& _ CSCS
@ ..
S

ro Svizzero di Calcolo Scientifico
wiss National Supercomputing Centre

ETHzirich

Challenges in Providing an Interactive Service with Jupyter on
Large-Scale HPC Systems

CUG 2019, Montreal
Tim Robinson, CSCS
May 7, 2019

Outline

1. Interactive supercomputing
= Jupyter, JupyterLab, JupyterHub...

2. State of the practice at HPC centres

= Parallel computing (MPI, Dask...) — use cases
= Virtual environments and kernels
= JupyterLab extensions

3. Future plans

\“:‘ CSCS Challenges providing Jupyter service at HPC centres | 2 mzurich
N

Classical supercomputing vs interactive supercomputing

Classical supercomputing would like to see...

= batch operation
= |ong-running jobs

_ Simple

= terminal access and
But solutions to scientific problems often intuitive
require an...

= jterative, Easy to

= interactive, share

= collaborative approach results
What is our wish list for providing iterative, "
interactive and collaborative supercomputing? Open

source
Access to our supercomputers should be...

Easy to Flexible and

create innovative
complex

workflows

Secure

Well

Active and Supported
broader

community : ’

Extendable
7

“ Integrate
other web Easy to

services share
' workflows

Slide credit: Jens Henrik G6bbert, Forschungszentrum Jiilich

s
" x4 CSCS Challenges providing Jupyter service at HPC centres | 3

@

ETH:zlrich

Browser-enabled working environments

= Project Jupyter — enabling interactive computational
environments in a web browser

= Jupyter Notebook is an open-source web application for
creating reproducible computational narratives

= Create documents that contain live code, equations,
narrative text, visualizations, rich media

= The all-in-one document is also “Jupyter Notebook”
(.ipynb, JSON format)

= easily shared with others
= convertto PDF, HTML, LaTeX

= The working environment includes

= in-browser terminal

= file browsing

= support for many languages: Python, R, Julia, C++, ...
= extensible design

= many server/client plugins

&
\"“ CSCS Challenges providing Jupyter service at HPC centres | 4
A S

jupyter

Ju pyter Lorenz Differential EQuations wussswe @

¢+ Cell Toolbar: | Nene

jupyter weicometo P Exploring the Lorenz System

In this Notebook we explore the Lorenz syster of differential equations:

Jupyter

Welcome to the

This Notebook Server wa

ETH:zlrich

JupyterLab

= Next-gen web-based user interface for Jupyter

= Provides higher degree of interaction between notebooks, documents,
editors and other activities (arrange with tabs/splitters

= Advanced interactive development environment

= Served from same server and uses same notebook document format

File Edit View Run Kemel Tabs Settings Help 0: X
g + * c A Lorenzipynb X | B Terminal1 X | [Console1 X | [Datajoynb X | M READMEmd X 'E
= &> notebooks B + X © O » ®m C Code v Python3 O g & £
Sedkbgy MATLABCate Apskaion Duasese
Name = Last Modified In this Notebook we explore the Lorenz system of differential equations: af Corer oo
€ Dataipynd an hour ago
2 Fastaipynb aday ago
A Julia.ipynb a day ago .
EJ ™ Lorenzipynb seconds ago
& W Ripyno a day ago Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points,
IR & day ago called attractors.
lightning json 9 days ago
& B from lorenz import solve_lorenz .
. jorenz.py minutes ago ©, x_t = solve_lorenz(N-10)
2
3 7 Output View X B lorenz.py X ! 2
def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.6): 10
q sigma 10,00 “P1GE a solution to the Lorens differential equations.m" 1 _ -
a8 fig = plt.figure z T
E o ple.figure) o § o
ax = fig.add_axes((0, 0, 1, 1), projection='3d") ;]
o 2800 ax.axis('off') e
prepare the axes limits
ax.set_xLlim((~)
ax.set_yLim((
ax.set_zLin((
1
def lorenz_deriv(x_y_z, t@, signa=signa, beta=beta, rh 1
inCompute the time-derivative of a Lorenz system.)
Xy, z=xyz agy

return [sigma * (y - x), x * (rho - 2) - y, X * y - beta * z]
Choose random starting poir ormly distributed from -15 to 15
np. randon. seed (1)
X0 = ~15 + 30 * np. randon. random((N, 3))

9.
\"‘ CSCS Challenges providing Jupyter service at HPC centres | 5

text

ETH:zlrich

JupyterHub

= Multi-user server for Jupyter Notebooks [Browser J
(designed for classrooms, research labs,
Universities...) J’
= Spawns, manages and proxies multiple [Configurable HTTP Proxy]
instances of the single-user Jupyter /hub/
Notebook server
= Three main subsystems / S , \ user/name}/

: \ Authenticator
= a multi-user Hub (tornado process) | :

= a configurable http proxy (node-http-proxy) “ """""""""
= multiple single-user Jupyter notebook : User Database !
servers (Python/IPython/tornado) ' '

3 /api/auth (

S
#

= The key pluggable components are the R L
authenticator and spawner | :

Notebook]

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 6 mzur['(jh
N

JupyterHub usage at CSCS

Spawner Options

Piz Daint node type gpu
Queue JupyterHub dedicated queue (single node only)

Training course reservation

Number of nodes 1

Account (leave empty for default)

Job duration 1 hour

Start IPyParallel automatically with MPI? No

If yes, how many processes per node? (default: one process per virtual core)

Start Dask.distributed automatically? No

If yes, how many tasks per node? (default: one task per node) 1

NB: the number of threads = ncores / nprocesses

UNIQUE USERS (RECORDED)

167/173

- —=All

- —Excl.
courses

s 0
\\0‘0 CSCS

Challenges providing Jupyter service at HPC centres

7

ETH:zlrich

Current implementations of JupyterHub

= e.g. NERSC

= e.g. CSCS

2’ cscs

s

A

AN
AN

\

Cori Login Node

Notebook Server
Process

a
A 4

kernel/
i arallel client

Farrell et al. Interactive Distributed Deep
Learning with Jupyter Notebooks, ISC 2018

Y

r

Cori Compute Nodes

ipyparallel
or Dask

y

Controller

kernel

MPI

~

Daint
Compute

/Cl
A

V

/
_

Notebook Server
Process

kernel/
ipyparallel client

a
A 4

A

ipyparallel
or Dask
Controller

=

L
g

ETH:zlrich

Challenge: login nodes or compute nodes?

Login nodes Compute nodes
= Pros = Pros
= Available “on demand” = Performance - dedicated resources
= Access to filesystems (cf. external VM) = Access to filesystems
= Cray programming environment (cf. external = Cray programming environment
VMs) = Parallel computation (MPI or distributed dask)
= “Free” to the user = Production-like execution environment, can
T&D with small multi-node notebooks before
scaling up
= Cons = Cons
- Perfgrmance — shared resources! = Difficult to provide “on demand”
= Stability = Not “free”

= Non trivial to provide parallel contexts « User must remember to close session

= [f allocation ends notebook changes lost

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 9 mzurich
A S

Challenge: Batch vs interactive computing

= How can we reconcile the apparent contradiction between
batch computing and interactive computing?

pe

= Batch is not going away (at least in the immediate term!)
= Reservations?
= Job pre-emption?

= Suspend/Resume?

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 10 E'HZUr‘iCh
N

Jupyter software stack at CSCS

75 lines (59 sloc) 2.46 KB Raw Blame History [J o [T

@author: robinson, sarafael

= |nstalled with EasyBuild

easyblock = 'Bundle’

= Based on cray-python/3.X o

py_maj_ver = '3'

= provides numpy and scipy that call

py_rev_ver = '5.1'

Cray-libSCi rOUtineS pyver = '%s5.%s.%s' % (py_maj_ver, py_min_ver, py_rev_ver)

pyshortver = '%s.%s' % (py_maj_ver, py_min_ver)

. . .
= Pln SpeCIfIC VerSIOnS Of python homepage = 'https://github.com/jupyterlab/jupyterlab’
. description = "An extensible environment for interactive and reproducible computing, based on the Jupyter Notebook and Architec
dependencies
toolchainopts = {'pic': True, 'verbose': False}

= assists in maintainability dependenciss - |

= Parallel computing available in the B
notebook e aranscs oy

exts_list = [

= ipyparallel (MPI with mpi4py) CJoveriab_servert, '0.2.8%,

'req_py_majver': '3',

= distributed dask

‘use_pip': True,

toolchain = {'name': 'CrayGNU', ‘'version': '18.08'}

'source_urls': ['https://pypi.python.org/packages/source/j/jupyterlab_server/'],
3,
(name, version, {
'req_py_majver': '3',
'req_py_minver': '6',
‘use_pip': True,

'installopts': ' —install-option=—skip-npm ',
'source_urls': ['https://pypi.python.org/packages/source/j/jupyterlab/'],
b,
1
A N Iy .
" x4 CSCS Challenges providing Jupyter service at HPC centres | 11 mzuf‘lch

S 4

<& _ cCscCs ETH(irich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Use cases to demonstrate functionality

Multi-node notebook with MPIl — Demonstrator: “Arbor”

= Arbor is a high-performance library for computational neuroscience simulations

= Developed by colleagues at CSCS, Julich and BSC as part of the HBP

= Aim is to prepare neuroscience users for new HPC architectures

= Arbor is written in C++11 and CUDA (multithreading with TBB, C++11 threads)
= Python front end; MPI support with mpi4py

= Neuroscientists are not necessarily comfortable with ssh / terminal

Jupyter thus provides a perfect teaching framework

= Through a simple notebook neuroscientists can

= describe a neuron model using a recipe

= get resources, create a parallel execution context, partition and load balance

= jnitiate the simulation over the distributed system and run the simulation

= set up measurement meters, get spikes recorded, show the spiking times of the cells
= change parameters and immediately see the effect on the results

\““ CSCS Challenges providing Jupyter service at HPC centres | 13 mzuf‘[ch
N

Multi-node notebook with MPIl — Demonstrator: “Arbor”

= |PyParallel consists of

= a controller
= Onhe or more engines
= designed to integrate with MPI libraries

= Launch the ipcontroller executable on the first compute node of the
allocation

= Then launch ipengines on all nodes (with srun), providing the |IP address of the
node running the ipcontroller

= Done behind the scenes if user requests MPI in their notebook at spawn time

Start IPyParallel automatically with MPI? Yes a

If yes, how many processes per node? (default: one process per virtual core)

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 14 mzurich
N

<& _ CsCS
\‘ ‘ Centro Svizzero di Calcolo Scientifico

S 4

Swiss National Supercomputing Centre

ETHzirich

Let’s see it in action, interactively (-ish)

Lg
¢ £
i
i
i
g
g i
@ :
H
8
H
.
°
Eow
§0
M
HEr

ppppppppppp

MPI scaling up to production — Demonstrator: “Arbor”

= Fully interactive production environment is fine for a single compute node
(or a few compute nodes)

= Users want to play in their notebook and — when ready — launch a
production batch job, interacting with it through their notebook

= Two options to launch and connect to an external Slurm job

= salloc and then start the ipcontroller and ipengines by hand
= NERSC developed %ipcluster magic to do this automagically

= Examples previously demonstrated (Farrell et al. ISC 2018)

= Distributed training with MPI via Horovod
= Hyper-parameter optimization — train and evaluate various models in parallel

= Launch production Arbor simulation using modified %ipcluster magic

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 16 mzur['(jh
N

<@® . cscs ETHziirich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Let’s see it in action, interactively (-ish)

Multi-node notebook with Dask Distributed

= Dask provides multi-core execution on larger-
than-memory data using blocked algorithms
and fta_lsk scheduling: scale python without Numpy Pandas
rewriting code

\
= Supports the Pandas dataframe and Numpy }
array data structures =
= A dask distributed network consists of J
= g scheduler node enZlei::r;aLﬁii;?rirTsLijg;ZTc:::;k:r?:;is Dask dé't‘é%lfémes scale Pandas
= one or more worker nodes In earth science, satellite lmagery, workflows, enabling applications in time
= Launch the dask-scheduler executable on genomics, bomedical applications,and . Series, Business Imietloence, and geners!

machine learning algorithms. data munging on big data.

the first compute node of the allocation

= Then launch dask-worker on all nodes,
providing the address (IP, port) to the node that Start Dask ditributed automaticaly? Yes [
hOStS the daSk—SChedU.ler If yes, how many tasks per node? (default: one task per node) 1

NB: the number of threads = ncores / nprocesses

= Done behind the scenes if user requests dask

distributed at spawn time

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 18 mzurich
N

<& _ cCscCs ETH(irich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Providing users with a customizable environment

User customization: virtual environments

= Users can enable virtual environments in JupyterHub by activating them in:
S{HOME}/.jupyterhub.env
= Sourced just before the singleuser-notebook server is launched

= Users can also ‘module load <modulefile(s)>"

= Example: create a virtual environment for TensorFlow

> module load daint-gpu jupyterlab

> python3 -m venv --system-site-packages tf
> source ~/tf/bin/activate

(tf)> pip install <required modules> --user

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 20 mzurich
N

User customization: kernels

= Users can install their own kernels in $ {HOME}/.local/share/jupyter/kernels

(tf)> export PYTHONPATH=~/tf/lib/python3.6/site-packages:${PYTHONPATH}
(tf)> pip install --ignore-installed ipykernel --user
(tf)> python3 -m ipykernel install --user --name=tensorflow

= Write a launch script ~/tf/kernel.sh for the kernel to activate the venv, load
modules, etc.

#!/bin/bash

module load TensorFlow/1.12.0-CrayGNU-18.08-cuda-9.1l-python3
module load Horovod/0.16.0-CrayGNU-18.08-tf-1.12.0
source ~/tf/bin/activate

export PYTHONPATH=~/tf/lib/python3.6/site-packages:${PYTHONPATH}
exec python -m ipykernel $@

\"“ CSCS Challenges providing Jupyter service at HPC centres | 21 mzuf‘[ch
N

User customization: kernels

= Finally, edit the kernel file:

> cat ~/.local/share/jupyter/kernels/tensorflow/kernel. json
“argv”: |
“~/tf/kernel.sh”,
ll_flI,

“{connection file}"”

_ SEee

Launcher

] % cug2019
4
@ IE] Notebook
- A A
Python 3 jupyter-dI

1

tensorflow

Console
Python 3 jupyter-d|

L.

9.
\"“ CSCS Challenges providing Jupyter service at HPC centres | 22
N

cC @ ® @& https://robinson.jup

&
: File Edit View Run Kernel Hub Tabs Settings Help
]

- K

w Yo o» =

Python 2

Python 2

ETH:zlrich

User customization: JupyterLab Extensions

= Fundamentally, JuptyerLab is designed as a
customizable, extensible environment

= Extensions can provide new themes, file viewers
and editors, and renderers for rich output

= 100 GitHub repos tagged “jupyterlab-extensions”

= dask-labextension

= jupyterlab-tensorboard

= bgplot

= jupyterlab-hub — adds a Hub menu to JupyterLab to
allow users to log out of JupyterHub or access the

control panel

9.
\"“ CSCS Challenges providing Jupyter service at HPC centres | 23
N

‘‘‘‘‘‘

S U ———— I, - ™
[i 1IN | 0
| —— T 0 e
wo NNENDNN| 00 NN
wrd NI | e
I IO DO | (TN [
[) (1 1 | e il
: i = File Run abs
g 4] X | = Natic
=5 “1e Soore
[2 > u o
M 2 N d Weal
E 80
=0 W
3 g . . .
g« v anes @ "
g
..............
: File Edit View Run Kerrfel @ Hub | Tabs Settings Hel
- + Ly Control Panel r
D
s Logout
H
-
Name -~ 1 ast Maodified
ETHzlrich

User customization: JupyterLab Extensions
= The “classic” notebook allowed users to install extensions (--user) and has a
hierarchical prioritization of directories

= But JupyterLab is a single bundle using WebPack — if a user has custom
extensions they need their own JupyterLab installation!

>JUPYTERLAB DIR=S$HOME/<path> jupyter labextension install <extension>

= Centrally installed extensions are lost!

= We can'’t easily provide a centralized installation and allow users to add their own
extensions on top

= Challenge: how can we support such an extensible environment?

\"“ CSCS Challenges providing Jupyter service at HPC centres | 24 mzuf‘[ch
N

Checklist for current implementations

= Development environment? <=
= Access to data? <=

= Parallel computing?

= MPI| =
= Distributed dask <=

Flexibility and customization «& “

= Supercomputing on demand? -

9.
\"“ CSCS Challenges providing Jupyter service at HPC centres | 25
N

ETH:zlrich

Future plans

= Notebooks will be spawned on a variety of platforms

= Piz Daint
= Cloud infrastructure
= Future systems

= CSCS hosted cloud infrastructure

= Early testbed — OpenStack deployment
= Submit jobs from the Notebook to Piz Daint (via Slurm magics, ipcluster magics, ...)
= Future scheduling platforms

= Fixed Kubernetes domain / HPC scheduler domains
= Elasticity / metascheduling

= Shasta....

\"“ CSCS Challenges providing Jupyter service at HPC centres | 26 mzuf‘[ch
N

§ o CSCS ETH ziirich

Centro Svizzero di Calcolo Scientifico
Swiss National Supercomputing Centre

SN

'C, = G~ /

@c@@ 7:>< Vu i)- M\/

,4;-1"‘ Ra ndem

m'swc made = ?
ame- raudeinPurt (! HcHa/\n)H\ Ol
n m el = random.mndmf(q,
| e 'well {03 4“,’5 20,0, f2 af

Thanks in particular to...

Maxime Martinasso, Mark Klein, Lucas Benedicic, Rafael Sarmiento, Guilherme Peretti-Pezzi, Steve

Farrell, Aaron Vose, Oliver Evans, Matthew Henderson, Shreyas Cholia, Wahid Bhimji, Rollin Thomas,
Shane Cannon, Prabhat, Kelly Rowland, Jens Gobbert, Jan Meinke, and many others!

Centro Svizzero di Calcolo Scientifico
Swiss National Supercomputing Centre

§ N CSCS ETHzirich

Uzl i
: y’h’(ﬁ’f‘?’),@oﬂffff;\fﬁ,;ﬁO)
2, , 10.‘ ’fﬁfkﬁ s’ s m m

Y 4 k“(’ [m%h td

Reserve...

The rise of Python e pgthon'”

= Python has grown to become the dominant
language both in data analytics and general e e
programming

= Rise fueled by computational libraries like
Numpy, Pandas, and Scikit-Learn and
libraries for visualization, interactive
notebooks, collaboration, etc

= Python long used as glue, for pre- and/or
post-processing.. but increasingly used for
simulation as well

% of overall question views each month

Time

\":‘ CSCS Challenges providing Jupyter service at HPC centres | 29 mzurich
N

Python usage at CSCS

s 0
\\0‘0 CSCS

PROGRAMMING LANGUAGE USAGE (SURVEYED)

a— 65

\

60
S T
+ /46 4t - -Python
42

— —Fortran

41

- —CUDA

33 -C

2013 2014 2015 2016 2017 2018

Challenges providing Jupyter service at HPC centres | 30

ETH:zlrich

Us and Them (e.g. Binder) ** binder

= Binder provides an executable environment for notebooks in Git repos
= “Imakes] your code immediately reproducible by anyone, anywhere.”
= Click a URL, interact with someone else’s code, execute it directly in the cloud

= Reference deployment of BinderHub at mybinder.org, and it's free!

= How does it work?

= Creates containers from repos (repo2docker)
= Creates user sessions to serve them (JHub)
= Provides interface to use/share them (BinderHub)
= Provides a free public service (mybinder.org)

Build and launch a repository

GitHub ~

FFFFF

= |osc.ligo.org/tutorials Live! [or recording]

9.
\"“ CSCS Challenges providing Jupyter service at HPC centres | 31
N

https://mybinder.org/
https://mybinder.org/v2/gh/losc-tutorial/quickview/master

It’s awesome right?! binder

But hold on...

“Binder is a research pilot, whose main goal is to understand usage patterns

and workloads for future evolution and development. It is not a service that
can be relied on for critical operations.”

And it's not really free...

And what about my data? — how do | connect to huge data (and fast data!)
And what about computation? We are HPC right?

And what about authentication/authorization?

As HPC centres we'd like to provide something that gives a user experience like
Binder, but... we have the batch system, filesystems, security policies, parallel
computing...

\“‘ CSCS Challenges providing Jupyter service at HPC centres | 32 mzurlch

S 4

Multi-node notebook with Dask Distributed — Demonstrator: “Enron”

= Dask provides multi-core execution on larger-
than-memory data using blocked algorithms
and task scheduling: scale python without
rewriting code

= Supports the Pandas dataframe and Numpy
array data structures

= Dask can run on a local computer or be scaled Numpy
Pandas
up to a cluster
= Key dask component: Dask Bag }ﬁ::j;é} e [
= Dask bag is ble to store and process collections >fi:;;’j:.
of Pythonic objects that are unable to fit into o
memory. Dask Bags are great for processing
logs and collections of json documents)
) f K i Dask arrays scale Numpy workflows, Dask dataframes scale Pandas
= Enron COer.S IS a _data_set of 600K emails enabling multi-dimensional data analysis workflows, enabling applications in time
related to the InveStlgatIOH of the CO||apSG in earth science, satellite imagery, series, business intelligence, and general
)) genomics, biomedical applications, and data munging on big data.
= One of the few publicly available mass machine learning algorithms.
collections of real email
\"“ CSCS Challenges providing Jupyter service at HPC centres | 33 mZUriCh

S 4

Multi-node notebook with Dask Distributed — Demonstrator: “Enron”

A dask distributed network consists of

= a scheduler node
= one or more worker nodes

= Launch the dask-scheduler executable on the first compute node of the
allocation

= Then launch dask-worker on all nodes, providing the address (IP, port) to the
node that hosts the dask-scheduler

= Done behind the scenes if user requests dask distributed at spawn time

Start Dask.distributed automatically? Yes E

If yes, how many tasks per node? (default: one task per node) 1

NB: the number of threads = ncores / nprocesses

\‘0:‘ CSCS Challenges providing Jupyter service at HPC centres | 34 E'HZUfiCh
N

<@® . cscs ETHziirich
\‘ ‘ Centro Svizzero di Calcolo Scientifico

\‘ Swiss National Supercomputing Centre

Let’s see it in action, interactively (-ish)

Spawner Options

