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Outline

1. Interactive supercomputing
= Jupyter, JupyterLab, JupyterHub...

2. State of the practice at HPC centres

= Parallel computing (MPI, Dask...) — use cases
= Virtual environments and kernels
= JupyterLab extensions

3. Future plans
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Classical supercomputing vs interactive supercomputing

Classical supercomputing would like to see...

= batch operation
= |ong-running jobs

_ Simple

= terminal access and
But solutions to scientific problems often intuitive
require an...

= jterative, Easy to

= interactive, share

= collaborative approach results
What is our wish list for providing iterative, "
interactive and collaborative supercomputing? Open

source
Access to our supercomputers should be...

Easy to Flexible and

create innovative
complex

workflows

Secure

Well

Active and Supported
broader

community : ’

Extendable
7

“ Integrate
other web Easy to

services share
' workflows

Slide credit: Jens Henrik G6bbert, Forschungszentrum Jiilich
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Browser-enabled working environments

= Project Jupyter — enabling interactive computational
environments in a web browser

= Jupyter Notebook is an open-source web application for
creating reproducible computational narratives

= Create documents that contain live code, equations,
narrative text, visualizations, rich media

= The all-in-one document is also “Jupyter Notebook”
(.ipynb, JSON format)

= easily shared with others
= convertto PDF, HTML, LaTeX

= The working environment includes

= in-browser terminal

= file browsing

= support for many languages: Python, R, Julia, C++, ...
= extensible design

= many server/client plugins

&
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jupyter

Ju pyter Lorenz Differential EQuations wussswe @

¢+ Cell Toolbar: | Nene

jupyter weicometo P Exploring the Lorenz System

In this Notebook we explore the Lorenz syster of differential equations:

Jupyter

Welcome to the

This Notebook Server wa
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JupyterLab

= Next-gen web-based user interface for Jupyter

= Provides higher degree of interaction between notebooks, documents,
editors and other activities (arrange with tabs/splitters

= Advanced interactive development environment

= Served from same server and uses same notebook document format

File Edit View Run Kemel Tabs Settings Help 0: X
g + * c A Lorenzipynb X | B Terminal1 X | [ Console1 X | [ Datajoynb X | M READMEmd X 'E
= &> notebooks B + X © O » ®m C Code v Python3 O g & £
Sedkbgy MATLABCate Apskaion  Duasese
Name = Last Modified In this Notebook we explore the Lorenz system of differential equations: af Corer oo
€ Dataipynd an hour ago
2 Fastaipynb aday ago
A Julia.ipynb a day ago .
EJ ™ Lorenzipynb seconds ago
& W Ripyno a day ago Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points,
IR & day ago called attractors.
lightning json 9 days ago
& B from lorenz import solve_lorenz .
. jorenz.py minutes ago ©, x_t = solve_lorenz(N-10)
2
3 7 Output View X B lorenz.py X ! 2
def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.6): 10
q sigma 10,00 “P1GE a solution to the Lorens differential equations.m" 1 _ -
a8 fig = plt.figure z T
E o ple.figure) o § o
ax = fig.add_axes((0, 0, 1, 1), projection='3d") ;]
o 2800 ax.axis('off') e
# prepare the axes limits
ax.set_xLlim((~ )
ax.set_yLim((
ax.set_zLin((
1
def lorenz_deriv(x_y_z, t@, signa=signa, beta=beta, rh 1
inCompute the time-derivative of a Lorenz system. )
Xy, z=xyz agy

return [sigma * (y - x), x * (rho - 2) - y, X * y - beta * z]
# Choose random starting poir ormly distributed from -15 to 15
np. randon. seed (1)
X0 = ~15 + 30 * np. randon. random((N, 3))

9.
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JupyterHub

= Multi-user server for Jupyter Notebooks [ Browser J
(designed for classrooms, research labs,
Universities...) J’
= Spawns, manages and proxies multiple [ Configurable HTTP Proxy ]
instances of the single-user Jupyter /hub/
Notebook server
= Three main subsystems / S , \ user/name}/

: \ Authenticator
= a multi-user Hub (tornado process) | :

= a configurable http proxy (node-http-proxy) “ """""""""
= multiple single-user Jupyter notebook : User Database !
servers (Python/IPython/tornado) ' '

3 /api/auth (

S
#

= The key pluggable components are the R L
authenticator and spawner | :

Notebook ]

___________________
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JupyterHub usage at CSCS

Spawner Options

Piz Daint node type gpu
Queue JupyterHub dedicated queue (single node only)

Training course reservation

Number of nodes 1

Account (leave empty for default)

Job duration 1 hour

Start IPyParallel automatically with MPI? No

If yes, how many processes per node? (default: one process per virtual core)

Start Dask.distributed automatically? No

If yes, how many tasks per node? (default: one task per node) 1

NB: the number of threads = ncores / nprocesses

UNIQUE USERS (RECORDED)

167/173

- —=All

- —Excl.
courses

s 0
\\0‘0 CSCS

Challenges providing Jupyter service at HPC centres

7

ETH:zlrich



Current implementations of JupyterHub

= e.g. NERSC

= e.g. CSCS

2’ cscs

s

A

AN
AN

\

Cori Login Node

Notebook Server
Process

a
A 4

kernel/
i arallel client

Farrell et al. Interactive Distributed Deep
Learning with Jupyter Notebooks, ISC 2018

Y

r

Cori Compute Nodes

ipyparallel
or Dask

y

Controller

kernel

MPI

~

Daint
Compute

/Cl
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Notebook Server
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a
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Challenge: login nodes or compute nodes?

Login nodes Compute nodes
= Pros = Pros
= Available “on demand” = Performance - dedicated resources
= Access to filesystems (cf. external VM) = Access to filesystems
= Cray programming environment (cf. external = Cray programming environment
VMs) = Parallel computation (MPI or distributed dask)
= “Free” to the user = Production-like execution environment, can
T&D with small multi-node notebooks before
scaling up
= Cons = Cons
- Perfgrmance — shared resources! = Difficult to provide “on demand”
= Stability = Not “free”

= Non trivial to provide parallel contexts « User must remember to close session

= [f allocation ends notebook changes lost
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Challenge: Batch vs interactive computing

= How can we reconcile the apparent contradiction between
batch computing and interactive computing?

pe

= Batch is not going away (at least in the immediate term!)
= Reservations?
= Job pre-emption?

= Suspend/Resume?
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Jupyter software stack at CSCS

75 lines (59 sloc) 2.46 KB Raw Blame History [J o [T

# @author: robinson, sarafael

= |nstalled with EasyBuild

easyblock = 'Bundle’

= Based on cray-python/3.X o

py_maj_ver = '3'

= provides numpy and scipy that call

py_rev_ver = '5.1'

Cray-libSCi rOUtineS pyver = '%s5.%s.%s' % (py_maj_ver, py_min_ver, py_rev_ver)

pyshortver = '%s.%s' % (py_maj_ver, py_min_ver)

. . .
= Pln SpeCIfIC VerSIOnS Of python homepage = 'https://github.com/jupyterlab/jupyterlab’
. description = "An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architec
dependencies
toolchainopts = {'pic': True, 'verbose': False}

= assists in maintainability dependenciss - |

= Parallel computing available in the B
notebook e aranscs oy

exts_list = [

= ipyparallel (MPI with mpi4py) CJoveriab_servert, '0.2.8%,

'req_py_majver': '3',

= distributed dask

‘use_pip': True,

toolchain = {'name': 'CrayGNU', ‘'version': '18.08'}

'source_urls': ['https://pypi.python.org/packages/source/j/jupyterlab_server/'],
3,
(name, version, {
'req_py_majver': '3',
'req_py_minver': '6',
‘use_pip': True,

'installopts': ' —install-option=—skip-npm ',
'source_urls': ['https://pypi.python.org/packages/source/j/jupyterlab/'],
b,
1
A N Iy .
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Multi-node notebook with MPIl — Demonstrator: “Arbor”

= Arbor is a high-performance library for computational neuroscience simulations

= Developed by colleagues at CSCS, Julich and BSC as part of the HBP

= Aim is to prepare neuroscience users for new HPC architectures

= Arbor is written in C++11 and CUDA (multithreading with TBB, C++11 threads)
= Python front end; MPI support with mpi4py

= Neuroscientists are not necessarily comfortable with ssh / terminal

Jupyter thus provides a perfect teaching framework

= Through a simple notebook neuroscientists can

= describe a neuron model using a recipe

= get resources, create a parallel execution context, partition and load balance

= jnitiate the simulation over the distributed system and run the simulation

= set up measurement meters, get spikes recorded, show the spiking times of the cells
= change parameters and immediately see the effect on the results

\““ CSCS Challenges providing Jupyter service at HPC centres | 13 mzuf‘[ch
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Multi-node notebook with MPIl — Demonstrator: “Arbor”

= |PyParallel consists of

= a controller
= Onhe or more engines
= designed to integrate with MPI libraries

= Launch the ipcontroller executable on the first compute node of the
allocation

= Then launch ipengines on all nodes (with srun), providing the |IP address of the
node running the ipcontroller

= Done behind the scenes if user requests MPI in their notebook at spawn time

Start IPyParallel automatically with MPI? Yes a

If yes, how many processes per node? (default: one process per virtual core)

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 14 mzurich
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MPI scaling up to production — Demonstrator: “Arbor”

= Fully interactive production environment is fine for a single compute node
(or a few compute nodes)

= Users want to play in their notebook and — when ready — launch a
production batch job, interacting with it through their notebook

= Two options to launch and connect to an external Slurm job

= salloc and then start the ipcontroller and ipengines by hand
= NERSC developed %ipcluster magic to do this automagically

= Examples previously demonstrated (Farrell et al. ISC 2018)

= Distributed training with MPI via Horovod
= Hyper-parameter optimization — train and evaluate various models in parallel

= Launch production Arbor simulation using modified %ipcluster magic
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Multi-node notebook with Dask Distributed

= Dask provides multi-core execution on larger-
than-memory data using blocked algorithms
and fta_lsk scheduling: scale python without Numpy Pandas
rewriting code

\
= Supports the Pandas dataframe and Numpy }
array data structures =
= A dask distributed network consists of J
= g scheduler node enZlei::r;aLﬁii;?rirTsLijg;ZTc:::;k:r?:;is Dask dé't‘é%lfémes scale Pandas
= one or more worker nodes In earth science, satellite lmagery, workflows, enabling applications in time
= Launch the dask-scheduler executable on genomics, bomedical applications,and . Series, Business Imietloence, and geners!

machine learning algorithms. data munging on big data.

the first compute node of the allocation

= Then launch dask-worker on all nodes,
providing the address (IP, port) to the node that Start Dask ditributed automaticaly? Yes [
hOStS the daSk—SChedU.ler If yes, how many tasks per node? (default: one task per node) 1

NB: the number of threads = ncores / nprocesses

= Done behind the scenes if user requests dask

distributed at spawn time

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 18 mzurich
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Providing users with a customizable environment




User customization: virtual environments

= Users can enable virtual environments in JupyterHub by activating them in:
S{HOME}/.jupyterhub.env
= Sourced just before the singleuser-notebook server is launched

= Users can also ‘module load <modulefile(s)>"

= Example: create a virtual environment for TensorFlow

> module load daint-gpu jupyterlab

> python3 -m venv --system-site-packages tf
> source ~/tf/bin/activate

(tf)> pip install <required modules> --user

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 20 mzurich
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User customization: kernels

= Users can install their own kernels in $ {HOME}/.local/share/jupyter/kernels

(tf)> export PYTHONPATH=~/tf/lib/python3.6/site-packages:${PYTHONPATH}
(tf)> pip install --ignore-installed ipykernel --user
(tf)> python3 -m ipykernel install --user --name=tensorflow

= Write a launch script ~/tf/kernel.sh for the kernel to activate the venv, load
modules, etc.

#!/bin/bash

module load TensorFlow/1.12.0-CrayGNU-18.08-cuda-9.1l-python3
module load Horovod/0.16.0-CrayGNU-18.08-tf-1.12.0
source ~/tf/bin/activate

export PYTHONPATH=~/tf/lib/python3.6/site-packages:${PYTHONPATH}
exec python -m ipykernel $@

\"“ CSCS Challenges providing Jupyter service at HPC centres | 21 mzuf‘[ch
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User customization: kernels

= Finally, edit the kernel file:

> cat ~/.local/share/jupyter/kernels/tensorflow/kernel. json
“argv”: |
“~/tf/kernel.sh”,
ll_flI,

“{connection file}"”

_ SEee

Launcher

] % cug2019
4
@ IE] Notebook
- A A
Python 3 jupyter-dI

1

tensorflow

Console
Python 3 jupyter-d|

L.

9.
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User customization: JupyterLab Extensions

= Fundamentally, JuptyerLab is designed as a
customizable, extensible environment

= Extensions can provide new themes, file viewers
and editors, and renderers for rich output

= 100 GitHub repos tagged “jupyterlab-extensions”

= dask-labextension

= jupyterlab-tensorboard

= bgplot

= jupyterlab-hub — adds a Hub menu to JupyterLab to
allow users to log out of JupyterHub or access the

control panel

9.
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User customization: JupyterLab Extensions
= The “classic” notebook allowed users to install extensions (--user) and has a
hierarchical prioritization of directories

= But JupyterLab is a single bundle using WebPack — if a user has custom
extensions they need their own JupyterLab installation!

>JUPYTERLAB DIR=S$HOME/<path> jupyter labextension install <extension>

= Centrally installed extensions are lost!

= We can'’t easily provide a centralized installation and allow users to add their own
extensions on top

= Challenge: how can we support such an extensible environment?
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Checklist for current implementations

= Development environment? <=
= Access to data? <=

= Parallel computing?

= MPI| =
= Distributed dask <=

Flexibility and customization «& “

= Supercomputing on demand? -

9.
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Future plans

= Notebooks will be spawned on a variety of platforms

= Piz Daint
= Cloud infrastructure
= Future systems

= CSCS hosted cloud infrastructure

= Early testbed — OpenStack deployment
= Submit jobs from the Notebook to Piz Daint (via Slurm magics, ipcluster magics, ...)
= Future scheduling platforms

= Fixed Kubernetes domain / HPC scheduler domains
= Elasticity / metascheduling

= Shasta....
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The rise of Python e pgthon'”

= Python has grown to become the dominant
language both in data analytics and general e e
programming

= Rise fueled by computational libraries like
Numpy, Pandas, and Scikit-Learn and
libraries for visualization, interactive
notebooks, collaboration, etc

= Python long used as glue, for pre- and/or
post-processing.. but increasingly used for
simulation as well

% of overall question views each month

Time
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Python usage at CSCS

s 0
\\0‘0 CSCS

PROGRAMMING LANGUAGE USAGE (SURVEYED)

a— 65

\

60
S T
+ /46 4t - -Python
42

— —Fortran

41

- —CUDA

33 -C

2013 2014 2015 2016 2017 2018
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Us and Them (e.g. Binder) ** binder

= Binder provides an executable environment for notebooks in Git repos
= “Imakes] your code immediately reproducible by anyone, anywhere.”
= Click a URL, interact with someone else’s code, execute it directly in the cloud

= Reference deployment of BinderHub at mybinder.org, and it's free!

= How does it work?

= Creates containers from repos (repo2docker)
= Creates user sessions to serve them (JHub)
= Provides interface to use/share them (BinderHub)
= Provides a free public service (mybinder.org)

Build and launch a repository

GitHub ~

FFFFF

= |osc.ligo.org/tutorials Live! [or recording]

9.
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https://mybinder.org/
https://mybinder.org/v2/gh/losc-tutorial/quickview/master

It’s awesome right?! binder

But hold on...

“Binder is a research pilot, whose main goal is to understand usage patterns

and workloads for future evolution and development. It is not a service that
can be relied on for critical operations.”

And it's not really free...

And what about my data? — how do | connect to huge data (and fast data!)
And what about computation? We are HPC right?

And what about authentication/authorization?

As HPC centres we'd like to provide something that gives a user experience like
Binder, but... we have the batch system, filesystems, security policies, parallel
computing...

\“‘ CSCS Challenges providing Jupyter service at HPC centres | 32 mzurlch
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Multi-node notebook with Dask Distributed — Demonstrator: “Enron”

= Dask provides multi-core execution on larger-
than-memory data using blocked algorithms
and task scheduling: scale python without
rewriting code

= Supports the Pandas dataframe and Numpy
array data structures

= Dask can run on a local computer or be scaled Numpy
Pandas
up to a cluster
= Key dask component: Dask Bag }ﬁ::j;é} e [
= Dask bag is ble to store and process collections >fi:;;’j:.
of Pythonic objects that are unable to fit into o
memory. Dask Bags are great for processing
logs and collections of json documents )
) f K i Dask arrays scale Numpy workflows, Dask dataframes scale Pandas
= Enron COer.S IS a _data_set of 600K emails enabling multi-dimensional data analysis workflows, enabling applications in time
related to the InveStlgatIOH of the CO||apSG in earth science, satellite imagery, series, business intelligence, and general
) ) genomics, biomedical applications, and data munging on big data.
= One of the few publicly available mass machine learning algorithms.
collections of real email
\"“ CSCS Challenges providing Jupyter service at HPC centres | 33 mZUriCh
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Multi-node notebook with Dask Distributed — Demonstrator: “Enron”

A dask distributed network consists of

= a scheduler node
= one or more worker nodes

= Launch the dask-scheduler executable on the first compute node of the
allocation

= Then launch dask-worker on all nodes, providing the address (IP, port) to the
node that hosts the dask-scheduler

= Done behind the scenes if user requests dask distributed at spawn time

Start Dask.distributed automatically? Yes E

If yes, how many tasks per node? (default: one task per node) 1

NB: the number of threads = ncores / nprocesses
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Let’s see it in action, interactively (-ish)

Spawner Options



