
Challenges in Providing an Interactive Service with Jupyter on
Large-Scale HPC Systems
CUG 2019, Montreal
Tim Robinson, CSCS
May 7, 2019

Outline

1. Interactive supercomputing
§ Jupyter, JupyterLab, JupyterHub…

2. State of the practice at HPC centres
§ Parallel computing (MPI, Dask…) – use cases
§ Virtual environments and kernels
§ JupyterLab extensions

3. Future plans

Challenges providing Jupyter service at HPC centres 2

§ Classical supercomputing would like to see…

§ batch operation
§ long-running jobs
§ terminal access

§ But solutions to scientific problems often
require an…
§ iterative,
§ interactive,
§ collaborative approach

§ What is our wish list for providing iterative,
interactive and collaborative supercomputing?

§ Access to our supercomputers should be…

Challenges providing Jupyter service at HPC centres 3

Classical supercomputing vs interactive supercomputing

Simple
and

intuitive

Extendable

Integrate
other web
services

Easy to
create

complex
workflows

Easy to
share

workflows

Easy to
share
results

Flexible and
innovative

Secure
Well

supportedActive and
broader

community

Open
source

Slide credit: Jens Henrik Göbbert, Forschungszentrum Jülich

§ Project Jupyter – enabling interactive computational
environments in a web browser

§ Jupyter Notebook is an open-source web application for
creating reproducible computational narratives

§ Create documents that contain live code, equations,
narrative text, visualizations, rich media

§ The all-in-one document is also “Jupyter Notebook”
(.ipynb, JSON format)
§ easily shared with others
§ convert to PDF, HTML, LaTeX

§ The working environment includes
§ in-browser terminal
§ file browsing
§ support for many languages: Python, R, Julia, C++, …
§ extensible design
§ many server/client plugins

Challenges providing Jupyter service at HPC centres 4

Browser-enabled working environments

JupyterLab

§ Next-gen web-based user interface for Jupyter
§ Provides higher degree of interaction between notebooks, documents, text

editors and other activities (arrange with tabs/splitters)
§ Advanced interactive development environment

§ Served from same server and uses same notebook document format

Challenges providing Jupyter service at HPC centres 5

§ Multi-user server for Jupyter Notebooks
(designed for classrooms, research labs,
Universities...)

§ Spawns, manages and proxies multiple
instances of the single-user Jupyter
Notebook server

§ Three main subsystems
§ a multi-user Hub (tornado process)
§ a configurable http proxy (node-http-proxy)
§ multiple single-user Jupyter notebook

servers (Python/IPython/tornado)
§ The key pluggable components are the

authenticator and spawner

Challenges providing Jupyter service at HPC centres 6

JupyterHub

Challenges providing Jupyter service at HPC centres 7

JupyterHub usage at CSCS

12

38
45

54
62

70

106 111
118

167 173

12

38 44
53

61 66 68 73
80

101
107

1-J
ul-1

8

1-A
ug

-18

1-S
ep

-18

1-O
ct-

18

1-N
ov-1

8

1-D
ec-1

8

1-J
an-1

9

1-F
eb

-19

1-M
ar-

19

1-A
pr-

19

1-M
ay

-19

All

Excl.
courses

Current implementations of JupyterHub

§ e.g. NERSC

§ e.g. CSCS

Challenges providing Jupyter service at HPC centres

Cori Compute NodesCori Login Node

Notebook Server
Process

ipyparallel
or Dask

Controller

JupyterHub
Web Server

Engine/
kernel

MPI

kernel/
ipyparallel client

Cori
Filesystems

Engine/
kernelEngine/

kernelEngine/
kernelEngine/

kernelEngine/
kernelEngine/

kernel

Daint
Compute
Nodes

Notebook Server
Process Engine/

kernel
MPI

kernel/
ipyparallel client

Daint
Filesystems

Engine/
kernelEngine/

kernelEngine/
kernelEngine/

kernelEngine/
kernelEngine/

kernel

Farrell et al. Interactive Distributed Deep
Learning with Jupyter Notebooks, ISC 2018

8

ipyparallel
or Dask

Controller

JupyterHub
Web Server

Login nodes
§ Pros

§ Available “on demand”
§ Access to filesystems (cf. external VM)
§ Cray programming environment (cf. external

VMs)
§ “Free” to the user

§ Cons
§ Performance – shared resources!
§ Stability
§ Non trivial to provide parallel contexts

Compute nodes
§ Pros

§ Performance - dedicated resources
§ Access to filesystems
§ Cray programming environment
§ Parallel computation (MPI or distributed dask)
§ Production-like execution environment, can

T&D with small multi-node notebooks before
scaling up

§ Cons
§ Difficult to provide “on demand”
§ Not “free”
§ User must remember to close session
§ If allocation ends notebook changes lost

Challenges providing Jupyter service at HPC centres 9

Challenge: login nodes or compute nodes?

Challenge: Batch vs interactive computing

§ How can we reconcile the apparent contradiction between
batch computing and interactive computing?

§ Batch is not going away (at least in the immediate term!)
§ Reservations?

§ Job pre-emption?
§ Suspend/Resume?

Challenges providing Jupyter service at HPC centres 10

§ Installed with EasyBuild
§ Based on cray-python/3.X

§ provides numpy and scipy that call
cray-libsci routines

§ Pin specific versions of python
dependencies
§ assists in maintainability

§ Parallel computing available in the
notebook
§ ipyparallel (MPI with mpi4py)
§ distributed dask

Challenges providing Jupyter service at HPC centres 11

Jupyter software stack at CSCS

Use cases to demonstrate functionality

Multi-node notebook with MPI – Demonstrator: “Arbor”

§ Arbor is a high-performance library for computational neuroscience simulations
§ Developed by colleagues at CSCS, Jülich and BSC as part of the HBP
§ Aim is to prepare neuroscience users for new HPC architectures
§ Arbor is written in C++11 and CUDA (multithreading with TBB, C++11 threads)
§ Python front end; MPI support with mpi4py

§ Neuroscientists are not necessarily comfortable with ssh / terminal

§ Jupyter thus provides a perfect teaching framework

§ Through a simple notebook neuroscientists can
§ describe a neuron model using a recipe
§ get resources, create a parallel execution context, partition and load balance
§ initiate the simulation over the distributed system and run the simulation
§ set up measurement meters, get spikes recorded, show the spiking times of the cells
§ change parameters and immediately see the effect on the results

Challenges providing Jupyter service at HPC centres 13

Multi-node notebook with MPI – Demonstrator: “Arbor”

§ IPyParallel consists of
§ a controller
§ one or more engines
§ designed to integrate with MPI libraries

§ Launch the ipcontroller executable on the first compute node of the
allocation

§ Then launch ipengines on all nodes (with srun), providing the IP address of the
node running the ipcontroller

§ Done behind the scenes if user requests MPI in their notebook at spawn time

Challenges providing Jupyter service at HPC centres 14

Let’s see it in action, interactively (-ish)

MPI scaling up to production – Demonstrator: “Arbor”

§ Fully interactive production environment is fine for a single compute node
(or a few compute nodes)

§ Users want to play in their notebook and – when ready – launch a
production batch job, interacting with it through their notebook

§ Two options to launch and connect to an external Slurm job
§ salloc and then start the ipcontroller and ipengines by hand
§ NERSC developed %ipcluster magic to do this automagically

§ Examples previously demonstrated (Farrell et al. ISC 2018)
§ Distributed training with MPI via Horovod
§ Hyper-parameter optimization – train and evaluate various models in parallel

§ Launch production Arbor simulation using modified %ipcluster magic

Challenges providing Jupyter service at HPC centres 16

Let’s see it in action, interactively (-ish)

§ Dask provides multi-core execution on larger-
than-memory data using blocked algorithms
and task scheduling: scale python without
rewriting code

§ Supports the Pandas dataframe and Numpy
array data structures

§ A dask distributed network consists of
§ a scheduler node
§ one or more worker nodes

§ Launch the dask-scheduler executable on
the first compute node of the allocation

§ Then launch dask-worker on all nodes,
providing the address (IP, port) to the node that
hosts the dask-scheduler

§ Done behind the scenes if user requests dask
distributed at spawn time

Challenges providing Jupyter service at HPC centres 18

Multi-node notebook with Dask Distributed

Providing users with a customizable environment

User customization: virtual environments

§ Users can enable virtual environments in JupyterHub by activating them in:
${HOME}/.jupyterhub.env

§ Sourced just before the singleuser-notebook server is launched
§ Users can also “module load <modulefile(s)>”

§ Example: create a virtual environment for TensorFlow
> module load daint-gpu jupyterlab
> python3 -m venv --system-site-packages tf
> source ~/tf/bin/activate
(tf)> pip install <required_modules> --user

Challenges providing Jupyter service at HPC centres 20

User customization: kernels

§ Users can install their own kernels in ${HOME}/.local/share/jupyter/kernels
(tf)> export PYTHONPATH=~/tf/lib/python3.6/site-packages:${PYTHONPATH}
(tf)> pip install --ignore-installed ipykernel --user
(tf)> python3 -m ipykernel install --user --name=tensorflow

§ Write a launch script ~/tf/kernel.sh for the kernel to activate the venv, load
modules, etc.
#!/bin/bash
module load TensorFlow/1.12.0-CrayGNU-18.08-cuda-9.1-python3
module load Horovod/0.16.0-CrayGNU-18.08-tf-1.12.0
source ~/tf/bin/activate
export PYTHONPATH=~/tf/lib/python3.6/site-packages:${PYTHONPATH}
exec python -m ipykernel $@

Challenges providing Jupyter service at HPC centres 21

§ Finally, edit the kernel file:

> cat ~/.local/share/jupyter/kernels/tensorflow/kernel.json
“argv”: [
“~/tf/kernel.sh”,
“-f”,
“{connection_file}”
],

Challenges providing Jupyter service at HPC centres 22

User customization: kernels

§ Fundamentally, JuptyerLab is designed as a

customizable, extensible environment

§ Extensions can provide new themes, file viewers

and editors, and renderers for rich output

§ 100 GitHub repos tagged “jupyterlab-extensions”

§ dask-labextension

§ jupyterlab-tensorboard

§ bqplot

§ jupyterlab-hub – adds a Hub menu to JupyterLab to

allow users to log out of JupyterHub or access the

control panel

Challenges providing Jupyter service at HPC centres 23

User customization: JupyterLab Extensions

User customization: JupyterLab Extensions

§ The “classic” notebook allowed users to install extensions (--user) and has a
hierarchical prioritization of directories

§ But JupyterLab is a single bundle using WebPack – if a user has custom
extensions they need their own JupyterLab installation!

>JUPYTERLAB_DIR=$HOME/<path> jupyter labextension install <extension>

§ Centrally installed extensions are lost!
§ We can’t easily provide a centralized installation and allow users to add their own

extensions on top

§ Challenge: how can we support such an extensible environment?

Challenges providing Jupyter service at HPC centres 24

Checklist for current implementations

§ Development environment? !

§ Access to data? !

§ Parallel computing?
§ MPI !
§ Distributed dask!

§ Flexibility and customization !"

§ Supercomputing on demand? "

Challenges providing Jupyter service at HPC centres 25

Future plans

§ Notebooks will be spawned on a variety of platforms
§ Piz Daint
§ Cloud infrastructure
§ Future systems

§ CSCS hosted cloud infrastructure
§ Early testbed – OpenStack deployment
§ Submit jobs from the Notebook to Piz Daint (via Slurm magics, ipcluster magics, …)
§ Future scheduling platforms

§ Fixed Kubernetes domain / HPC scheduler domains
§ Elasticity / metascheduling

§ Shasta….

Challenges providing Jupyter service at HPC centres 26

Thanks in particular to…
Maxime Martinasso, Mark Klein, Lucas Benedicic, Rafael Sarmiento, Guilherme Peretti-Pezzi, Steve
Farrell, Aaron Vose, Oliver Evans, Matthew Henderson, Shreyas Cholia, Wahid Bhimji, Rollin Thomas,
Shane Cannon, Prabhat, Kelly Rowland, Jens Göbbert, Jan Meinke, and many others!

Reserve…

§ Python has grown to become the dominant
language both in data analytics and general
programming

§ Rise fueled by computational libraries like
Numpy, Pandas, and Scikit-Learn and
libraries for visualization, interactive
notebooks, collaboration, etc

§ Python long used as glue, for pre- and/or
post-processing.. but increasingly used for
simulation as well

Challenges providing Jupyter service at HPC centres 29

The rise of Python

Challenges providing Jupyter service at HPC centres 30

Python usage at CSCS

41
45 46

55

49

55

23

32
29

42
46

53

64
68

65

60

51
47

20

26 26 25

33

38

29

23

33

27 26
30

2013 2014 2015 2016 2017 2018

C++
Python
Fortran
CUDA
C

Us and Them (e.g. Binder)

§ Binder provides an executable environment for notebooks in Git repos
§ “[makes] your code immediately reproducible by anyone, anywhere.”
§ Click a URL, interact with someone else’s code, execute it directly in the cloud

§ Reference deployment of BinderHub at mybinder.org, and it’s free!
§ How does it work?

§ Creates containers from repos (repo2docker)
§ Creates user sessions to serve them (JHub)
§ Provides interface to use/share them (BinderHub)
§ Provides a free public service (mybinder.org)

§ losc.ligo.org/tutorials Live! [or recording]

Challenges providing Jupyter service at HPC centres 31

https://mybinder.org/
https://mybinder.org/v2/gh/losc-tutorial/quickview/master

It’s awesome right?!

§ But hold on…

§ And it’s not really free…

§ And what about my data? – how do I connect to huge data (and fast data!)

§ And what about computation? We are HPC right?

§ And what about authentication/authorization?

§ As HPC centres we’d like to provide something that gives a user experience like
Binder, but… we have the batch system, filesystems, security policies, parallel
computing…

Challenges providing Jupyter service at HPC centres 32

“Binder is a research pilot, whose main goal is to understand usage patterns
and workloads for future evolution and development. It is not a service that
can be relied on for critical operations.”

§ Dask provides multi-core execution on larger-
than-memory data using blocked algorithms
and task scheduling: scale python without
rewriting code

§ Supports the Pandas dataframe and Numpy
array data structures

§ Dask can run on a local computer or be scaled
up to a cluster

§ Key dask component: Dask Bag
§ Dask bag is ble to store and process collections

of Pythonic objects that are unable to fit into
memory. Dask Bags are great for processing
logs and collections of json documents

§ Enron Corpus is a dataset of 600K emails
related to the investigation of the collapse

§ One of the few publicly available mass
collections of real email

Challenges providing Jupyter service at HPC centres 33

Multi-node notebook with Dask Distributed – Demonstrator: “Enron”

Multi-node notebook with Dask Distributed – Demonstrator: “Enron”

§ A dask distributed network consists of
§ a scheduler node
§ one or more worker nodes

§ Launch the dask-scheduler executable on the first compute node of the
allocation

§ Then launch dask-worker on all nodes, providing the address (IP, port) to the
node that hosts the dask-scheduler

§ Done behind the scenes if user requests dask distributed at spawn time

Challenges providing Jupyter service at HPC centres 34

Let’s see it in action, interactively (-ish)

