Resiliency provides higher availability and a lower mean
time to recover from a failure. Resiliency does not just happen,
however; it must be designed and built in from start.

What is the difference between reliability and resiliency

and why does it matter? Reliability is a design engineering
discipline that applies scientific knowledge to assure that a

system will perform its intended function for the required
duration within a given environment, including the ability to
test and support the system through its total lifecycle. A
reliable system is essentially a system that functions as it was
designed and for its intended purposes, when it is expected to,
and wherever it is being used. That is not to say that every
component must operate flawlessly 100 percent of the time.
Resiliency is recovering from failures, while reliability is the
outcome. i.e. reliable operation is the result of a system that is
designed to be resilient.

There is a distinct difference between reliability and

availability: reliability measures the ability of a system to
function correctly, while availability measures how often the
system is available for use, even though it may not be
functioning correctly. As an example, a service may run
forever and have an ideal availability, but it may be unreliable,
with frequent data corruption.

C. Serviceability
Serviceability provides continuous update strategy for the

various Shasta system software, hardware and firmware
components. Serviceability is after the fact, there is a problem
and restoring the product into service. Serviceability provides
features that facilitate more efficient product maintenance and
reduce operational costs and maintains business continuity.

There are two types of updates:
• Live update – an update can be done without taking

the component offline or losing access to the service
provided by a component. There should be no loss of
system function during a live update or any rollback
that occurs.

• Rolling update – an update that affects a component
requiring that horizontally scaled components to be
taken offline one at a time. The components can then
be "rolled" through, one failure domain at a time, until
the entire system has been updated. NOTE: that
during this process, the entire system should never
have to go down at any one time. There is enough
resiliency built in to the system to be able to continue
some level of workload operations while upgrading or
repairing hardware, software, or firmware modules.

Serviceability can be broken into the following general
areas:

• Hardware and controller updates
o Cray provided firmware updates –

primarily embedded controller firmware
(Mountain components – chassis
controllers, node controllers, Rosetta blade
switch controllers, FPGAs,
microcontrollers, etc., River - Rosetta TOR
switch controllers) and Cray blade BIOS
updates

o Vendor provided firmware updates –
primarily PCIe cards such as NIC firmware,
as well as the BIOS and BMC on
commercial off-the-shelf (COTS) servers,
and other River component firmware such

as Ethernet switches, iPDU’s, direct liquid
cooled (DLC) doors and rack equipment,
and other River hardware. Some of this is
done as part of the host OS running on
compute nodes, but there are also peripheral
firmware updates that are not done as part
of the host OS image, rather they are done
via Redfish or other OOB mechanisms.

• Management infrastructure components
o Non-compute node bare metal kernel and

host OS updates/rollbacks
o Kubernetes core orchestration component

stack updates (API server, kubelet, etcd,
etc.)

o Cray provided system management
services updates, including the update and
rollback of data within these services

o High Speed Fabric (HSF) / High Speed
Network (HSN) component updates

• Managed services components
o Shasta Linux software stack updates on

compute nodes (host OS premium and
standard). Includes peripheral firmware
updates done as part of the host OS image
on Mountain or River.

o Parallel file system storage component
updates (Lustre file system, ClusterStor
storage)

o Managed plane services (LNET router,
DVS, etc.)

III. WHY DO WE CARE?

A. Changes in HPC Industry System Requirements
One of the primary aspects of keeping a system healthy is

making a system highly-available, just like scalability, by
adding more resources of anything on demand. Other possible
aspects for resiliency that also need to be accounted for, such
as the ability to have an entire system in the same or even a
remote geographic location in a disaster recovery scenario.
Having a more modular architecture like Shasta allows Cray
to offer solutions by replacing or adding modules (or
components) that meet customers needs. Decomposing
system health requirements for components in the system is
important for many reasons. It allows more flexible options in
providing diagnosability, resiliency and serviceability for
what is important to customers. It is also important with a
modular architecture to be able to be able to replace and
upgrade different parts of the system without taking down the
entire system which would impact serviceability.

There are several critical shifts in the HPC industry that

help maintain system health, and Shasta products are designed
to take advantage of these, as shown below:

B. Extensible System
Shasta products are designed for extensibility, following

the principle of separating work elements into comprehensible
modular components. These components can be customer-

modified subsystems or experimental components (e.g., a
custom compute kernel or image, a third-party management
system, or different storage vendors) that are not directly
controlled and tested by Cray. Cray can only control and know
what is working for components provided or tested by Cray;
there is a white-listed combination of versions of components
dependencies that defines the boundaries. As an example, the
Programming Environment (PE) container may have certain
Operating System (OS) API. A custom compute kernel may
cause a failure in the PE when an API it depends on is not
available. This failure could be detected through monitoring
and/or event logs, or through diagnostics, to identify if the
problem was caused or not by a component provided by Cray.
Since the PE runs on several different OS versions, Cray can
only support those that it certifies, but the customer can still
extend the system.

The Bill of Material (BOM) provides the complete

inventory of all components provided by Cray and Cray-
supported third-party components (with potentially several
versions of backwards compatibility) that are tested and
verified by Cray. All other components that are of the
"unknown" category with an expectation that resiliency and
failures can be unpredictable.

Shasta is an extensible system. E.g., it has:
• Different storage systems from multiple storage

providers
• Replaceable system components (e.g., third-party

compute/OS, system management, telemetry, etc.)
• RESTful interfaces that can be used to customize or

modify the management system behavior.

C. Decoupled and Layered System
Decoupled code modules and layering provides the ability

and flexibility to upgrade or update components
independently to meet customer needs in a timely fashion.
Customers can adopt new functionality and value from Cray
on their own, without reinstalling or taking down the entire
system. A good example is the Programming Environment
(PE), which is independently released on a quarterly cycle.
Customers can choose when to deploy it and what version to
use.

Shasta is a decoupled, layered, and modular system:
• Separating management and managed system
• Variety of compute workload managers
• Monitoring and telemetry at different layers from

kernel and hardware to components
• The ability to configure, upgrade, and update

components independently

IV. MAINTAINING SYSTEM HEALTH

A. System Health Awareness
The goal of being able to monitor and diagnose a problem

in any system is typically not just for awareness, although that

is indeed a required first step. It is so that analysis can be done
on the severity and impact of problems and figure out whether
and how to effect automatic or manual repair actions on it. In
some cases, these are automatic repair actions, which is where
diagnosis ties into system resiliency and availability. In other
cases, these are manual repair actions, which is where
diagnosis ties into serviceability. In our ideal model, for any
operation that has a well-known cause the system should be
resilient to the repair/change (e.g. rebooting a node will not
wedge the app or system), and automatic recovery is
preferred. Manual should be the goal only when a human
decision is involved (whether that be scheduled downtime, a
disruptive change, or a risk analysis is required based on
human/business need). In Shasta we aim for automation
whenever possible and make this decision point of whether to
effect automatic or repair a strategic one.

As described in the earlier example with a doctor

diagnosing a human, he may find several problems in the
course of taking measurements and running tests. Some of
these may be directly related to the reason to go to the doctor
in the first place, some may be ancillary, and some may be
completely unrelated. Having knowledge of all of these is a
useful thing, however only some of them may be the root
cause of the initial symptom. And some of the data found
during the diagnosis activities may well lead to treating
problems that the patient was unaware of before.

An important thing to note with this analogy is that the

expression of symptoms cannot always be traced back to a
'single root cause'. For example, if a patient have acute neck
pain, a high fever, and is feeling lethargic then the patient
could have viral meningitis (which can be very serious) OR
the patient could just have a cold and have coincidentally
strained his neck during exercise. When we diagnose based
on the composite of the symptoms, we may inflate the impact
of issues or miss root cause due to secondary manifestations.
So, a caveat with this approach is that it is iterative and
requires analysis at each iteration.

B. Layered Levels of Health
Likewise, when troubleshooting a large computer system,

several problems may be found along the path of diagnosis.
Sometimes these problems have little to no correlation to the
initial problem which caused someone to be in diagnosing the
system in the first place. But sometimes they do, and the act
of troubleshooting leads to the discovery of other underlying
problems that must be fixed first in order for any more
meaningful diagnosis to be done. This highlights another
aspect of diagnosability and monitoring, that of tiered or
layered levels. For example, passive diagnostics may run at a
high level (like taking a temperature), then more active
diagnostics can be run to drill into specific concerning areas
to gather more detail. In crisis situations, a
disruptive/destructive diagnostic may be run - like a much
more CPU intensive test that requires offline or non-compute
friendly analysis and job interruption. The main goal is to start
with passive tests, then move to more active test, and finally
move to disruptive/destructive tests as needed, with diagnostic
tools and services at each layer to help diagnose issues.

C. Comprehensive System Dashboard Readout Support
Another one of the primary goals of system health within

Shasta is to provide support for a complete readout of all failed
components, along with an estimate of the actual and potential
impacts. A common example of why a problem is that Cray
has seen many times in their past large supercomputing
systems around the failure of network hardware (cables, NICs,
switches, etc.). Even though the individual piece of failed
network equipment may not seem on the surface directly
related to some bigger question of, for instance, “why is my
job running slow”, the systemic effect of this network
component failure across running jobs can ripple. Based on
the knowledge built up over time from service and support, it
can be shown that if running in a system with known failed
components, there are interrelationships in a complex system
that can cause unpredictable results. So, the first order of
business and why this is one of the primary initial goals in
Shasta is to monitor the system for known errors, and provide
the data needed to sort and repair known system failures
before trying to debug larger more systemic issues. System
health monitoring and its associated role in system
diagnosability are crucial components for increasing system
resiliency. Just like the team sport example described earlier,
monitoring is needed to detect and prevent problems before
they occur or as they are happening, while diagnosis gives
feedback on current problems or ones that have already
happened.

Another software specific example in the Shasta

architecture might be the failure of a service that is common
to several other services, like the API gateway. Having a real
time readout of system services and the overall system
management is crucial to system health.

D. Improved System Troubleshooting and Service
Dependency Knowledge
Note that if the cable/NIC/switch (or any faulted

component) is failed, we do not want to just know all the
current failure components, however. We also want to know
the relationships between the various system services (user
context, tenant, services, host platforms, connections between
them). If we have that full relationship graph, or even an
approximation, then a human or even an analysis engine can
walk the graph and source the common cause. It reduces the
need for sleuthing or having a human connect all the dots. We
know which components are connected to which, and since
the Shasta system is much more finite state machine than a
human body, simply showing health states on various services
and relationships would likely surface the issue more quickly.
This allows us to provide high-level diagnostics, and then drill
down deeper to specific targeted areas.

In addition to this, a major goal of the Shasta system

diagnosability attributes is to negate the requirement to move
components around in order to diagnose a problematic or
broken part. This is a common troubleshooting mechanism in
Cray systems today, but is very time consuming and
disruptive, and the goal is to be able to identify and replace

components without using this approach except as a last
resort.

E. Cray Service and Support Requirements
The new Shasta architecture and product line will support

many types of processors, storage systems, diverse
Compute/OS platforms, new system management, and new
monitoring capabilities. Shasta is designed with high-
reliability components and targeted redundancy to minimize
job and system interruption. Job recovery options let
administrators and/or users restart failed jobs with minimal
interruption. The Shasta infrastructure will take advantage of
technologies that keep jobs from failing when they lose nodes.
It will also support the use of monitoring data to support
predictive failure analysis, which will allow the system to
proactively take failing resources offline while keeping the
system running. Hot swapping and an easy-to-service modular
hardware design allows either Cray or customer technicians to
fix failed components without a complete system interruption.
In most cases there should be no interference, only a very
minor degradation of the total system service, usually
completely not affecting most running applications (only
affecting one or two).

Capabilities in Shasta include the following:
• The ability for system administrators to upgrade or

repair without blocking system management for
components like the compute and managed
applications

• The ability for an Application User to provision
different compute images that already exist

• Compute images can be upgraded without impacting
other running workloads on the nodes

• Containerized applications that can easily be
recovered, developed on a laptop, and run as part of
distributed workflows

• Security patches, hot fixes, and firmware updates that
can be applied without shutting down the entire
system (live upgrades)

• Shasta system software that automatically recovers
from non-responsive nodes

• A Cray Slingshot interconnect that automatically
detects defective links, and reroutes without affecting
operations or requiring a reboot

F. Requirements due to Industry Standards and
Competitive Offerings
As anyone that has seen a modern NOC or SOC (network

operations center or system operations center) can verify, the
capabilities of industry standard OSS and commercial system
health monitoring and management tools in the enterprise data
center have grown tremendously in the last decade. There are
literally hundreds of tools out there that can easily be set up to
monitor and manage various aspects of systems and their
components, if the systems and components provide some
form of programmatic access to the monitoring data they
generate. Most data center operations personnel have come to
expect the ability to integrate with these tools, so this drives

Cray to improve the ease of integration with these industry
tools.

Another strong driver for Cray to integrate a significantly

better system health monitoring solution into Shasta is
competitive disadvantage. While Cray is a leading competitor
in HPC, is not the only competitor in the market. Several of
our key competitors are also pursuing system health
enhancements, and actively market integrated solutions for
easier remote and self-support. Competitor tools broadly
advertise client benefits such as: “decreased call duration,
optimized part usage, reduced time to resolution and system
downtime, fixing it right the first time, and reduced onsite
service calls”, and “improved problem diagnosis, accelerated
parts dispatch, and saving customers time and expense” by
enhanced diagnosis, automated support cases, and automatic
parts dispatch.

G. Customer Driven and Defined Requirements
But the #1 reason for Cray to make significant system

health advances in Shasta is that customers are both expecting
and demanding it. They are requesting this directly in their
RFP's, with a common theme being the requirement that Cray
provide an automated mechanism to diagnose the system
down to the field replaceable unit (FRU) and diagnose the
system in a timely manner without having to rely on hardware
swapping as a primary isolation mechanism.

It is also a large part of the drive to exascale systems. Cray

systems are large, complex, and costly. Most customers
cannot fail over to a backup supercomputer when the primary
one experiences an outage, and the impact of hardware
failures grows as we increase scale. According to a 2017
journal article on resilience techniques for exascale computing
platforms from IEEE (“An Analysis of Resilience Techniques
for Exascale Computing Platforms"[viii]):

“As the computing power of large-
scale computing systems increases

exponentially, the failure rates of these
systems increase exponentially as well.
While current large-scale computing
systems experience failures of some

type every few days, projection models
indicate that the next generation of

these machines will experience
failures up to several times an hour.”

As failure rates increase, system resiliency must keep up,

and while diagnosability cannot prevent hardware failure, it
may be able to detect a problem before it completely fails and
provide the data needed for the system resiliency features to
kick in and keep the system operational for running
workloads.

As part of overall system health monitoring, Cray has

worked with several of our customers for some years running
as part of the HPCMASPA (HPC Monitoring and System
Performance Analysis) workgroups at IEEE Cluster

Conference to help improve diagnosability of existing
systems.

Some example conclusions from this research and analysis

effort among numerous customer participants, there are
several concrete requirements for next generation Cray Shasta
system health, as shown in Table I in the document above[vii],
and summarized below:

1) System must provide proactive notifications to users
of system condition assessments.

2) System must support scheduling and job allocations
based on application and resource state, including
more fine-grained and dynamic resource allocations
and task mappings.

3) Useful responses to system conditions requires
increased analysis capabilities and more complex
interfaces to schedulers and component/subsystem
controls.

4) Need to access and integrate a variety of data sources
and types: numeric and text, raw data, derived data,
test results, analysis results, off-platform (e.g.,
facilities). Data can come from the system,
applications, and external sources.

5) Vendors need to provide in depth documentation of
capabilities and user accessible APIs for reading data
that is already being produced so that sites can
collaboratively develop and share tools. Vendors
need to enable abstractions that facilitate sharing
across multi-vendor platforms. Vendors should
provide well-documented interfaces for accessing
raw data at maximum fidelity with the lowest
possible overhead. Vendors should expose all
possible data sources for all possible subsystems.

6) All monitoring system capabilities should be
production capabilities and documented, exposed,
and supported as such. Extensibility and modularity
are fundamental to support evolutionary
development of these capabilities.

7) Tools to transport and store the data in native format
are highly desirable. System should support all
potential data sources, to include traditional text
(e.g., logs), numeric (e.g., counters), diagnostic test
results, and application performance information.

8) Easy access to historical data and the ability to access
historical data in conjunction with current data is
required. As with the storage of application data, all
storage does not have to be equally performant;
hierarchical storage models with the ability to locate
and reload data as needed are desirable.

9) High dimensional and long-term data need to be
handled in analyses and visualizations. Visualization
interfaces and tools should facilitate easy
development of live data dashboards.

10) Reporting and alerting capabilities should be easily
configurable. These should be able to be triggered
based on arbitrary locations in the data and analysis
pathways.

V. SHASTA SYSTEM HEALTH STRATEGY
Shasta is a complex but finite system. Because it is a

complex system, diagnosability, resiliency and serviceability
have to operate within the architectural complexity of the
system. Diagnosability happens as a result of understanding
the architecture of the system, measuring the function of that
architecture, comparing that to the observable state of the
system, and drawing inferences and conclusions based on that
information. This follows the data, information, knowledge,
wisdom hierarchy (DIKW hierarchy), as shown in the diagram
below. To diagnose a complex system like Shasta, we collect
generated data, warehouse it, and build analytical utilities that
can help diagnose both current actual and future potential
problems.

The goal of the Shasta system is to provide system health

capabilities in resiliency and serviceability by using metrics
for diagnosability from various system components like:

• Management nodes, containers, services, and

orchestration components
• Other infrastructure hardware and software

components
• Compute nodes and associated hardware and software

components
• Networks and associated hardware and software

components
• Storage and associated hardware and software

components

However, since Shasta is a finite system, it means that with

enough sensor data, logging, event generation and collection,
along with tools for running diagnostics and analyzing the
data coming back from all these sources, we can provide new
capabilities within Shasta. E.g.:

• Comprehensive system health readout APIs
• List of all known bad hardware components
• List of all known bad or misbehaving software

components
• Areas where existing problems are indicated based on

health checks and sensor data
• Diagnosability enabled infrastructure

• Local system health monitoring control and
enablement (each component is instrumented, and
data access provided)

• Common system monitoring infrastructure
• System configuration change tracking and history
• Continuous system health monitoring and reporting
• Services reporting state asynchronously to common

location via common mechanisms where feasible
• Hardware being monitored asynchronously and

reporting state to common locations via common
mechanisms where feasible

• Events reported to a common location via common
mechanisms where feasible

• Logs collected into a common location via common
mechanisms where feasible

• Redundancy for resiliency
• Retrying transient failures. This can be a momentary

loss of network connectivity, a timeout because a
dependency (such as a database or filesystem) is too
busy, or a dropped connection.

• Load balancing to improve resiliency because it
allows a component that is in a bad state to be taken
out of rotation.

• Data replication to provide fallback option to be
resilient from data loss and/or can be recovered

• Throttling to protect the overall health of the system
by controlling the number of requests. Applications
and/or services may intentionally flood a system with
huge number of requests that can reduce the overall
availability of those applications or services (from a
DoS attack, for example). When a single client makes
an excessive number of requests, the application or
service might throttle the client for a certain period

VI. SHASTA ARCHITECTURAL FEATURES AND
CAPABILITIES TO SUPPORT SYSTEM HEALTH

Resiliency failure handling in Shasta is designed to
prevent component failures from causing more widespread
failures, both to the system and to applications where possible.

The following capabilities are provided in Shasta in order

to support system health:

A. Shasta Diagnosability Components
There are many data sources where events, sensor data,

and logs are generated. These are all configurable via REST
APIs all the way down to the point of generation to allow for
control of what is being generated and how often it is
generated.

There is also a common Shasta Monitoring Framework

(SMF) for all these data sources that provides the collection
points into common data stores for the entire Shasta system.
This framework allows for visibility into the collection across
all of Shasta and is configurable and accessible via REST
APIs as well.

Fig. 2. Wisdom Hierarchy

1) System Health Monitoring Infrastructure
As mentioned before, monitoring and telemetry are

instrumental to provide system health monitoring and
diagnosability by using metrics to identify, repair, and recover
from failures. The Shasta Monitoring Framework (SMF)
provides a common monitoring facility to collect information.
The goal is to detect failures as early as possible, preferably
before users even know there is a problem. The health model
and health services provide the ability for each service to
report its health through standard interfaces and a health rollup
service that can collect and even diagnose health issues from
the services.

The following diagram shows a high-level overview of

most components of the general infrastructure architecture as
it relates to Shasta system health monitoring. Each channel
described in the previous diagrams provides information for
continuous monitoring, continuous testing, and on-demand
troubleshooting, along with REST API access at every level.

The framework for the data collection and first level

warehousing is provided by a Shasta facility called the Shasta
Monitoring Framework, or SMF. The following diagram
shows a high-level general overview of the SMF.

2) Diagnosability Components
The following list of capabilities shown, along with the

diagram below that shows functionality that is existing or in-
progress in Shasta as a first pass at system health and
diagnosability features. Note that on-demand is basically the
ability to take a snapshot of system health data via a GET
command. Periodic polling of this snapshot (for instance
calling the /health GET API in a script) can yield a basic health
history over time. Streaming indicates that the monitoring
stream is coming into the service asynchronously via a
pub/sub mechanism and being persisted into a longer-term
system health history data store.

a) System Health Service (SHS) and REST interface
The SHS is a standard SMS-node-based system

management stateless microservice, with a northbound API
that is accessed through the API gateway using the standard
AuthN/AuthZ access controls to Cray Shasta APIs, and
multiple instances running for services scaling and
availability.

b) Hardware State Manager (HSM) hardware data (via

on-demand GET to HSM REST endpoints)
The HSM provides some basic hardware state relative to

various system components, primarily provided by the
Redfish BMC interfaces on River and Mountain systems. This
includes things like whether a nodes power state is on, off, or
unknown (i.e. Redfish not responding), and whether there are
any hardware errors being reported by Redfish when HSM
does the hardware inventory. It will also aggregate the logical
state (such as Admin Down), along with other node reported
health data from the HMI service.

c) Orchestration and Services Metrics Collection (via

on-demand GET to Kubernetes and services /health REST
endpoints)

Since Kubernetes was designed from the start to support
detailed metrics, it has an integrated API, called the Metrics
API (available at: /apis/metrics.k8s.io/ as part of the
k8s.io/api/core/v1 package) that allows the user or admin to
access a wealth of data as a snapshot of Kubernetes
information. These are the same APIs that are used by the
various "kubectl " commands, such as "top" or "get
component status" that are accessible from the command line
in Kubernetes.

The Resource Metrics Summary API is an effort to

provide a first-class Kubernetes API (stable, versioned,
discoverable, available through the apiserver, and with client
support) that serves resource usage metrics for pods and nodes
within Kubernetes. It provides metrics about the following
Kubernetes objects:

• Node metrics
• Pod metrics
• Container metrics

d) System Health Service APIs

For all hardware and software components in the system,
the goal is to initially provide a list of:

• Overall health status (good, degraded, error,
unknown) for each area. Areas are initially hardware
objects, orchestration objects, and services objects.

• A list of objects that are in degraded, error, or
unknown state, along with an indicator of what the
degraded or error condition is for each object if the
system is not healthy (i.e. status is not "good")

• Filter and sort arguments can be applied to the GET
calls that allow for the JSON data returned to be
filtered and/or sorted.

Fig. 3. System Health Monitoring Overview

The following APIs are examples of those targeted to be
provided by the initial system health service APIs for
diagnosability.

• GET /health - returns all health data known for this
Shasta system

• GET /health/hardware - returns all hardware health
data known for this Shasta system

• GET /health/services - returns all services health data
known for this Shasta system

Some examples of how these APIs are initially planned to
work are shown below. Although the actual API calls may
change, the same basic functionality of being able to get the
overall and detailed status from these system components will
be provided.

Ex. a GET to /health might return the following if there are

no errors in the system:
{
 "SystemStatus":"Good",
 "HardwareStatus":"Good",
 "ServicesStatus":"Good"
}

Ex. Whereas a GET to /health might return the following

if there are known pieces of failed hardware in the system:
{
 "SystemStatus":"Degraded",
 "HardwareStatus":"Error",
 "ServicesStatus":"Good",
 "DegradedHardware"
 {
 <list of all failed hardware in the system, with details

on each one showing what is known to be in error>
 }

3) Diagnosability Attributes
The Shasta system specifically provides the following

attributes to allow for basic diagnosability:
• Enhanced deterministic hardware failure detection

and isolation
o Modular HW architecture provides a

sufficient number of sensors in each
module to detect any hardware failure down
to the Field Replaceable Unit/Customer
Replaceable Unit (FRU/CRU) level. FRUs
are typically something that is replaced in
the field via Cray service personnel, while
CRUs are something that can be replaced in
the field by a customer. For the purposes of
diagnosability, however, these are treated
the same, as it represents an atomic level of
replaceability, no matter who does the
actual replacement. As mentioned earlier,
the goal for hardware failure detection and
isolation in Shasta is 100%, reaching as
high as possible with HW.

o Data from the sensors in all system
components is collected in a granular

enough manner to allow for FRU/CRU
level failure isolation.

o Common component naming approach
(cname) from the XC platform has been
modified and expanded to include all of the
Shasta components and associated
geolocation data. This new attribute in
Shasta is called the xname and allows for
isolation down to the exact failed
components.

o Hardware failure states are deterministic,
meaning they are latched as failed until the
failure clears, either by itself, via a repair
action, or via explicit command. Critical to
this from a service standpoint is the ability
for the complete failure lifecycle to be
captured, so that failure and recovery of a
component is logged.

• Common log collection and formatting
o Uses common telemetry/monitoring bus

and common logging database
o The SMF system described above provides

a common logging collector. All logs
generated by any firmware or software in
the system end up in this common system
log. This allows for the use of industry
standard tools like LogStash and
ElasticSearch to be used for working with
system logs across all components.

o All log messages use a human readable, but
easily machine parseable JSON format.

o All these log messages are also formatted
into a common user readable format, which
makes correlation and analysis of the log
data easier.

• Common event collection
o Uses common telemetry/monitoring bus

and event database
o Event data from every component in the

system is gathered into the event database
via the same common telemetry bus that the
rest of system health monitoring uses.

o Audit log information such as configuration
changes made to the system also logged to
the event stream, allowing for correlation of
configuration changes with system health
monitoring.

• Continuous system monitoring
o Uses common telemetry/monitoring bus

and common telemetry database
o The firmware in all Shasta Mountain

embedded controllers provides an
asynchronous push telemetry stream for the
dense compute platforms. This is provided
using the Redfish EventSubscription
mechanism and REST APIs to POST the
telemetry data. This same thing is true of
the Shasta River Slingshot network TOR
switches.

o The Shasta River COTS servers, because
they are provided by third party vendors, do

not typically provide this same
asynchronous push telemetry stream, so a
synchronous polled mechanism is used to
provide the telemetry monitoring
collection.

o All Shasta hardware telemetry, whether
push or polled, is collected by the common
Shasta telemetry service in the management
plane, published to the common telemetry
and monitoring bus, and aggregated into a
common telemetry database.

B. System Management Services
Shasta system management services consists of system (or

infrastructure) management, part of the management system
that is responsible for the configuration, operation, and
monitoring of the entire system, component management, also
part of the management system in Shasta, but responsible for
the configuration, operation, and monitoring of the individual
components and embedded controllers, and the managed
system, that is the user facing portion of Shasta like the Cray
Managed Ecosystem (CME).

From a resiliency perspective one of the main benefits

with separate management system and managed system is that
they can be upgraded or updated independently.

Several resiliency features are provided by the Shasta

System Management Services (SMS) architecture, as can be
seen in this diagram. These features, and how they enhance
the function of the management system, are as follows:

• API load balancing - Load balancing capability is
built into the API gateway and container
orchestration. Higher-level load-balancer
microservices, or physical load balancers sitting
above the gateways, can also be added.

• Stateless services - Service configuration and state are
stored and retrieved by the micro-service instances in
an internal data store that is only directly accessible to
that service; the only external accessibility is provided
by REST APIs to that micro-service. By design all the
services are stateless, allowing them to be replicated
so they can be scaled up or down by creating more or
fewer instances. Persistent data is stored in a shared
data store.

• Desired state reconciliation and service replication
provided by container orchestration - Service high-
availability and resiliency are provided by the
container orchestration service. If a service container
becomes unavailable (e.g., becomes unresponsive), it
is detected and recovered via the container
orchestration service. Service replication, managed
across the nodes by the orchestration tool, also gives
the system resiliency in availability, as well as
reliability. If one of these replicated containers goes
down, the service remains available to service APIs
and perform its primary functions. Container
orchestration services will also reschedule the
stopped container on the same or a different host,
allowing the services to be migrated in the event of
host node failure or maintenance actions.

• Services instances spread across all SMS nodes - The
containerized micro-service instances (3-n) can run
on any SMS node. This allows the service to continue
to function if an SMS node is lost. This multi-
instance, micro-service architecture enables
expanding service instances out across as many
physical machines as needed for redundancy,
availability and scalability.

C. Application Resiliency
Applications based on Message Passing Interface (MPI)

have some resilience to transient network failures provided by
a resend capability for short MPI control messages. Link
failures are also automatically routed using adaptive routing
in many cases.

D. Key Infrastructure Components - Compute, Storage and
Networking
Shasta systems are designed with far more flexibility in

mind than past Cray high-end systems, both in hardware and
software. Key infrastructure such as compute, network,
storage is outlined in the section below.

1) Compute

When a compute node goes down, any application running
on the failed node is usually also lost since the application's
state cannot be guaranteed. The part of the application that
was running on the failed node is completely lost, leaving the
other parts of the application that were running on other nodes
to be cleaned up. The Shasta job launch architecture will
detect node failures and report these back to the workload
manager (WLM), so that the scheduler can take appropriate
action to either recover them or remove them from the list of
available nodes to run a workload on.

Software errors from user code should never result in a

compute node failure, although they could cause an
application failure. The User Access Services (UAS) allow the
user to create a User Access Instance (UAI) that allows the
user to use the WLM and job launch service to run jobs on
compute nodes. These various services provide both
command line utilities and REST APIs to allow the user to
launch applications onto a set of compute nodes. They also
provide supporting functionality such as helper tools, binary
transfer mechanisms, job state querying, and job signaling,
among others.

Since the UAS instance-creation functions, and the WLM

service and scheduler functions are all containerized, running
within the System Management Services (SMS) Kubernetes
cluster, and since they use that infrastructure to store their
operational data in a clustered decentralized database that is
accessible across nodes, it ensures that these services can
move to different nodes for high availability. These services
can also be scaled up across nodes to handle additional load
by starting more instances within the Kubernetes orchestration
system.

The primary objective of compute node-failure handling is
one of the recovering resources and making them available to
run jobs as quickly as possible. The system monitoring
framework provides a declarative state of compute nodes that
is the first part that will manage this failure, by providing the
diagnosability. Once a node is known to be bad, part of
resiliency around automatic recovery is to remove that node
from the WLM and job launcher, so it no longer causes any
application failure. Another part is to signal to the system
administrator that the node is bad, along with enough
information to diagnose exactly why. The last part is to affect
a repair action on the node, part of which may be done
automatically (like ordering new memory), and part of which
may be done manually (such as actually replacing the
memory).

2) Storage and I/O Failure Handling
The Lustre parallel filesystem provides high-speed, large-

volume storage for applications. Lustre is designed to enable
high availability of data by using no-SPOF (single point of
failure) hardware designs. Lustre can utilize multiple paths to
access data in the event a that any single component in the data
path fails. Lustre assumes servers are grouped and connected
as "failover pairs": two servers, each normally serving
separate RAID arrays, can take over for each other in the event
that one of the servers fails. This model requires that the
endpoint of the data path, the underlying backend storage
array, is durable, with drives that will always be available.
This in turn requires that the backend storage devices must be
dual-ported, offer RAID protected-data, and use redundant
power and fan modules.

The ClusterStor hardware platform meets Lustre’s

availability design requirements by providing fully redundant
paths to the stored data. ClusterStor’s Scalable Storage Units
(SSU), SSU-based model uses dual controllers (servers, a/k/a
OSSs) with two sets of RAID arrays (a/k/a OSTs) in each
physical enclosure. The enclosure and rack hardware are
specially designed to provide dual-path access to data via
these dual controllers, dual side cards, dual NICs and cables,
dual top-of-rack switches, dual-ported disks (SAS drives), as
well as multiply-redundant fans and power supplies to ensure
system resiliency when a failure occurs. However, this
guarantee of continuous data access comes at a significant
cost, as more complicated hardware designs require expensive
dual paths and the manufacturing volumes of such systems are
low, compared to commodity hardware used in some vendors’
products.

Two types of service nodes support the Lustre filesystem,

the Object Storage Server (OSS) nodes and the Meta-Data
Server (MDS) nodes. The OSS nodes host the Object Storage
Targets (OSTs), while the Lustre MDS nodes are responsible
for handling and storing the filesystem metadata. At a basic
high level, the Lustre software consists of the OSS nodes, the
MDS nodes, and a Lustre client, that runs on each of the
compute nodes. There may also be a Lustre network (LNET)
router that runs to provide connectivity between different
areas of the filesystem and the compute nodes.

If a compute node client fails to make a timely response,
the Lustre system evicts the failed client from the system. This
action frees resources (such as file handles and export data)
associated with the client and allows other clients to acquire
them. Cray Management Services (CMS) logs the problem
but no special action is requested of the system administrator
in this case.

Failures are possible at several places along the Lustre I/O

data travels:
• The compute node Lustre components
• The compute node itself
• The Lustre service nodes
• The network components connecting the service

nodes to the disk consolers
• The paths from the disk consolers to the disks
• The disks themselves

3) Networking
The network and fabric management services architecture

are composed of:

Managers that:
• act as the customer-facing front end for network

management
• provide orchestration for customer-provided policies
• manage network and fabric telemetry gathering

Services that:

• provide fabric-level agencies, such as MAC-to-port
learning

• support basic network protocols, such as IGMP
• offer scalable solutions for network protocols, such as

ARP and DHCP

Controllers that:
• provide an abstracted interface for fabric management
• persist fabric configuration data
• Agents that:
• offer Controllers remote access to the switch device

driver

Failures can happen at any of these levels, with varying
degrees of impact. E.g.,

• Manager failures should allow the system to continue
functioning with only the loss of active customer
control, i.e., the existing network and fabric
configuration should continue to run, only further
configuration changes and telemetry gathering should
be affected. Some examples:

• The failure of the etcd Key/Value store, used to store
configuration data, would result in the Network
Management Services (NMS) managers being unable
to save or restore configurations

• The failure of the fabric manager would result in the
customer being unable to monitor or change the
existing fabric configuration

• The failure of the monitoring manager would result in
the loss of scheduled data collections

• Service failures could result in basic network protocol
failures, such as a node being unable to get a DHCP
address, or an ARP resolution

• Controller failures would result in loss of active
customer control, and an inability to respond to error
conditions

• Agent failures could result in a switch, and its
attached nodes becoming lost to the rest of the fabric

a) Management Networks

A Shasta system includes a robust management fabric,
composed of commercial off-the-shelf switches. The network
architecture is a leaf-and-spine design, with redundant high-
bandwidth spine switches, and optional redundant leaf
switches at the cabinet level. Switches below the cabinet level,
at the chassis and blade levels, are not redundant.

Failures within the management fabric hardware could

impact accessibility and functionality depending on the
location of the failure within the switch hierarchy.

The failure of a management fabric NIC would result in

management traffic, such as LDMS event gathering or service
traffic, becoming lost. The following might result:

• If the NIC is connected to a service node (SSN), then
the loss could mean an interruption of services based
on that SSN, depending upon whether a given service
has its data cached locally, or is dependent on a
connection to remote storage.

• If the NIC is connected to a compute node, then the
loss would result in the loss of event data and
customer management access to the node.

The failure of a management fabric switch could result,

depending upon where it is in the management fabric, in
widespread loss of connectivity on the management networks.

While the spine and cabinet switches are redundant, the

loss of a chassis or blade switch would result in all
management NICs below that point in the hierarchy becoming
unreachable.

b) Connections to the Data Center

Shasta systems can be connected to customer data center
networks through redundant connections.

c) Management Fabric

The customer's Data Center Admin Network can be
connected to multiple Management leaf switches in River
racks, providing redundant paths to the management elements
in the system, like in Figure 4.

d) High Speed Fabric

The Slingshot High Speed Fabric can be connected to the
customer's data center through either a switch or a router. Not
only can multiple paths to the fabric be connected, but these
connections could be composed into a link aggregation group
(LAG) that provides automatic load balancing and failover,
like in Figure 5.

VII. CONCLUSION
The architectural and design goals within Shasta are to

allow for complete knowledge of the system at every available
layer, by providing all the attributes, such as monitoring,
measurability, and diagnostic tools, all in a common format
and location, to allow for visibility into the health of the
system. The new approach in Shasta using modular
architecture provides multi-instance orchestration resiliency.
With its redundancy of major components, the Cray Shasta
system is designed to be highly available and highly reliable.
Compute nodes can be taken out of service and returned
independently of one another. Should any component of a
compute node fail, only the application running on that node
is affected. Both software and "soft" hardware failures, such

Fig. 4. Redundant Management Network

Fig. 5. Slingshot Highspeed Fabric

as many uncorrectable memory errors, allow the node to be
rebooted. Only "hard" hardware failures require service.

Because the Rosetta router switches are located on a

separate switch module, compute blades can simply be
removed once all applications using the healthy nodes on the
blade are terminated and the nodes have been configured as
unavailable. This blade can then be swapped with a new one
and brought back into operations.

The ability to monitor and diagnose the system is a critical

piece that informs the ability to provide recovery actions
(whether manual or automatic), as well as to be able to take
service actions like perform live or rolling updates to system
components or replace hardware. These facilities working
together provide an end to end system health capability within
the Shasta system which has been engineered to be a
significant improvement over the system health maintenance
of previous Cray products.

Key System Health features of the Cray Shasta products

include the following:

• Container orchestration by Kubernetes for both

management and user applications
• A consistent and standard platform for service node

layers that allows services to grow or expand
dynamically based on need

• Redundant power supplies, voltage regulator modules
and converters

• Redundant cabinet cooling infrastructure
• Compute nodes with no local spinning disks
• System software that automatically marks non-

responsive nodes as unavailable in the resource
manager

• Automatic detection and rerouting of defective links
in the Cray Slingshot interconnect without affecting
operation or requiring a reboot

• Adaptive routing that provides alternate routes to the
target node

• A Cyclic Redundancy Check (CRC) at the packet
level between source and destination

• In addition to the CRC, there is forward error
correction and link-level retry

• Packets protected by Error Correction Code
o The Cray NodeKARE™ software tool

detects certain correctable errors and marks
nodes down when they have high error rates

• Resiliency communication agents that monitor all
nodes and initiate failover of services, where
applicable

• A high level of system failure detection and isolation.
• Comprehensive system health readout APIs
• Diagnosability enabled infrastructure
• Continues system health monitoring and reporting

VIII. REFENCES

[1] Jeffrey J. Schutkoske (2017). “Cray® XC40TM System
Diagnosability”,
https://cug.org/proceedings/cug2017_proceedings/includes/files/pap1
40s2-file2.pdf

[2] Jeffrey J. Schutkoske (2014). “Cray XC System Level Diagnosability:
Commands, Utilities and Diagnostic Tools for the Next Generation of
HPC Systems”,
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap1
20.pdf

[3] Cray System Snapshot Analyzer (SSA).
https://www.cray.com/support/cray-system-snapshot-analyzer

[4] Cray SSA White Paper.
https://www.cray.com/sites/default/files/resources/Cray-SSA-White-
Paper.pdf

[5] Numerous workshop authors, "Large-Scale System Monitoring
Experiences and Recommendations", Workshop paper: HPCMASPA
2018, https://ovis.ca.sandia.gov/images/7/7d/HPCMASPA_Large-
Scale_Monitoring_Experiences_Recommendations.pdf

[6] Daniel Dauwe ; Sudeep Pasricha ; Anthony A. Maciejewski ; Howard
Jay Siegel, "An Analysis of Resilience Techniques for Exascale
Computing Platforms", https://ieeexplore.ieee.org/document/7965137

