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Abstract— Keeping the system healthy and able to run compute 
jobs is one of the primary goals of the Shasta architecture. In 
the end, no matter how complex the infrastructure is, the main 
reason the system exists is to allow users to run customer 
workflows; everything else is really just to support this 
capability.  
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I. INTRODUCTION  
System health can be viewed as a set of services that 

provides various capabilities for maintained health that span 
across the spectrum of components and subsystems that make 
up the Shasta system. System Health consists of 
diagnosability, which is the collecting and reporting of the 
system's health, resiliency, which is the determination of what 
automatic or manual action to take to fix the system given the 
specific diagnosis information, and serviceability, which 
covers how to fix and maintain system health.  

 
The following diagram shows a high-level overview of 

system health in Shasta: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. SYSTEM HEALTH, WHAT IS IT? 
This section defines diagnosability, resiliency, and 

serviceability. 
 

A. Diagnosability 
The basic dictionary definition of “diagnosability” is “the 

condition of being diagnosable” (Wiktionary definition).  
Following that, we see that “being diagnosable” means 
“having a cause that can be determined”. 

 
An illustrative analogy to diagnosing what is wrong with 

a large computer system is that of diagnosing what is wrong 
with a human being (which is also a large system, albeit a bit 
more complex than a supercomputer). 

 
When a patient goes to the doctor with some symptom, say 

a joint that will not move correctly or a high fever, at that point 
in time there are several potential possibilities that might be 
the root cause.  The main job of the doctor is to use various 
techniques to gather information, analyze that information, 
run tests, and narrow down those possibilities to provide a 
diagnosis and course of action. One of the first things they will 
have the patient do in this case is to fill out information on 
health history and recent health events (e.g. recent injuries, 
history of illness, trend information).  

 
This can involve measuring streams of constant data 

coming from the patient, such as heart rate, O2 absorption, 
blood pressure, and other telemetry.  It can also involve 
running diagnostic tests, as well as taking point in time 
snapshot measurements of the patient’s various components.   

 
This troubleshooting process is an adaptive one that takes 

the results of the measurements and tests, analyzes them, and 
applies them to the next step in the decision process in 
narrowing down the root cause of a given problem. During 
measuring and testing, other problems may be found that can 
range from small items to major ones. As these are 
encountered during troubleshooting, a decision can be made 
on whether to fix that problem then or defer it. Also, at times 
a doctor's analysis will result in 'do no harm', take no action, 
or avoid taking destructive actions if the source of the problem 
is not well understood. We are looking for diagnostics not to 

 
Fig.1. System Health Overview 



just find problems and suggest solutions but to also provide 
context. If a solution has side effects (for instance taking a 
medicine with significant adverse reactions) and the problem 
is not known, the negative consequences or collateral 
impact/damage may increase. 

 
Similarly, in the case of a large computer system, this same 

basic overall approach can be used. We can instrument the 
system with the capability to generate data, we can develop 
tools to measure this data, we can develop tests that measure 
the functionality and health of the system, we can use the data 
streams to derive information from them, we can develop 
tools that interpret this information, and we can provide the 
ability to display this information in a form that can be used 
to diagnose the system. For diagnosing systems, the 
equivalent to filling out health history and recent health events 
is log collection, log analysis, system event collection, and 
critical event/change notifications/recording. To add to the 
analogy with diagnosing a human, if a solution has side effects 
(e.g. rebuilding a compute node, giving more/unbounded 
compute capacity to an app, rerunning a broken app) and the 
problem is not well known, the negative consequences or 
collateral impact/damage may increase. 

 
Some other analogous aspects between diagnosing a 

human and diagnosing a computer system are: 
• Annual physicals – Proactive diagnostic checks on 

full system (e.g. running diagnostics when no 
failure/fault is expressed) 

• Crisis/acute management – Body/system is sick, 
which includes reactive diagnostic tests to try and find 
the source of the problem 

• Ongoing health monitoring – E.g. FitBits, health 
monitors that are proactively and passively 
monitoring the system 
 

The intent here is to highlight that we always want to keep 
the system healthy, not just wait for faults or downtime to 
diagnose and address system health. 

 
One other aspect of this analogy is the potential to leverage 

live or offline data from large groups. In the case of a human, 
this can take the form of population study and analysis (for 
example rates of recurrence among cancer patients in 
remission); in the case of large systems like Cray, this can take 
the form of the services/support data warehousing and higher-
level support analysis (even from other customers in an 
anonymized way) to help identify issues. The problem space 
is not strictly local to one system, one body at that point, one 
can build up wisdom about specific problem occurrences into 
a knowledge base. 

 

B. Resiliency 
Resiliency is the ability of a customer application or 

system and its services to recover from failures and continue 
to function. It is not about avoiding failures; it is about 
responding to failures in a way that avoids downtime or data 
loss. The goal of resiliency is to return the application or 
system to a fully functioning state following a failure, while 
minimizing the impact on running workloads. 

As an example, system resiliency is the ability of an 
application or a service to react to a problem in one of its 
components and still provide the best possible service. This is 
even more important as software is implemented more and 
more across multitier, multiple-technology infrastructure 
(architectural layering). Always-on architecture enables 
resiliency through several layers of architecture constructs, 
like infrastructure as a service, platform as a service, and 
software as a service. Similarly, in a team sport like football, 
a coach many times can see if a player is injured and can 
substitute the injured player with a healthy player. Sometimes 
it can be hard for the coach to tell if a player is healthy or not. 
To be a resilient football team, all players needs to help 
proactively watch for unhealthy players, by checking in on 
each other, asking if someone is hurt and how bad. Players 
themselves can inform if they are injured and even take 
themselves out of rotation to help their team. 

 
System resiliency for a modular, service-based 

architecture like Shasta allows for decoupling the components 
and services from each other, which improves resiliency since 
it allows the system to load-balance and distribute services 
across multiple hosts.  

 
There are some important aspects and types of resiliency 

required for this type of architecture: 
• High Availability – An application or service can 

recover or continue to run without significant 
downtime. The application is responsive, and users 
can connect to the application and continue to use it. 

• Reliability – The probability that an item will function 
(compile, compute, and access data) without failure 
under stated conditions (network, power, etc.) for a 
specified amount of time. 

• Checkpoint and Restart or Backup and Restore – 
Protect against hardware errors (e.g. processor, 
memory, network), bad code, other service failures, 
and accidental deletion of any type of data, such as 
application or configuration data. 

• Disaster Recovery – The ability to continue operation 
from rare but major incidents, like large-scale failures 
such as service interruptions that affect an entire 
region. Disaster Recovery starts when the impact of 
failures exceeds the ability of the High Availability 
design to handle it. 

• Incidents – This may be a subcategory, but it is also 
important to have resiliency in control systems to 
allow the system to defend, protect, and/or respond to 
a malicious cybersecurity attack, or to an accidental 
manual operation that can put the entire system or 
parts of the system in a bad or harmful state, 
potentially impacting the confidentiality, integrity, 
and availability of information. 
 

Resiliency provides higher availability and a lower mean 
time to recover from a failure. Resiliency does not just happen, 
however; it must be designed and built in from start. 

 
What is the difference between reliability and resiliency 

and why does it matter? Reliability is a design engineering 
discipline that applies scientific knowledge to assure that a 



system will perform its intended function for the required 
duration within a given environment, including the ability to 
test and support the system through its total lifecycle. A 
reliable system is essentially a system that functions as it was 
designed and for its intended purposes, when it is expected to, 
and wherever it is being used. That is not to say that every 
component must operate flawlessly 100 percent of the time. 
Resiliency is recovering from failures, while reliability is the 
outcome. i.e. reliable operation is the result of a system that is 
designed to be resilient. 

 
There is a distinct difference between reliability and 

availability: reliability measures the ability of a system to 
function correctly, while availability measures how often the 
system is available for use, even though it may not be 
functioning correctly. As an example, a service may run 
forever and have an ideal availability, but it may be unreliable, 
with frequent data corruption. 
 

C. Serviceability 
Serviceability provides continuous update strategy for the 

various Shasta system software, hardware and firmware 
components. Serviceability is after the fact, there is a problem 
and restoring the product into service. Serviceability provides 
features that facilitate more efficient product maintenance and 
reduce operational costs and maintains business continuity. 

 
There are two types of updates: 
• Live update – an update can be done without taking 

the component offline or losing access to the service 
provided by a component. There should be no loss of 
system function during a live update or any rollback 
that occurs. 

• Rolling update – an update that affects a component 
requiring that horizontally scaled components to be 
taken offline one at a time. The components can then 
be "rolled" through, one failure domain at a time, until 
the entire system has been updated. NOTE: that 
during this process, the entire system should never 
have to go down at any one time. There is enough 
resiliency built in to the system to be able to continue 
some level of workload operations while upgrading or 
repairing hardware, software, or firmware modules. 
 

Serviceability can be broken into the following general 
areas: 

• Hardware and controller updates 
o Cray provided firmware updates – 

primarily embedded controller firmware 
(Mountain components – chassis 
controllers, node controllers, Rosetta blade 
switch controllers, FPGAs, 
microcontrollers, etc., River - Rosetta TOR 
switch controllers) and Cray blade BIOS 
updates 

o Vendor provided firmware updates – 
primarily PCIe cards such as NIC firmware, 
as well as the BIOS and BMC on 
commercial off-the-shelf (COTS) servers, 
and other River component firmware such 

as Ethernet switches, iPDU’s, direct liquid 
cooled (DLC) doors and rack equipment, 
and other River hardware. Some of this is 
done as part of the host OS running on 
compute nodes, but there are also peripheral 
firmware updates that are not done as part 
of the host OS image, rather they are done 
via Redfish or other OOB mechanisms. 

• Management infrastructure components 
o Non-compute node bare metal kernel and 

host OS updates/rollbacks 
o Kubernetes core orchestration component 

stack updates (API server, kubelet, etcd, 
etc.) 

o Cray provided system management 
services updates, including the update and 
rollback of data within these services 

o High Speed Fabric (HSF) / High Speed 
Network (HSN) component updates 

• Managed services components 
o Shasta Linux software stack updates on 

compute nodes (host OS premium and 
standard). Includes peripheral firmware 
updates done as part of the host OS image 
on Mountain or River. 

o Parallel file system storage component 
updates (Lustre file system, ClusterStor 
storage) 

o Managed plane services (LNET router, 
DVS, etc.) 
 
 

III. WHY DO WE CARE? 

A. Changes in HPC Industry System Requirements 
One of the primary aspects of keeping a system healthy is 

making a system highly-available, just like scalability, by 
adding more resources of anything on demand. Other possible 
aspects for resiliency that also need to be accounted for, such 
as the ability to have an entire system in the same or even a 
remote geographic location in a disaster recovery scenario. 
Having a more modular architecture like Shasta allows Cray 
to offer solutions by replacing or adding modules (or 
components) that meet customers needs. Decomposing 
system health requirements for components in the system is 
important for many reasons. It allows more flexible options in 
providing diagnosability, resiliency and serviceability for 
what is important to customers. It is also important with a 
modular architecture to be able to be able to replace and 
upgrade different parts of the system without taking down the 
entire system which would impact serviceability.  

 
There are several critical shifts in the HPC industry that 

help maintain system health, and Shasta products are designed 
to take advantage of these, as shown below: 

B. Extensible System 
Shasta products are designed for extensibility, following 

the principle of separating work elements into comprehensible 
modular components. These components can be customer-



modified subsystems or experimental components (e.g., a 
custom compute kernel or image, a third-party management 
system, or different storage vendors) that are not directly 
controlled and tested by Cray. Cray can only control and know 
what is working for components provided or tested by Cray; 
there is a white-listed combination of versions of components 
dependencies that defines the boundaries. As an example, the 
Programming Environment (PE) container may have certain 
Operating System (OS) API. A custom compute kernel may 
cause a failure in the PE when an API it depends on is not 
available. This failure could be detected through monitoring 
and/or event logs, or through diagnostics, to identify if the 
problem was caused or not by a component provided by Cray. 
Since the PE runs on several different OS versions, Cray can 
only support those that it certifies, but the customer can still 
extend the system. 

 
The Bill of Material (BOM) provides the complete 

inventory of all components provided by Cray and Cray-
supported third-party components (with potentially several 
versions of backwards compatibility) that are tested and 
verified by Cray. All other components that are of the 
"unknown" category with an expectation that resiliency and 
failures can be unpredictable. 

 
Shasta is an extensible system. E.g., it has: 
• Different storage systems from multiple storage 

providers  
• Replaceable system components (e.g., third-party 

compute/OS, system management, telemetry, etc.) 
• RESTful interfaces that can be used to customize or 

modify the management system behavior. 
 

C. Decoupled and Layered System 
Decoupled code modules and layering provides the ability 

and flexibility to upgrade or update components 
independently to meet customer needs in a timely fashion. 
Customers can adopt new functionality and value from Cray 
on their own, without reinstalling or taking down the entire 
system. A good example is the Programming Environment 
(PE), which is independently released on a quarterly cycle. 
Customers can choose when to deploy it and what version to 
use.  

 
Shasta is a decoupled, layered, and modular system: 
• Separating management and managed system 
• Variety of compute workload managers 
• Monitoring and telemetry at different layers from 

kernel and hardware to components 
• The ability to configure, upgrade, and update 

components independently 
 
 

IV. MAINTAINING SYSTEM HEALTH 

A. System Health Awareness 
The goal of being able to monitor and diagnose a problem 

in any system is typically not just for awareness, although that 

is indeed a required first step.  It is so that analysis can be done 
on the severity and impact of problems and figure out whether 
and how to effect automatic or manual repair actions on it.  In 
some cases, these are automatic repair actions, which is where 
diagnosis ties into system resiliency and availability.  In other 
cases, these are manual repair actions, which is where 
diagnosis ties into serviceability. In our ideal model, for any 
operation that has a well-known cause the system should be 
resilient to the repair/change (e.g. rebooting a node will not 
wedge the app or system), and automatic recovery is 
preferred. Manual should be the goal only when a human 
decision is involved (whether that be scheduled downtime, a 
disruptive change, or a risk analysis is required based on 
human/business need). In Shasta we aim for automation 
whenever possible and make this decision point of whether to 
effect automatic or repair a strategic one. 

 
As described in the earlier example with a doctor 

diagnosing a human, he may find several problems in the 
course of taking measurements and running tests.  Some of 
these may be directly related to the reason to go to the doctor 
in the first place, some may be ancillary, and some may be 
completely unrelated.  Having knowledge of all of these is a 
useful thing, however only some of them may be the root 
cause of the initial symptom. And some of the data found 
during the diagnosis activities may well lead to treating 
problems that the patient was unaware of before. 

 
An important thing to note with this analogy is that the 

expression of symptoms cannot always be traced back to a 
'single root cause'. For example, if a patient have acute neck 
pain, a high fever, and is feeling lethargic then the patient 
could have viral meningitis (which can be very serious) OR 
the patient could just have a cold and have coincidentally 
strained his neck during exercise.  When we diagnose based 
on the composite of the symptoms, we may inflate the impact 
of issues or miss root cause due to secondary manifestations. 
So, a caveat with this approach is that it is iterative and 
requires analysis at each iteration. 

 

B. Layered Levels of Health 
Likewise, when troubleshooting a large computer system, 

several problems may be found along the path of diagnosis.  
Sometimes these problems have little to no correlation to the 
initial problem which caused someone to be in diagnosing the 
system in the first place.  But sometimes they do, and the act 
of troubleshooting leads to the discovery of other underlying 
problems that must be fixed first in order for any more 
meaningful diagnosis to be done. This highlights another 
aspect of diagnosability and monitoring, that of tiered or 
layered levels. For example, passive diagnostics may run at a 
high level (like taking a temperature), then more active 
diagnostics can be run to drill into specific concerning areas 
to gather more detail. In crisis situations, a 
disruptive/destructive diagnostic may be run - like a much 
more CPU intensive test that requires offline or non-compute 
friendly analysis and job interruption. The main goal is to start 
with passive tests, then move to more active test, and finally 
move to disruptive/destructive tests as needed, with diagnostic 
tools and services at each layer to help diagnose issues. 



 

C. Comprehensive System Dashboard Readout Support 
Another one of the primary goals of system health within 

Shasta is to provide support for a complete readout of all failed 
components, along with an estimate of the actual and potential 
impacts. A common example of why a problem is that Cray 
has seen many times in their past large supercomputing 
systems around the failure of network hardware (cables, NICs, 
switches, etc.). Even though the individual piece of failed 
network equipment may not seem on the surface directly 
related to some bigger question of, for instance, “why is my 
job running slow”, the systemic effect of this network 
component failure across running jobs can ripple. Based on 
the knowledge built up over time from service and support, it 
can be shown that if running in a system with known failed 
components, there are interrelationships in a complex system 
that can cause unpredictable results. So, the first order of 
business and why this is one of the primary initial goals in 
Shasta is to monitor the system for known errors, and provide 
the data needed to sort and repair known system failures 
before trying to debug larger more systemic issues. System 
health monitoring and its associated role in system 
diagnosability are crucial components for increasing system 
resiliency. Just like the team sport example described earlier, 
monitoring is needed to detect and prevent problems before 
they occur or as they are happening, while diagnosis gives 
feedback on current problems or ones that have already 
happened. 

 
Another software specific example in the Shasta 

architecture might be the failure of a service that is common 
to several other services, like the API gateway. Having a real 
time readout of system services and the overall system 
management is crucial to system health. 

 

D. Improved System Troubleshooting and Service 
Dependency Knowledge 
Note that if the cable/NIC/switch (or any faulted 

component) is failed, we do not want to just know all the 
current failure components, however. We also want to know 
the relationships between the various system services (user 
context, tenant, services, host platforms, connections between 
them). If we have that full relationship graph, or even an 
approximation, then a human or even an analysis engine can 
walk the graph and source the common cause. It reduces the 
need for sleuthing or having a human connect all the dots. We 
know which components are connected to which, and since 
the Shasta system is much more finite state machine than a 
human body, simply showing health states on various services 
and relationships would likely surface the issue more quickly. 
This allows us to provide high-level diagnostics, and then drill 
down deeper to specific targeted areas. 

 
In addition to this, a major goal of the Shasta system 

diagnosability attributes is to negate the requirement to move 
components around in order to diagnose a problematic or 
broken part. This is a common troubleshooting mechanism in 
Cray systems today, but is very time consuming and 
disruptive, and the goal is to be able to identify and replace 

components without using this approach except as a last 
resort. 

 

E. Cray Service and Support Requirements 
The new Shasta architecture and product line will support 

many types of processors, storage systems, diverse 
Compute/OS platforms, new system management, and new 
monitoring capabilities. Shasta is designed with high-
reliability components and targeted redundancy to minimize 
job and system interruption. Job recovery options let 
administrators and/or users restart failed jobs with minimal 
interruption. The Shasta infrastructure will take advantage of 
technologies that keep jobs from failing when they lose nodes. 
It will also support the use of monitoring data to support 
predictive failure analysis, which will allow the system to 
proactively take failing resources offline while keeping the 
system running. Hot swapping and an easy-to-service modular 
hardware design allows either Cray or customer technicians to 
fix failed components without a complete system interruption. 
In most cases there should be no interference, only a very 
minor degradation of the total system service, usually 
completely not affecting most running applications (only 
affecting one or two). 

 
Capabilities in Shasta include the following: 
• The ability for system administrators to upgrade or 

repair without blocking system management for 
components like the compute and managed 
applications 

• The ability for an Application User to provision 
different compute images that already exist 

• Compute images can be upgraded without impacting 
other running workloads on the nodes 

• Containerized applications that can easily be 
recovered, developed on a laptop, and run as part of 
distributed workflows 

• Security patches, hot fixes, and firmware updates that 
can be applied without shutting down the entire 
system (live upgrades) 

• Shasta system software that automatically recovers 
from non-responsive nodes 

• A Cray Slingshot interconnect that automatically 
detects defective links, and reroutes without affecting 
operations or requiring a reboot 
 

F. Requirements due to Industry Standards and 
Competitive Offerings 
As anyone that has seen a modern NOC or SOC (network 

operations center or system operations center) can verify, the 
capabilities of industry standard OSS and commercial system 
health monitoring and management tools in the enterprise data 
center have grown tremendously in the last decade. There are 
literally hundreds of tools out there that can easily be set up to 
monitor and manage various aspects of systems and their 
components, if the systems and components provide some 
form of programmatic access to the monitoring data they 
generate. Most data center operations personnel have come to 
expect the ability to integrate with these tools, so this drives 



Cray to improve the ease of integration with these industry 
tools. 

 
Another strong driver for Cray to integrate a significantly 

better system health monitoring solution into Shasta is 
competitive disadvantage. While Cray is a leading competitor 
in HPC, is not the only competitor in the market. Several of 
our key competitors are also pursuing system health 
enhancements, and actively market integrated solutions for 
easier remote and self-support. Competitor tools broadly 
advertise client benefits such as: “decreased call duration, 
optimized part usage, reduced time to resolution and system 
downtime, fixing it right the first time, and reduced onsite 
service calls”, and “improved problem diagnosis, accelerated 
parts dispatch, and saving customers time and expense” by 
enhanced diagnosis, automated support cases, and automatic 
parts dispatch. 

 

G. Customer Driven and Defined Requirements 
But the #1 reason for Cray to make significant system 

health advances in Shasta is that customers are both expecting 
and demanding it. They are requesting this directly in their 
RFP's, with a common theme being the requirement that Cray 
provide an automated mechanism to diagnose the system 
down to the field replaceable unit (FRU) and diagnose the 
system in a timely manner without having to rely on hardware 
swapping as a primary isolation mechanism. 

 
It is also a large part of the drive to exascale systems. Cray 

systems are large, complex, and costly. Most customers 
cannot fail over to a backup supercomputer when the primary 
one experiences an outage, and the impact of hardware 
failures grows as we increase scale. According to a 2017 
journal article on resilience techniques for exascale computing 
platforms from IEEE (“An Analysis of Resilience Techniques 
for Exascale Computing Platforms"[viii]): 

“As the computing power of large-
scale computing systems increases 

exponentially, the failure rates of these 
systems increase exponentially as well. 
While current large-scale computing 
systems experience failures of some 

type every few days, projection models 
indicate that the next generation of 

these machines will experience 
failures up to several times an hour.” 

 
As failure rates increase, system resiliency must keep up, 

and while diagnosability cannot prevent hardware failure, it 
may be able to detect a problem before it completely fails and 
provide the data needed for the system resiliency features to 
kick in and keep the system operational for running 
workloads. 

 
As part of overall system health monitoring, Cray has 

worked with several of our customers for some years running 
as part of the HPCMASPA (HPC Monitoring and System 
Performance Analysis) workgroups at IEEE Cluster 

Conference to help improve diagnosability of existing 
systems. 

 
Some example conclusions from this research and analysis 

effort among numerous customer participants, there are 
several concrete requirements for next generation Cray Shasta 
system health, as shown in Table I in the document above[vii], 
and summarized below: 

1) System must provide proactive notifications to users 
of system condition assessments. 

2) System must support scheduling and job allocations 
based on application and resource state, including 
more fine-grained and dynamic resource allocations 
and task mappings. 

3) Useful responses to system conditions requires 
increased analysis capabilities and more complex 
interfaces to schedulers and component/subsystem 
controls. 

4) Need to access and integrate a variety of data sources 
and types: numeric and text, raw data, derived data, 
test results, analysis results, off-platform (e.g., 
facilities). Data can come from the system, 
applications, and external sources. 

5) Vendors need to provide in depth documentation of 
capabilities and user accessible APIs for reading data 
that is already being produced so that sites can 
collaboratively develop and share tools. Vendors 
need to enable abstractions that facilitate sharing 
across multi-vendor platforms. Vendors should 
provide well-documented interfaces for accessing 
raw data at maximum fidelity with the lowest 
possible overhead. Vendors should expose all 
possible data sources for all possible subsystems. 

6) All monitoring system capabilities should be 
production capabilities and documented, exposed, 
and supported as such. Extensibility and modularity 
are fundamental to support evolutionary 
development of these capabilities. 

7) Tools to transport and store the data in native format 
are highly desirable. System should support all 
potential data sources, to include traditional text 
(e.g., logs), numeric (e.g., counters), diagnostic test 
results, and application performance information. 

8) Easy access to historical data and the ability to access 
historical data in conjunction with current data is 
required. As with the storage of application data, all 
storage does not have to be equally performant; 
hierarchical storage models with the ability to locate 
and reload data as needed are desirable. 

9) High dimensional and long-term data need to be 
handled in analyses and visualizations. Visualization 
interfaces and tools should facilitate easy 
development of live data dashboards. 

10) Reporting and alerting capabilities should be easily 
configurable. These should be able to be triggered 
based on arbitrary locations in the data and analysis 
pathways. 

 
 



V. SHASTA SYSTEM HEALTH STRATEGY 
Shasta is a complex but finite system. Because it is a 

complex system, diagnosability, resiliency and serviceability 
have to operate within the architectural complexity of the 
system. Diagnosability happens as a result of understanding 
the architecture of the system, measuring the function of that 
architecture, comparing that to the observable state of the 
system, and drawing inferences and conclusions based on that 
information.  This follows the data, information, knowledge, 
wisdom hierarchy (DIKW hierarchy), as shown in the diagram 
below. To diagnose a complex system like Shasta, we collect 
generated data, warehouse it, and build analytical utilities that 
can help diagnose both current actual and future potential 
problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The goal of the Shasta system is to provide system health 

capabilities in resiliency and serviceability by using metrics 
for diagnosability from various system components like: 

 
• Management nodes, containers, services, and 

orchestration components 
• Other infrastructure hardware and software 

components 
• Compute nodes and associated hardware and software 

components 
• Networks and associated hardware and software 

components 
• Storage and associated hardware and software 

components 
 
However, since Shasta is a finite system, it means that with 

enough sensor data, logging, event generation and collection, 
along with tools for running diagnostics and analyzing the 
data coming back from all these sources, we can provide new 
capabilities within Shasta. E.g.: 

• Comprehensive system health readout APIs 
• List of all known bad hardware components 
• List of all known bad or misbehaving software 

components 
• Areas where existing problems are indicated based on 

health checks and sensor data 
• Diagnosability enabled infrastructure 

• Local system health monitoring control and 
enablement (each component is instrumented, and 
data access provided) 

• Common system monitoring infrastructure 
• System configuration change tracking and history 
• Continuous system health monitoring and reporting 
• Services reporting state asynchronously to common 

location via common mechanisms where feasible 
• Hardware being monitored asynchronously and 

reporting state to common locations via common 
mechanisms where feasible 

• Events reported to a common location via common 
mechanisms where feasible 

• Logs collected into a common location via common 
mechanisms where feasible 

• Redundancy for resiliency 
• Retrying transient failures. This can be a momentary 

loss of network connectivity, a timeout because a 
dependency (such as a database or filesystem) is too 
busy, or a dropped connection. 

• Load balancing to improve resiliency because it 
allows a component that is in a bad state to be taken 
out of rotation. 

• Data replication to provide fallback option to be 
resilient from data loss and/or can be recovered 

• Throttling to protect the overall health of the system 
by controlling the number of requests. Applications 
and/or services may intentionally flood a system with 
huge number of requests that can reduce the overall 
availability of those applications or services (from a 
DoS attack, for example). When a single client makes 
an excessive number of requests, the application or 
service might throttle the client for a certain period 

 
 

VI. SHASTA ARCHITECTURAL FEATURES AND 
CAPABILITIES TO SUPPORT SYSTEM HEALTH 

Resiliency failure handling in Shasta is designed to 
prevent component failures from causing more widespread 
failures, both to the system and to applications where possible. 

 
The following capabilities are provided in Shasta in order 

to support system health: 

A. Shasta Diagnosability Components 
There are many data sources where events, sensor data, 

and logs are generated.  These are all configurable via REST 
APIs all the way down to the point of generation to allow for 
control of what is being generated and how often it is 
generated. 

 
There is also a common Shasta Monitoring Framework 

(SMF) for all these data sources that provides the collection 
points into common data stores for the entire Shasta system.  
This framework allows for visibility into the collection across 
all of Shasta and is configurable and accessible via REST 
APIs as well. 

 
 

 
Fig. 2.  Wisdom Hierarchy 



1) System Health Monitoring Infrastructure 
As mentioned before, monitoring and telemetry are 

instrumental to provide system health monitoring and 
diagnosability by using metrics to identify, repair, and recover 
from failures. The Shasta Monitoring Framework (SMF) 
provides a common monitoring facility to collect information. 
The goal is to detect failures as early as possible, preferably 
before users even know there is a problem. The health model 
and health services provide the ability for each service to 
report its health through standard interfaces and a health rollup 
service that can collect and even diagnose health issues from 
the services. 

 
The following diagram shows a high-level overview of 

most components of the general infrastructure architecture as 
it relates to Shasta system health monitoring.  Each channel 
described in the previous diagrams provides information for 
continuous monitoring, continuous testing, and on-demand 
troubleshooting, along with REST API access at every level. 

 
The framework for the data collection and first level 

warehousing is provided by a Shasta facility called the Shasta 
Monitoring Framework, or SMF. The following diagram 
shows a high-level general overview of the SMF. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Diagnosability Components 
The following list of capabilities shown, along with the 

diagram below that shows functionality that is existing or in-
progress in Shasta as a first pass at system health and 
diagnosability features. Note that on-demand is basically the 
ability to take a snapshot of system health data via a GET 
command. Periodic polling of this snapshot (for instance 
calling the /health GET API in a script) can yield a basic health 
history over time. Streaming indicates that the monitoring 
stream is coming into the service asynchronously via a 
pub/sub mechanism and being persisted into a longer-term 
system health history data store. 

 

a) System Health Service (SHS) and REST interface 
The SHS is a standard SMS-node-based system 

management stateless microservice, with a northbound API 
that is accessed through the API gateway using the standard 
AuthN/AuthZ access controls to Cray Shasta APIs, and 
multiple instances running for services scaling and 
availability. 

 
b) Hardware State Manager (HSM) hardware data (via 

on-demand GET to HSM REST endpoints) 
The HSM provides some basic hardware state relative to 

various system components, primarily provided by the 
Redfish BMC interfaces on River and Mountain systems. This 
includes things like whether a nodes power state is on, off, or 
unknown (i.e. Redfish not responding), and whether there are 
any hardware errors being reported by Redfish when HSM 
does the hardware inventory. It will also aggregate the logical 
state (such as Admin Down), along with other node reported 
health data from the HMI service. 

 
c) Orchestration and Services Metrics Collection (via 

on-demand GET to Kubernetes and services /health REST 
endpoints) 

Since Kubernetes was designed from the start to support 
detailed metrics, it has an integrated API, called the Metrics 
API (available at: /apis/metrics.k8s.io/ as part of the 
k8s.io/api/core/v1 package) that allows the user or admin to 
access a wealth of data as a snapshot of Kubernetes 
information. These are the same APIs that are used by the 
various "kubectl " commands, such as "top" or "get 
component status" that are accessible from the command line 
in Kubernetes.  

 
The Resource Metrics Summary API is an effort to 

provide a first-class Kubernetes API (stable, versioned, 
discoverable, available through the apiserver, and with client 
support) that serves resource usage metrics for pods and nodes 
within Kubernetes. It provides metrics about the following 
Kubernetes objects: 

• Node metrics 
• Pod metrics 
• Container metrics 

 
d) System Health Service APIs 

For all hardware and software components in the system, 
the goal is to initially provide a list of: 

• Overall health status (good, degraded, error, 
unknown) for each area. Areas are initially hardware 
objects, orchestration objects, and services objects. 

• A list of objects that are in degraded, error, or 
unknown state, along with an indicator of what the 
degraded or error condition is for each object if the 
system is not healthy (i.e. status is not "good") 

• Filter and sort arguments can be applied to the GET 
calls that allow for the JSON data returned to be 
filtered and/or sorted. 
 

 
Fig. 3. System Health Monitoring Overview 



The following APIs are examples of those targeted to be 
provided by the initial system health service APIs for 
diagnosability. 

• GET /health - returns all health data known for this 
Shasta system 

• GET /health/hardware - returns all hardware health 
data known for this Shasta system 

• GET /health/services - returns all services health data 
known for this Shasta system 
 

Some examples of how these APIs are initially planned to 
work are shown below. Although the actual API calls may 
change, the same basic functionality of being able to get the 
overall and detailed status from these system components will 
be provided. 

 
Ex. a GET to /health might return the following if there are 

no errors in the system: 
{ 
    "SystemStatus":"Good", 
    "HardwareStatus":"Good", 
    "ServicesStatus":"Good" 
} 
  
  
Ex. Whereas a GET to /health might return the following 

if there are known pieces of failed hardware in the system: 
{ 
    "SystemStatus":"Degraded", 
    "HardwareStatus":"Error", 
    "ServicesStatus":"Good", 
    "DegradedHardware" 
    { 
        <list of all failed hardware in the system, with details 

on each one showing what is known to be in error> 
    } 
 

3) Diagnosability Attributes 
The Shasta system specifically provides the following 

attributes to allow for basic diagnosability: 
• Enhanced deterministic hardware failure detection 

and isolation 
o Modular HW architecture provides a 

sufficient number of sensors in each 
module to detect any hardware failure down 
to the Field Replaceable Unit/Customer 
Replaceable Unit (FRU/CRU) level.  FRUs 
are typically something that is replaced in 
the field via Cray service personnel, while 
CRUs are something that can be replaced in 
the field by a customer.  For the purposes of 
diagnosability, however, these are treated 
the same, as it represents an atomic level of 
replaceability, no matter who does the 
actual replacement. As mentioned earlier, 
the goal for hardware failure detection and 
isolation in Shasta is 100%, reaching as 
high as possible with HW. 

o Data from the sensors in all system 
components is collected in a granular 

enough manner to allow for FRU/CRU 
level failure isolation. 

o Common component naming approach 
(cname) from the XC platform has been 
modified and expanded to include all of the 
Shasta components and associated 
geolocation data.  This new attribute in 
Shasta is called the xname and allows for 
isolation down to the exact failed 
components. 

o Hardware failure states are deterministic, 
meaning they are latched as failed until the 
failure clears, either by itself, via a repair 
action, or via explicit command.  Critical to 
this from a service standpoint is the ability 
for the complete failure lifecycle to be 
captured, so that failure and recovery of a 
component is logged. 

• Common log collection and formatting 
o Uses common telemetry/monitoring bus 

and common logging database 
o The SMF system described above provides 

a common logging collector.  All logs 
generated by any firmware or software in 
the system end up in this common system 
log.   This allows for the use of industry 
standard tools like LogStash and 
ElasticSearch to be used for working with 
system logs across all components. 

o All log messages use a human readable, but 
easily machine parseable JSON format. 

o All these log messages are also formatted 
into a common user readable format, which 
makes correlation and analysis of the log 
data easier. 

• Common event collection 
o Uses common telemetry/monitoring bus 

and event database 
o Event data from every component in the 

system is gathered into the event database 
via the same common telemetry bus that the 
rest of system health monitoring uses. 

o Audit log information such as configuration 
changes made to the system also logged to 
the event stream, allowing for correlation of 
configuration changes with system health 
monitoring. 

• Continuous system monitoring 
o Uses common telemetry/monitoring bus 

and common telemetry database 
o The firmware in all Shasta Mountain 

embedded controllers provides an 
asynchronous push telemetry stream for the 
dense compute platforms.  This is provided 
using the Redfish EventSubscription 
mechanism and REST APIs to POST the 
telemetry data.  This same thing is true of 
the Shasta River Slingshot network TOR 
switches. 

o The Shasta River COTS servers, because 
they are provided by third party vendors, do 



not typically provide this same 
asynchronous push telemetry stream, so a 
synchronous polled mechanism is used to 
provide the telemetry monitoring 
collection. 

o All Shasta hardware telemetry, whether 
push or polled, is collected by the common 
Shasta telemetry service in the management 
plane, published to the common telemetry 
and monitoring bus, and aggregated into a 
common telemetry database. 

B. System Management Services 
Shasta system management services consists of system (or 

infrastructure) management, part of the management system 
that is responsible for the configuration, operation, and 
monitoring of the entire system, component management, also 
part of the management system in Shasta, but responsible for 
the configuration, operation, and monitoring of the individual 
components and embedded controllers, and the managed 
system, that is the user facing portion of Shasta like the Cray 
Managed Ecosystem (CME). 

 
From a resiliency perspective one of the main benefits 

with separate management system and managed system is that 
they can be upgraded or updated independently. 

 
Several resiliency features are provided by the Shasta 

System Management Services (SMS) architecture, as can be 
seen in this diagram. These features, and how they enhance 
the function of the management system, are as follows: 

• API load balancing - Load balancing capability is 
built into the API gateway and container 
orchestration. Higher-level load-balancer 
microservices, or physical load balancers sitting 
above the gateways, can also be added. 

• Stateless services - Service configuration and state are 
stored and retrieved by the micro-service instances in 
an internal data store that is only directly accessible to 
that service; the only external accessibility is provided 
by REST APIs to that micro-service. By design all the 
services are stateless, allowing them to be replicated 
so they can be scaled up or down by creating more or 
fewer instances. Persistent data is stored in a shared 
data store.  

• Desired state reconciliation and service replication 
provided by container orchestration - Service high-
availability and resiliency are provided by the 
container orchestration service. If a service container 
becomes unavailable (e.g., becomes unresponsive), it 
is detected and recovered via the container 
orchestration service. Service replication, managed 
across the nodes by the orchestration tool, also gives 
the system resiliency in availability, as well as 
reliability. If one of these replicated containers goes 
down, the service remains available to service APIs 
and perform its primary functions. Container 
orchestration services will also reschedule the 
stopped container on the same or a different host, 
allowing the services to be migrated in the event of 
host node failure or maintenance actions. 

• Services instances spread across all SMS nodes - The 
containerized micro-service instances (3-n) can run 
on any SMS node. This allows the service to continue 
to function if an SMS node is lost. This multi-
instance, micro-service architecture enables 
expanding service instances out across as many 
physical machines as needed for redundancy, 
availability and scalability. 

 

C. Application Resiliency 
Applications based on Message Passing Interface (MPI) 

have some resilience to transient network failures provided by 
a resend capability for short MPI control messages. Link 
failures are also automatically routed using adaptive routing 
in many cases. 

 

D. Key Infrastructure Components - Compute, Storage and 
Networking 
Shasta systems are designed with far more flexibility in 

mind than past Cray high-end systems, both in hardware and 
software. Key infrastructure such as compute, network, 
storage is outlined in the section below. 

 
1) Compute  

When a compute node goes down, any application running 
on the failed node is usually also lost since the application's 
state cannot be guaranteed. The part of the application that 
was running on the failed node is completely lost, leaving the 
other parts of the application that were running on other nodes 
to be cleaned up. The Shasta job launch architecture will 
detect node failures and report these back to the workload 
manager (WLM), so that the scheduler can take appropriate 
action to either recover them or remove them from the list of 
available nodes to run a workload on. 

 
Software errors from user code should never result in a 

compute node failure, although they could cause an 
application failure. The User Access Services (UAS) allow the 
user to create a User Access Instance (UAI) that allows the 
user to use the WLM and job launch service to run jobs on 
compute nodes. These various services provide both 
command line utilities and REST APIs to allow the user to 
launch applications onto a set of compute nodes. They also 
provide supporting functionality such as helper tools, binary 
transfer mechanisms, job state querying, and job signaling, 
among others. 

 
Since the UAS instance-creation functions, and the WLM 

service and scheduler functions are all containerized, running 
within the System Management Services (SMS) Kubernetes 
cluster, and since they use that infrastructure to store their 
operational data in a clustered decentralized database that is 
accessible across nodes, it ensures that these services can 
move to different nodes for high availability. These services 
can also be scaled up across nodes to handle additional load 
by starting more instances within the Kubernetes orchestration 
system. 

 



The primary objective of compute node-failure handling is 
one of the recovering resources and making them available to 
run jobs as quickly as possible. The system monitoring 
framework provides a declarative state of compute nodes that 
is the first part that will manage this failure, by providing the 
diagnosability. Once a node is known to be bad, part of 
resiliency around automatic recovery is to remove that node 
from the WLM and job launcher, so it no longer causes any 
application failure. Another part is to signal to the system 
administrator that the node is bad, along with enough 
information to diagnose exactly why. The last part is to affect 
a repair action on the node, part of which may be done 
automatically (like ordering new memory), and part of which 
may be done manually (such as actually replacing the 
memory). 

 
 

2) Storage and I/O Failure Handling 
The Lustre parallel filesystem provides high-speed, large-

volume storage for applications. Lustre is designed to enable 
high availability of data by using no-SPOF (single point of 
failure) hardware designs. Lustre can utilize multiple paths to 
access data in the event a that any single component in the data 
path fails. Lustre assumes servers are grouped and connected 
as "failover pairs": two servers, each normally serving 
separate RAID arrays, can take over for each other in the event 
that one of the servers fails. This model requires that the 
endpoint of the data path, the underlying backend storage 
array, is durable, with drives that will always be available. 
This in turn requires that the backend storage devices must be 
dual-ported, offer RAID protected-data, and use redundant 
power and fan modules. 

 
The ClusterStor hardware platform meets Lustre’s 

availability design requirements by providing fully redundant 
paths to the stored data. ClusterStor’s Scalable Storage Units 
(SSU), SSU-based model uses dual controllers (servers, a/k/a 
OSSs) with two sets of RAID arrays (a/k/a OSTs) in each 
physical enclosure. The enclosure and rack hardware are 
specially designed to provide dual-path access to data via 
these dual controllers, dual side cards, dual NICs and cables, 
dual top-of-rack switches, dual-ported disks (SAS drives), as 
well as multiply-redundant fans and power supplies to ensure 
system resiliency when a failure occurs. However, this 
guarantee of continuous data access comes at a significant 
cost, as more complicated hardware designs require expensive 
dual paths and the manufacturing volumes of such systems are 
low, compared to commodity hardware used in some vendors’ 
products. 

 
Two types of service nodes support the Lustre filesystem, 

the Object Storage Server (OSS) nodes and the Meta-Data 
Server (MDS) nodes. The OSS nodes host the Object Storage 
Targets (OSTs), while the Lustre MDS nodes are responsible 
for handling and storing the filesystem metadata. At a basic 
high level, the Lustre software consists of the OSS nodes, the 
MDS nodes, and a Lustre client, that runs on each of the 
compute nodes. There may also be a Lustre network (LNET) 
router that runs to provide connectivity between different 
areas of the filesystem and the compute nodes. 

 

If a compute node client fails to make a timely response, 
the Lustre system evicts the failed client from the system. This 
action frees resources (such as file handles and export data) 
associated with the client and allows other clients to acquire 
them. Cray Management Services (CMS) logs the problem 
but no special action is requested of the system administrator 
in this case. 

  
Failures are possible at several places along the Lustre I/O 

data travels: 
• The compute node Lustre components 
• The compute node itself 
• The Lustre service nodes 
• The network components connecting the service 

nodes to the disk consolers 
• The paths from the disk consolers to the disks 
• The disks themselves 
 
 

3) Networking 
The network and fabric management services architecture 

are composed of: 
 

Managers that: 
• act as the customer-facing front end for network 

management 
• provide orchestration for customer-provided policies 
• manage network and fabric telemetry gathering 

 
Services that: 

• provide fabric-level agencies, such as MAC-to-port 
learning 

• support basic network protocols, such as IGMP 
• offer scalable solutions for network protocols, such as 

ARP and DHCP 
 

Controllers that: 
• provide an abstracted interface for fabric management 
• persist fabric configuration data 
• Agents that: 
• offer Controllers remote access to the switch device 

driver 
 
Failures can happen at any of these levels, with varying 
degrees of impact. E.g., 

• Manager failures should allow the system to continue 
functioning with only the loss of active customer 
control, i.e., the existing network and fabric 
configuration should continue to run, only further 
configuration changes and telemetry gathering should 
be affected. Some examples: 

• The failure of the etcd Key/Value store, used to store 
configuration data, would result in the Network 
Management Services (NMS) managers being unable 
to save or restore configurations 

• The failure of the fabric manager would result in the 
customer being unable to monitor or change the 
existing fabric configuration 



• The failure of the monitoring manager would result in 
the loss of scheduled data collections 

• Service failures could result in basic network protocol 
failures, such as a node being unable to get a DHCP 
address, or an ARP resolution 

• Controller failures would result in loss of active 
customer control, and an inability to respond to error 
conditions 

• Agent failures could result in a switch, and its 
attached nodes becoming lost to the rest of the fabric 

 
a) Management Networks 

A Shasta system includes a robust management fabric, 
composed of commercial off-the-shelf switches. The network 
architecture is a leaf-and-spine design, with redundant high-
bandwidth spine switches, and optional redundant leaf 
switches at the cabinet level. Switches below the cabinet level, 
at the chassis and blade levels, are not redundant. 

 
Failures within the management fabric hardware could 

impact accessibility and functionality depending on the 
location of the failure within the switch hierarchy. 

 
The failure of a management fabric NIC would result in 

management traffic, such as LDMS event gathering or service 
traffic, becoming lost. The following might result: 

• If the NIC is connected to a service node (SSN), then 
the loss could mean an interruption of services based 
on that SSN, depending upon whether a given service 
has its data cached locally, or is dependent on a 
connection to remote storage. 

• If the NIC is connected to a compute node, then the 
loss would result in the loss of event data and 
customer management access to the node. 

 
The failure of a management fabric switch could result, 

depending upon where it is in the management fabric, in 
widespread loss of connectivity on the management networks. 

 
While the spine and cabinet switches are redundant, the 

loss of a chassis or blade switch would result in all 
management NICs below that point in the hierarchy becoming 
unreachable. 

 
b) Connections to the Data Center 

Shasta systems can be connected to customer data center 
networks through redundant connections. 

 
c) Management Fabric 

The customer's Data Center Admin Network can be 
connected to multiple Management leaf switches in River 
racks, providing redundant paths to the management elements 
in the system, like in Figure 4. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d)  High Speed Fabric 

The Slingshot High Speed Fabric can be connected to the 
customer's data center through either a switch or a router. Not 
only can multiple paths to the fabric be connected, but these 
connections could be composed into a link aggregation group 
(LAG) that provides automatic load balancing and failover, 
like in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSION 
The architectural and design goals within Shasta are to 

allow for complete knowledge of the system at every available 
layer, by providing all the attributes, such as monitoring, 
measurability, and diagnostic tools, all in a common format 
and location, to allow for visibility into the health of the 
system. The new approach in Shasta using modular 
architecture provides multi-instance orchestration resiliency. 
With its redundancy of major components, the Cray Shasta 
system is designed to be highly available and highly reliable. 
Compute nodes can be taken out of service and returned 
independently of one another. Should any component of a 
compute node fail, only the application running on that node 
is affected. Both software and "soft" hardware failures, such 

 
 

Fig. 4. Redundant Management Network 

 
Fig. 5. Slingshot Highspeed Fabric 



as many uncorrectable memory errors, allow the node to be 
rebooted. Only "hard" hardware failures require service.  

 
Because the Rosetta router switches are located on a 

separate switch module, compute blades can simply be 
removed once all applications using the healthy nodes on the 
blade are terminated and the nodes have been configured as 
unavailable. This blade can then be swapped with a new one 
and brought back into operations.  

 
The ability to monitor and diagnose the system is a critical 

piece that informs the ability to provide recovery actions 
(whether manual or automatic), as well as to be able to take 
service actions like perform live or rolling updates to system 
components or replace hardware. These facilities working 
together provide an end to end system health capability within 
the Shasta system which has been engineered to be a 
significant improvement over the system health maintenance 
of previous Cray products. 

 
Key System Health features of the Cray Shasta products 

include the following: 
 
• Container orchestration by Kubernetes for both 

management and user applications  
• A consistent and standard platform for service node 

layers that allows services to grow or expand 
dynamically based on need 

• Redundant power supplies, voltage regulator modules 
and converters 

• Redundant cabinet cooling infrastructure  
• Compute nodes with no local spinning disks 
• System software that automatically marks non-

responsive nodes as unavailable in the resource 
manager 

• Automatic detection and rerouting of defective links 
in the Cray Slingshot interconnect without affecting 
operation or requiring a reboot 

• Adaptive routing that provides alternate routes to the 
target node 

• A Cyclic Redundancy Check (CRC) at the packet 
level between source and destination 

• In addition to the CRC, there is forward error 
correction and link-level retry 

• Packets protected by Error Correction Code 
o The Cray NodeKARE™ software tool 

detects certain correctable errors and marks 
nodes down when they have high error rates 

• Resiliency communication agents that monitor all 
nodes and initiate failover of services, where 
applicable 

• A high level of system failure detection and isolation. 
• Comprehensive system health readout APIs 
• Diagnosability enabled infrastructure 
• Continues system health monitoring and reporting 
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