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FPGA Fundamentals



• Cray CS500 Cluster System
• 256 CPU nodes

– 2 x Intel Xeon Skylake Gold 6148, 2 x 20 Cores, 2.4GHz
– 192 GB RAM

• 100 Gbps Intel Omni-Path network
• 700 TB Cray ClusterStor L300N storage system
• 16 FPGA nodes

– 2 x Intel Stratix 10 GX2800 (BittWare 520N boards)
PCIe 3.0 x16, 4 x 8GB DDR4 channels

– per board 4 QSFP28 ports
– currently one of worldwide largest and most modern FPGA 

installation in academic HPC system
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Noctua Cluster at Paderborn Center for Parallel Computing



Field Programmable Gate Array (FPGA) – Basic Architecture
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What is missing in contrast to CPU
• no instructions, configuration bits 

define function of each component
• no controllers, no sequence of 

instructions (computing in space  
instead of computing in time)

• no caches
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Execution Model: Temporal vs. Spatial Computing
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for (int i = 0; i < SIZE; i++){
c[i] = a[i] * b[i];

}

loop:
ld %a $a(%i)
ld %b $b(%i)
%c = %a * %b
st $c(%i) %c
%i = %i + 1
branch i<SIZE: loop

Execution on CPU: repeated sequence of instructions (time-multiplexing of ALU, computing in time)

Execution on FPGA: spatial mapping of data-path and control (computing in space)

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE
enable



• Primary goal: Use functional units every cycle
• Initiation Intervall (II)

– describes pipeline fill rate
– number of clock cycles until new input values can be 

accepted (target: II = 1) 
• Replicate datapath

– >3900 instances for Stratix 10 GX2880
– saturate bandwidth
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Optimizations: Pipelining and Data Path Replication

t

loop iteration

II=1

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE
enable
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Accelerating Scientific 
Applications with FPGAs



• Examples:
– Linear algebra: CG solver for sparse linear equation systems [1]

§ 20-40x faster than CPU
– Geophysics: 3D convolution [1]

§ 70x faster than CPU, 14x faster than GPU
– Molecular dynamics [2]

§ 80x faster than NAMD (single core) CPU
– Bioinformatics (BLAST) [3]

§ 5x faster than optimized, parallel CPU implementation
– Climate modeling [4]

§ 4 FPGAs 19x faster than two socket CPU, 7x faster than GPU
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FPGAs Have Shown Promise in Important HPC Domains

[1] O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu. Beyond traditional microprocessors for geoscience high-performance computing applications. 
IEEE Micro, Mar.–Apr. 2011.
[2] M. Chiu and M. C. Herbordt. Molecular dynamics simulations on high-performance reconfigurable computing systems. ACM TRETS Nov. 2010.
[3] A. Mahram, and M. C. Herbordt. NCBI BLASTP on High-Performance Reconfigurable Computing System. ACM TRETS Jan 2015.
[4] L. Gan, H. Fu, W. Luk et. al. Solving the Global Atmospheric Equations through Heterogeneous Reconfigurable Platforms. ACM TRETS Mar. 2015

However: hardly any work that 
supports parallel execution on FPGA 
clusters



• Simulation of light in nano structured 
materials
– antennas, polarization filters, wave guides
– collaboration with Prof. Jens Förstner, 

Paderborn University

• Discontinuous Galerkin solver for 
Maxwell equations

Kenter et. al: OpenCL-based FPGA design to 
accelerate the nodal Discontinuous Galerkin 
method for unstructured meshes.
Proc. Int. Symp. on Field-Programmable Custom 
Computing Machines (FCCM). Apr. 2018.
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Computational Nanophotonics



• Numerical method for solving (partial) differential equations
– From continuous field equations…
– Here: Maxwell’s equations 

§ with electric field E, magnetic field M, material constants ε, μ
𝜕𝐻
𝜕𝑡

= −
1
𝜇
∇×𝐸 −

1
𝜇
(𝑀-./012 + 𝜎∗𝐻)

𝜕𝐸
𝜕𝑡

= −
1
𝜖
∇×𝐻 −

1
𝜖
(𝐽-./012 + 𝜎𝐸)

– … to a discrete system
§ over finite elements k, polynomial basis coefficients 𝜓

𝐻:; = <
=>?

@

A𝐻=; 𝜓= , 𝐸:; = <
=>?

@

C𝐸=; 𝜓=

(only field approximation, Maxwell’s equations not shown here)
– … to a computer program using linear algebra
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Discontinuous Galerkin Method



§ over finite elements k
§ polynomial basis coefficients 𝜓

𝐻:; = <
=>?

@

A𝐻=; 𝜓=

• element k
• N nodal points

– depending on polynomial order
§ here: p=3

– for each point
§ expansion coefficient A𝐻=;

§ polynomial basis coefficient 𝜓

12

Unstructured Meshes, Nodal Representation



§ over finite elements k
§ polynomial basis coefficients 𝜓

𝐻:; = <
=>?

@

A𝐻=; 𝜓=

• Nodal points at edges
– two copies
– same coordinates
– different coefficients A𝐻=;, 𝜓=
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Discontinuous Galerkin Method



• Nodal Discontinuous Galerkin Time Domain Method
– state-of-the-art method
– high numerical quality, provable stability
– unstructured 3D mesh

§ adapted to material boundaries and regions of interest
§ particularly suitable for non-linear materials and multi-physics
§ no global stiffness matrix required

– variable polynomial order
§ controls communication/computation-ratio 
§ excellent parallel scaling
§ impacts arithmetic intensity
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DG Method Properties
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Application Structure

• Implementation based on MIDG2 
code by Tim Warburton

• Algorithm divided in three kernels 
running on FPGA
– Volume kernel
– Surface kernel
– Runge-Kutta kernel

• Method works uses tetrahedral 
meshes as elements
– E and H field is defined at nodal points 

in volume and at surface
– typ. mesh sizes 103–106 elements

Runge Kutta kernel

E, H fields 

E, H fields

rhs valuesrhs values

time step

Volume kernel Surface kernel

T. Warburton: MIDG2 – https://github.com/tcew/MIDG2
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DG Solver Kernel Analysis



• For every tetrahedron
• For every node (e.g. third 

polynomial degree (p=3), 20 
nodes)

• Read field values (here: x,y,z in E-
Feld, H-Feld, 6 values)

• Compute local updates (p=3)

17

Volume Kernel

rhs values

Volume kernel
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Volume Kernel – Arithmetic Intensity
p=3, N=20 p=4, N=35

#total acc. 3600 11025
#unique 249 429

number of accesses to float variables 
→ high reuse, small working sets

#FLOPs per k
• 36 ∗ 𝑁H

• 72 ∗ 𝑁

Arithmetic intensity [FLOPs/byte]

p=3, N=20 p=4, N=35
15840 46620 

p=3, N=20 p=4, N=35
15.9 27.2

⨂ operation: curl-like vector operation
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Surface Kernel

rhs values



• Data usage 
– LIFT: constant memory
– ∆𝐸, ∆𝐻: local buffer inside k
– #unique float values per k

• FLOPs

• Arithmetic intensity [FLOPs/byte]
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Surface Kernel – Arithmetic Intensity

p=3, N=20 p=4, N=35
3.4 7.4

p=3, N=20 p=4, N=35
880 970

p=3, N=20 p=4, N=35
12040 28860

61 ⨉ 4 Nf FLOPS

12 ⨉ N ⨉ 4 Nf FLOPS

indirect memory access
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FPGA Accelerator Design with
High-Level Synthesis from OpenCL



• Accelerator model: Kernels + host code
• Pipelining

– pipeline independent work items or
– infer pipeline from (data parallel) loop
– between kernels: channels (adaptation from OpenCL 2.0 pipes)

• Parallelism
– work items, work groups
– vector data types
– unrolling
– multiple kernels

• Custom memory structures
– local memory for variables and fixed-size arrays
– mapped to FPGA on-chip SRAM blocks or registers
– independent ports per named array or through partitioning
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High-Level Synthesis for FPGAs with OpenCL



• Configurable unrolling of inner loops
• Rule of thumb: 1000+ FLOPs/cycle
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Parallelism

pipeline pipeline

unroll

unroll
12 ⨉ N ⨉ 4 Nf FLOPs

61 ⨉ 4 Nf FLOPS
36 ⨉ N2 FLOPS

72 ⨉ N FLOPS



• Nallatech 385A with Intel Arria 10 1150 GX FPGA
• Intel OpenCL SDK 16.0
• Optimize one design per polynomial order p (and corresponding N)

– containing all three kernels, RK not shown, fully unrolled for p = 3,4
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Results: Synthesis and Kernel Performance

Volume Kernel Surface Kernel Synthesis results
p unr. FLOPs

/cycle
GFLOPs
/s

occ
[%]

BW
[GB/s]

unr. FLOPs
/cycle

GFLOPs
/s

occ
[%]

BW
[GB/s]

Freq
[MHz]

Logic
[%]

DSP
[%]

RAM
[%]

3 20 792 103 64 6.1 20 301 35 58 16.3 202 32 42 42

4 35 1332 164 66 6.1 20 301 42 75 12.3 187 35 60 46

5 14 576 99 86 2.3 28 397 60 75 11.6 201 37 39 61

6 12 504 74 83 1.2 56 913 102 95 13.4 176 38 48 72



• CPU Reference
– 2 x Xeon E5-2670v1, 2.60GHz 
– 2 x 8 = 16 cores
– OpenMP and vectorized

• FPGA implementation outperforms dual-socket 
Xeon by ~2x
– >100 GFLOP/s kernel designs
– using local RAM as buffers and constant memory
– achieving high off-chip bandwidth through decoupled 

access

• Atypical application for FPGA, but works very well
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Results: Performance and Scalability

[Kenter et al., OpenCL-based FPGA Design to Accelerate the Nodal Discontinuous Galerkin
Method for Unstructured Meshes, FCCM‘18]
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Wrap Up



Example: Intel Stratix 10 GX2800 (used in Noctua) 

• > 900,000 configurable logic blocks
– up to 4 Boolean functions of 8 inputs

• 5760 hardened arithmetic units (DSP)
– fixed point and IEEE 754 SP floating-point

• > 11,000 independent SRAM blocks
– width/depth/ports highly configurable

• integrated DDR4-2666 memory controllers
• 96 serial transceivers, up to 28.3 Gbps
• typically about 300-600MHz
• power consumption 50-225W
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Capabilities of Todays Top-Of-The-Line FPGAs

100 TERRA-OPS

10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth 
(full duplex)

300 TB/s communication
bandwidth (full duplex)

up to 80 GFLOPS/W
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How Can FPGAs Compete with CPUs or GPUs

• Compute-bound applications
– customization of operations and data formats
– new methods considering FPGA architecture

• Memory-bound applications
– unrolling and data flow computing with very deep 

pipelines
– application-specific, distributed memory architectures

• Latency-bound applications
– speculative or redundant execution

• I/O-bound applications
– on-board network interfaces
– direct FPGA-to-FPGA communication

DRAM HBM

DRAM

O(10GB/s)

on-
chip

SRAM
O(10TB/s)

deep and/or 
wide pipelines 
with O(1000) 
concurrent 
operations

O(10GB/s)

HBM

HSSI

HSSI

O(100GB/s)

HBM: high-bandwidth memory
HSSI: high-speed serial interface, e.g. 100G Ethernet



• Demonstrated benefit of FPGAs for algorithms 
working on unstructured grids

• State-of-the-art FPGAs provide a lot of 
computation and communication performance

• Using high-level synthesis FPGAs can be 
programmed without expert knowledge in digital 
design

• Intersection of FPGA and HPC communities still 
very small

• We are open for collaborations!
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Conclusions

http://pc2.uni-paderborn.de
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