

Accelerating Modern Scientific Applications with FPGAs

Christian Plessl

joint work with Tobias Kenter, Paolo Gorlani, and Jens Förstner

Paderborn University, Germany Paderborn Center for Parallel Computing

Cray User Group Conference 2019 – Montreal – 7 May 2019

Outline

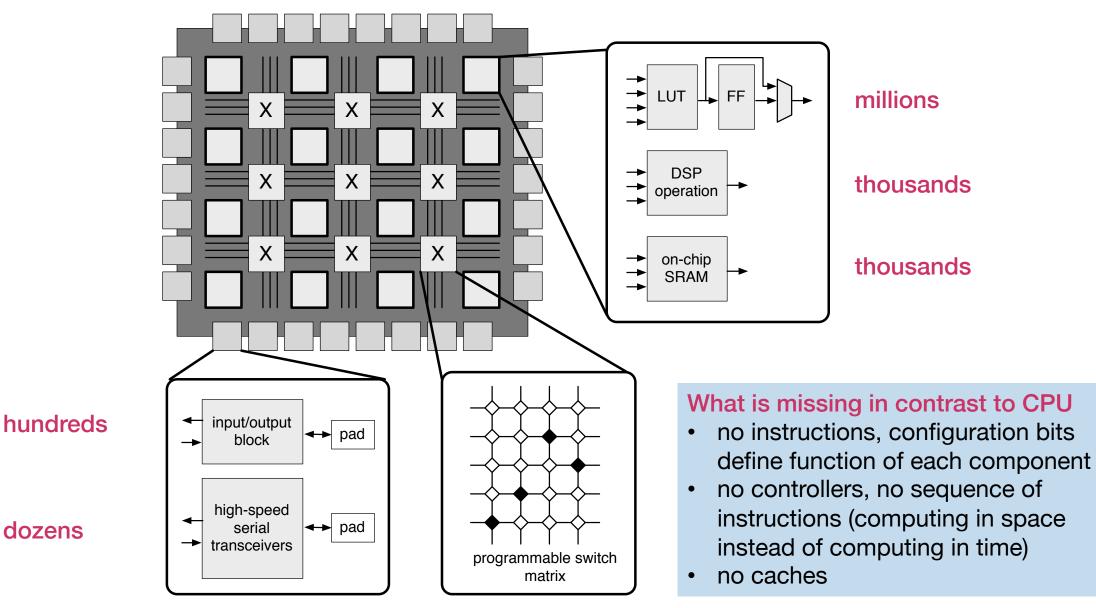
- FPGA Fundamentals
 - architecture
 - execution model
- Accelerating scientific applications with FPGAs
 - Discontinuous Galerkin PDE solver for Maxwell's Equations
 - Kernel analysis
 - Implementation with OpenCL and High-Level Synthesis
 - Results and Perspectives
- Conclusions

FPGA Fundamentals

Noctua Cluster at Paderborn Center for Parallel Computing

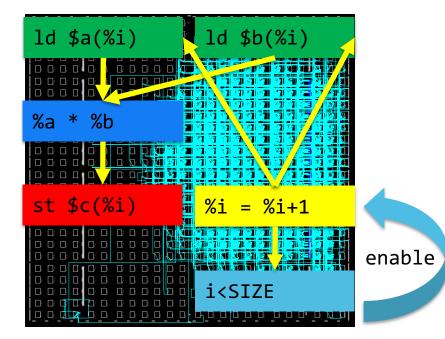
- Cray CS500 Cluster System
- 256 CPU nodes
 - 2 x Intel Xeon Skylake Gold 6148, 2 x 20 Cores, 2.4GHz
 - 192 GB RAM
- 100 Gbps Intel Omni-Path network
- 700 TB Cray ClusterStor L300N storage system
- 16 FPGA nodes
 - 2 x Intel Stratix 10 GX2800 (BittWare 520N boards)
 PCIe 3.0 x16, 4 x 8GB DDR4 channels
 - per board 4 QSFP28 ports
 - currently one of worldwide largest and most modern FPGA installation in academic HPC system

Field Programmable Gate Array (FPGA) – Basic Architecture



Execution Model: Temporal vs. Spatial Computing

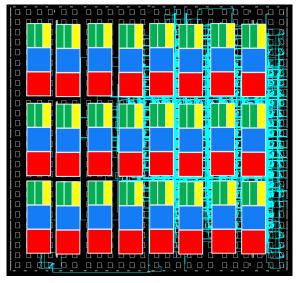
Execution on CPU: repeated sequence of instructions (time-multiplexing of ALU, computing in time)

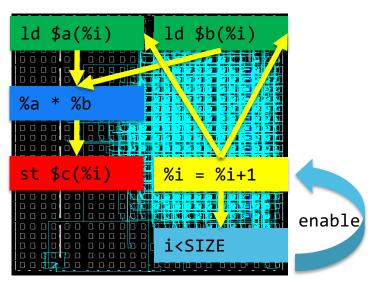


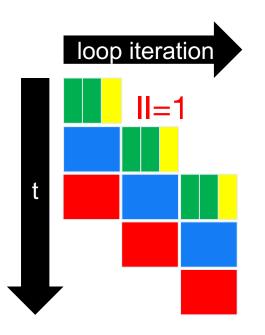
Execution on FPGA: spatial mapping of data-path and control (computing in space)

Optimizations: Pipelining and Data Path Replication

- Primary goal: Use functional units every cycle
- Initiation Intervall (II)
 - describes pipeline fill rate
 - number of clock cycles until new input values can be accepted (target: II = 1)
- Replicate datapath
 - >3900 instances for Stratix 10 GX2880
 - saturate bandwidth







Accelerating Scientific Applications with FPGAs

FPGAs Have Shown Promise in Important HPC Domains

- Examples:
 - Linear algebra: CG solver for sparse linear equation systems [1]
 - 20-40x faster than CPU
 - Geophysics: 3D convolution [1]
 - 70x faster than CPU, 14x faster than GPU
 - Molecular dynamics [2]
 - 80x faster than NAMD (single core) CPU
 - Bioinformatics (BLAST) [3]
 - 5x faster than optimized, parallel CPU implementation
 - Climate modeling [4]
 - 4 FPGAs 19x faster than two socket CPU, 7x faster than GPU

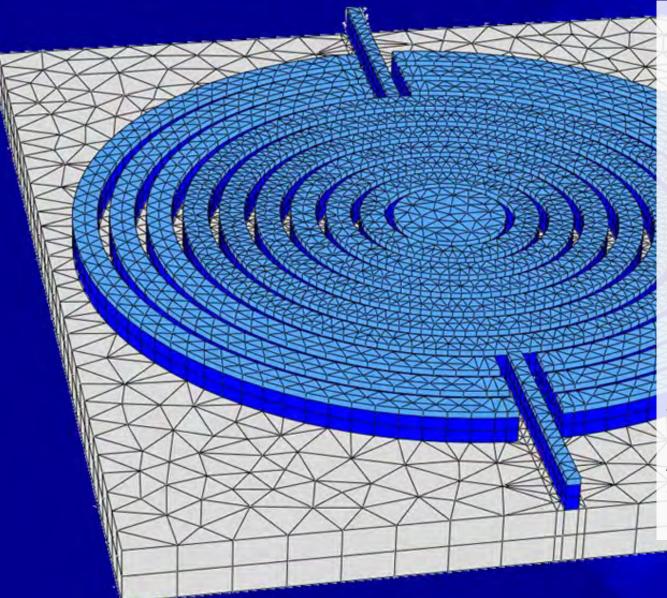
However: hardly any work that supports parallel execution on FPGA clusters

[1] O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu. Beyond traditional microprocessors for geoscience high-performance computing applications. IEEE Micro, Mar.–Apr. 2011.

- [3] A. Mahram, and M. C. Herbordt. NCBI BLASTP on High-Performance Reconfigurable Computing System. ACM TRETS Jan 2015.
- [4] L. Gan, H. Fu, W. Luk et. al. Solving the Global Atmospheric Equations through Heterogeneous Reconfigurable Platforms. ACM TRETS Mar. 2015

^[2] M. Chiu and M. C. Herbordt. Molecular dynamics simulations on high-performance reconfigurable computing systems. ACM TRETS Nov. 2010.

Computational Nanophotonics



- Simulation of light in nano structured materials
 - antennas, polarization filters, wave guides
 - collaboration with Prof. Jens Förstner, Paderborn University
- Discontinuous Galerkin solver for Maxwell equations

Kenter et. al: OpenCL-based FPGA design to accelerate the nodal Discontinuous Galerkin method for unstructured meshes. *Proc. Int. Symp. on Field-Programmable Custom Computing Machines (FCCM)*. Apr. 2018.

Discontinuous Galerkin Method

- Numerical method for solving (partial) differential equations
 - From continuous field equations...
 - Here: Maxwell's equations
 - with electric field E, magnetic field M, material constants ε , μ

$$\frac{\partial H}{\partial t} = -\frac{1}{\mu} \nabla \times E - \frac{1}{\mu} (M_{source} + \sigma^* H)$$
$$\frac{\partial E}{\partial t} = -\frac{1}{\epsilon} \nabla \times H - \frac{1}{\epsilon} (J_{source} + \sigma E)$$

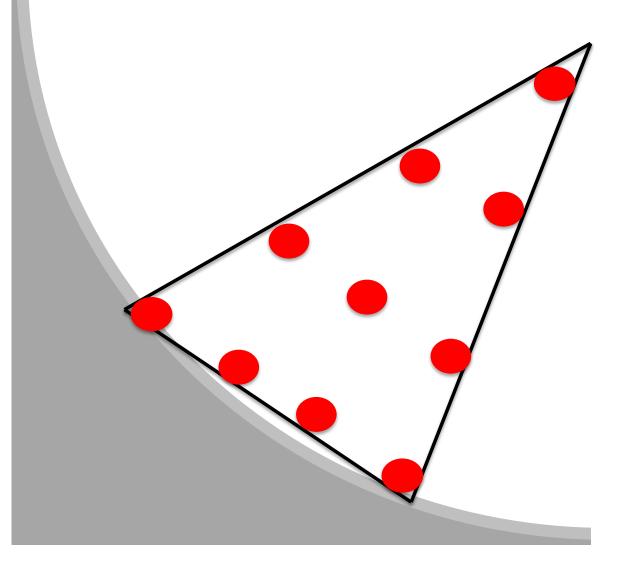
- ... to a discrete system
 - over finite elements k, polynomial basis coefficients ψ

$$H_h^k = \sum_{n=1}^N \widehat{H}_n^k \psi_n, \qquad E_h^k = \sum_{n=1}^N \widehat{E}_n^k \psi_n$$

(only field approximation, Maxwell's equations not shown here)

- ... to a computer program using linear algebra

Unstructured Meshes, Nodal Representation

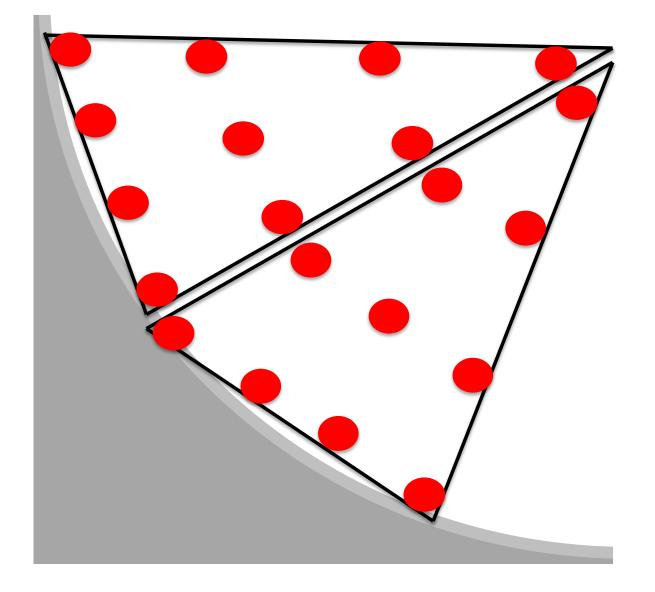


- over finite elements k
- polynomial basis coefficients ψ

$$H_h^k = \sum_{n=1} \widehat{H}_n^k \, \psi_n$$

- element k
- N nodal points
 - depending on polynomial order
 - here: p=3
 - for each point
 - expansion coefficient \widehat{H}_n^k
 - polynomial basis coefficient ψ

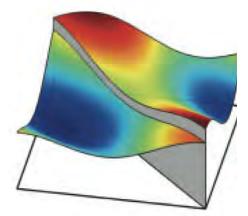
Discontinuous Galerkin Method



- over finite elements k
- polynomial basis coefficients ψ

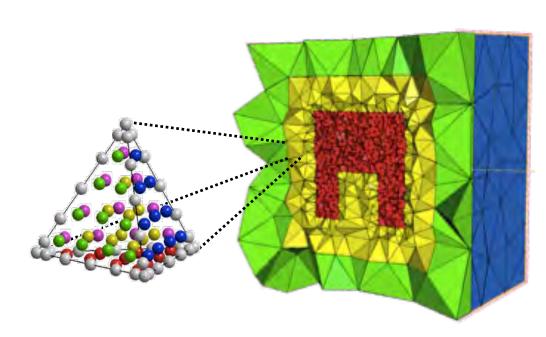
$$H_h^k = \sum_{n=1} \widehat{H}_n^k \,\psi_n$$

- Nodal points at edges
 - two copies
 - same coordinates
 - different coefficients \widehat{H}_n^k , ψ_n

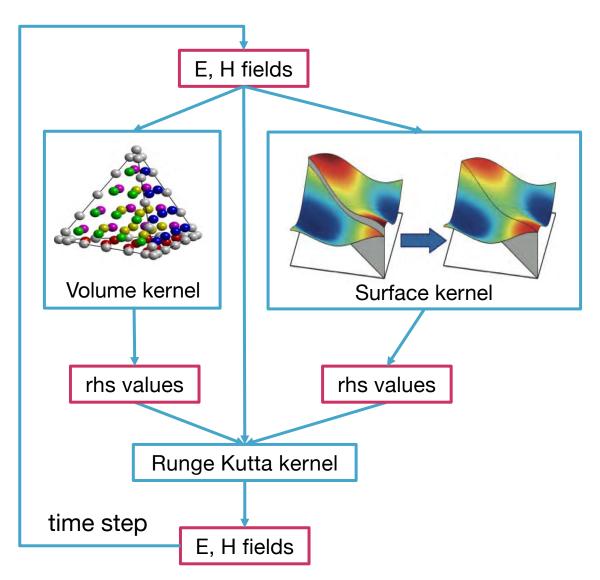


DG Method Properties

- Nodal Discontinuous Galerkin Time Domain Method
 - state-of-the-art method
 - high numerical quality, provable stability
 - unstructured 3D mesh
 - adapted to material boundaries and regions of interest
 - particularly suitable for non-linear materials and multi-physics
 - no global stiffness matrix required
 - variable polynomial order
 - controls communication/computation-ratio
 - excellent parallel scaling
 - impacts arithmetic intensity



Application Structure

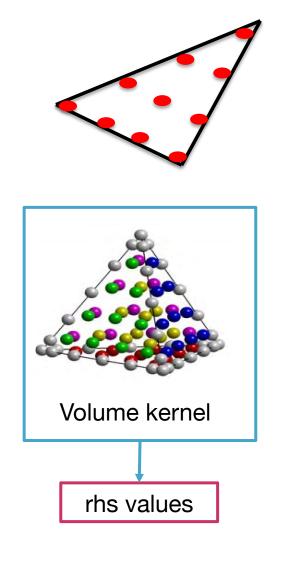


- Implementation based on MIDG2 code by Tim Warburton
- Algorithm divided in three kernels running on FPGA
 - Volume kernel
 - Surface kernel
 - Runge-Kutta kernel
- Method works uses tetrahedral meshes as elements
 - E and H field is defined at nodal points in volume and at surface
 - typ. mesh sizes 10³–10⁶ elements

T. Warburton: MIDG2 – https://github.com/tcew/MIDG2

DG Solver Kernel Analysis

Volume Kernel



Input: Field values $\mathbf{E}_{k,n}$, $\mathbf{H}_{k,n}$, polynomial base coefficients $\mathbf{D}_{n,m}$, geometry coefficients \mathbf{G}_k **Output:** Local update terms $\mathbf{rhs}\mathbf{E}_{k,n}$, $\mathbf{rhs}\mathbf{H}_{k,n}$ 1 foreach element $k \in 1..K$ do // Prefetch all nodes of k first foreach node $n \in 1..N$ do 2 ldE = 03 ldH = 04 foreach node $m \in 1..N$ do 5 $\mathbf{ldE} += \mathbf{D}_{n,m} \otimes \mathbf{E}_{k,m}$ 6 $\mathbf{ldH} += \mathbf{D}_{n,m} \otimes \mathbf{H}_{k,m}$ 7 end 8 $\mathbf{rhsE}_{k,n} = \mathbf{G}_k \otimes \mathbf{ldH}$ 9 $\mathbf{rhsH}_{k,n} = \mathbf{G}_k \otimes \mathbf{ldE}$ 10 end 11 12 end

Volume Kernel – Arithmetic Intensity

```
Input: Field values \mathbf{E}_{k,n}, \mathbf{H}_{k,n}, polynomial base
             coefficients \mathbf{D}_{n,m}, geometry coefficients \mathbf{G}_k
   Output: Local update terms \mathbf{rhsE}_{k,n}, \mathbf{rhsH}_{k,n}
 1 foreach element k \in 1..K do
         // Prefetch all nodes of k first
        foreach node n \in 1..N do
 2
             ldE = 0
 3
             ldH = 0
 4
             foreach node m \in 1..N do
 5
                  ldE += D_{n,m} \otimes E_{k,m}
 6
                  \mathbf{ldH} += \mathbf{D}_{n,n} \otimes \mathbf{H}_k
 7
             end
 8
             \mathbf{rhsE}_{k,n} = \mathbf{G}_k \otimes \mathbf{ldH}
 9
              \mathbf{rhsH}_{k,n} = \mathbf{G}_{k}
10
11
        end
12 end
```

	p=3, N=20	p=4, N=35
#total acc.	3600	11025
#unique	249	429

number of accesses to float variables \rightarrow high reuse, small working sets

#FLOPs per k

- 36 $* N^2$
- 72 * *N*

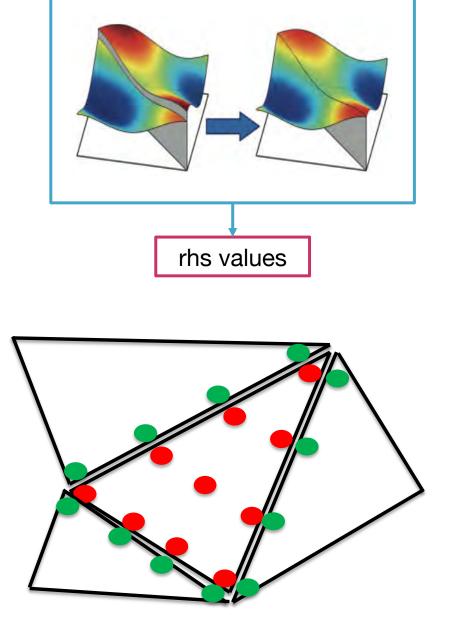
p=3, N=20	p=4, N=35
15840	46620

Arithmetic intensity [FLOPs/byte]

p=3, N=20	p=4, N=35
15.9	27.2

 \otimes operation: curl-like vector operation

Surface Kernel



```
Input: Field values \mathbf{E}_{k,n}, \mathbf{H}_{k,n}, data layout
                information localMAP_{k,f,n}, otherMAP_{k,f,n},
                surface geometry information \mathbf{S}_{k,f,n},
                correlation coefficients to other element
                \mathbf{LIFT}_{n,f,m}
    Output: Neighborhood update terms \mathbf{rhsE}_{k,n},
                  \mathbf{rhsH}_{k,n}
 1 foreach element k \in 1..K do
          foreach surface f \in 1..4 do
 2
                foreach surfacenode m \in 1..N_f do
  3
                     \mathbf{E}^{-} = \mathbf{E}[localMAP_{k,f,m}]
  4
                       \mathbf{H}^{-} = \mathbf{H}[localMAP_{k}]_{k}
  5
                     \mathbf{E}^+ = \mathbf{E}[otherMAP_{k,f,m}]
  6
                     \mathbf{H}^+ = \mathbf{H}[otherMAP_{k,f,m}]
  7
                     \Delta \mathbf{E}_{\mathbf{f},\mathbf{m}} = \mathbf{S}_{k,f,m} \otimes (\mathbf{E}^+ - \mathbf{E}^-)
  8
                     \Delta \mathbf{H}_{\mathbf{f},\mathbf{m}} = \mathbf{S}_{k,f,m} \otimes (\mathbf{H}^+ - \mathbf{H}^-)
  9
               end
10
          end
11
          \mathbf{rhsE}_{k,n} = \mathbf{0}
12
          rhsH_{k,n} = 0
13
          foreach node n \in 1..N do
14
               foreach surface f \in 1..4 do
15
                     foreach surfacenode m \in 1..N_f do
16
                           \mathbf{rhsE}_{k,n} + = \mathbf{LIFT}_{n,f,m} \otimes \Delta \mathbf{E}_{\mathbf{f},\mathbf{m}}
 17
                           \mathbf{rhsH}_{k,n} + = \mathbf{LIFT}_{n,f,m} \otimes \Delta \mathbf{H}_{\mathbf{f},\mathbf{m}}
 18
                     end
 19
               end
20
          end
21
22 end
```

Surface Kernel – Arithmetic Intensity

Input: Field values $\mathbf{E}_{k,n}$, $\mathbf{H}_{k,n}$, data layout information $localMAP_{k,f,n}$, $otherMAP_{k,f,n}$, surface geometry information $\mathbf{S}_{k,f,n}$, correlation coefficients to other element $\mathbf{LIFT}_{n,f,m}$ **Output:** Neighborhood update terms $\mathbf{rhsE}_{k,n}$, $\mathbf{rhsH}_{k,n}$ 1 foreach element $k \in 1..K$ do foreach surface $f \in 1..4$ do 2 **foreach** surfacenode $m \in 1..N_f$ do 3 $\mathbf{E}^- = \mathbf{E}[localMAP_{k,f,m}]$ 4 $\mathbf{H}^{-} = \mathbf{H}[localMAP_{k,f,m}]$ indirect memory access 5 $\mathbf{E}^+ = \mathbf{E}[otherMAP_{k,f,m}]$ 6 $\mathbf{H}^+ = \mathbf{H}[otherMAP_{k,f}]$ 7 $61 \times 4 N_f$ FLOPS $\Delta \mathbf{E}_{\mathbf{f},\mathbf{m}} = \mathbf{S}_{k,f,m} \otimes (\mathbf{E}^+ - \mathbf{E}^-)$ 8 $\Delta \mathbf{H}_{\mathbf{f},\mathbf{m}} = \mathbf{S}_{k,f,m} \otimes (\mathbf{H}^+ - \mathbf{H}^-)$ 9 end 10 end 11 $rhsE_{k,n} = 0$ 12 $rhsH_{k,n} = 0$ 13 foreach node $n \in 1..N$ do 14 foreach surface $f \in 1..4$ do 15 foreach surfacenode $m \in 1..N_f$ do 16 $\mathbf{rhsE}_{k,n} + = \mathbf{LIFT}_{n,f,m} \otimes \Delta \mathbf{E}_{\mathbf{f},\mathbf{m}} \quad 12 \times \mathbf{N} \times 4 \, \mathbf{N}_{f} \, \mathsf{FLOPS}$ 17 $\mathbf{rhsH}_{k,n} += \mathbf{LIFT}_{n,f,m} \otimes \Delta \mathbf{H}_{\mathbf{f},\mathbf{m}}$ 18 end 19 end 20 end 21 22 end

- Data usage
 - LIFT: constant memory
 - ΔE , ΔH : local buffer inside k
 - #unique float values per k

p=3, N=20	p=4, N=35
880	970

FLOPs

p=3, N=20	p=4, N=35
12040	28860

• Arithmetic intensity [FLOPs/byte]

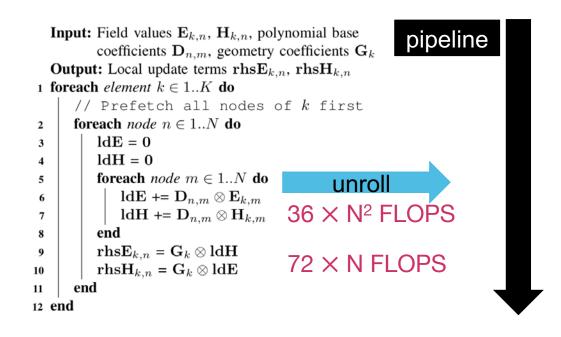
p=3, N=20	p=4, N=35
3.4	7.4

FPGA Accelerator Design with High-Level Synthesis from OpenCL

High-Level Synthesis for FPGAs with OpenCL

- Accelerator model: Kernels + host code
- Pipelining
 - pipeline independent work items or
 - infer pipeline from (data parallel) loop
 - between kernels: channels (adaptation from OpenCL 2.0 pipes)
- Parallelism
 - work items, work groups
 - vector data types
 - unrolling
 - multiple kernels
- Custom memory structures
 - local memory for variables and fixed-size arrays
 - mapped to FPGA on-chip SRAM blocks or registers
 - independent ports per named array or through partitioning

Parallelism



- Configurable unrolling of inner loops
- Rule of thumb: 1000+ FLOPs/cycle

```
Input: Field values \mathbf{E}_{k,n}, \mathbf{H}_{k,n}, data layout
                                                                                                              pipeline
               information localMAP_{k,f,n}, otherMAP_{k,f,n},
               surface geometry information \mathbf{S}_{k,f,n},
               correlation coefficients to other element
               \mathbf{LIFT}_{n,f,m}
   Output: Neighborhood update terms \mathbf{rhsE}_{k,n},
                  \mathbf{rhsH}_{k,n}
1 foreach element k \in 1..K do
          foreach surface f \in 1..4 do
2
               foreach surfacenode m \in 1..N_f do
3
                     \mathbf{E}^{-} = \mathbf{E}[localMAP_{k, f, m}]
 4
                    \mathbf{H}^{-} = \mathbf{H}[localMAP_{k,f,m}]
 5
                    \mathbf{E}^+ = \mathbf{E}[otherMAP_{k,f,m}]
                                                                             61 \times 4 N_{f} FLOPS
 6
                     \mathbf{H}^+ = \mathbf{H}[otherMAP_{k,f,m}]
 7
                     \Delta \mathbf{E}_{\mathbf{f},\mathbf{m}} = \mathbf{S}_{k,f,m} \otimes (\mathbf{E}^+ - \mathbf{E}^-)
8
                     \Delta \mathbf{H}_{\mathbf{f},\mathbf{m}} = \mathbf{S}_{k,f,m} \otimes (\mathbf{H}^+ - \mathbf{H}^-)
9
               end
10
11
          end
         rhsE_{k,n} = 0
12
         rhsH_{k,n} = 0
13
          foreach node n \in 1..N do
14
               foreach surface f \in 1..4 do
15
                     foreach surfacenode m \in 1..N_f do
                                                                                                  unrol
16
                          \mathbf{rhsE}_{k,n} + = \mathbf{LIFT}_{n,f,m} \otimes \Delta \mathbf{E}_{\mathbf{f},\mathbf{m}}
17
                          \mathbf{rhsH}_{k,n} \mathrel{+=} \mathbf{LIFT}_{n,f,m} \otimes \Delta \mathbf{H}_{\mathbf{f},\mathbf{m}} \operatorname{12} \times \mathrm{N} \times \operatorname{4} \mathrm{N}_{\mathbf{f}} \operatorname{FLOPs}
18
                     end
19
               end
20
          end
21
22 end
```

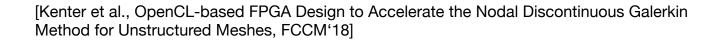
Results: Synthesis and Kernel Performance

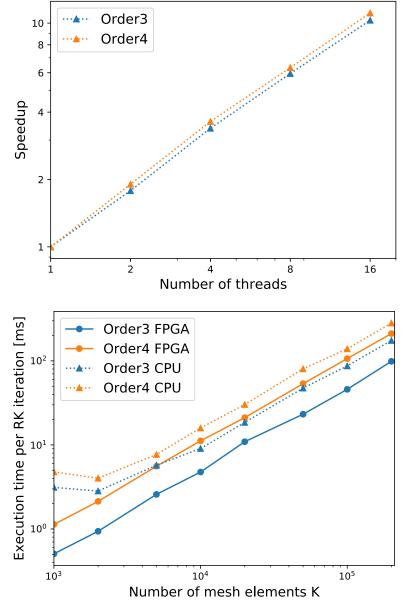
- Nallatech 385A with Intel Arria 10 1150 GX FPGA
- Intel OpenCL SDK 16.0
- Optimize one design per polynomial order p (and corresponding N)
 - containing all three kernels, RK not shown, fully unrolled for p = 3,4

	Volume Kernel				Surface Kernel				Synthesis results					
р	unr.	FLOPs /cycle	GFLOPs /s	occ [%]	BW [GB/s]	unr.	FLOPs /cycle	GFLOPs /s	occ [%]	BW [GB/s]	Freq [MHz]	Logic [%]	DSP [%]	RAM [%]
3	20	792	103	64	6.1	20	301	35	58	16.3	202	32	42	42
4	35	1332	164	66	6.1	20	301	42	75	12.3	187	35	60	46
5	14	576	99	86	2.3	28	397	60	75	11.6	201	37	39	61
6	12	504	74	83	1.2	56	913	102	95	13.4	176	38	48	72

Results: Performance and Scalability

- CPU Reference
 - 2 x Xeon E5-2670v1, 2.60GHz
 - 2 x 8 = 16 cores
 - OpenMP and vectorized
- FPGA implementation outperforms dual-socket Xeon by ~2x
 - >100 GFLOP/s kernel designs
 - using local RAM as buffers and constant memory
 - achieving high off-chip bandwidth through decoupled access
- Atypical application for FPGA, but works very well





Wrap Up

Capabilities of Todays Top-Of-The-Line FPGAs

Example: Intel Stratix 10 GX2800 (used in Noctua)

- > 900,000 configurable logic blocks
 - up to 4 Boolean functions of 8 inputs
- 5760 hardened arithmetic units (DSP)
 - fixed point and IEEE 754 SP floating-point
- > 11,000 independent SRAM blocks
 - width/depth/ports highly configurable
- integrated DDR4-2666 memory controllers
- 96 serial transceivers, up to 28.3 Gbps
- typically about 300-600MHz
- power consumption 50-225W

100 TERRA-OPS

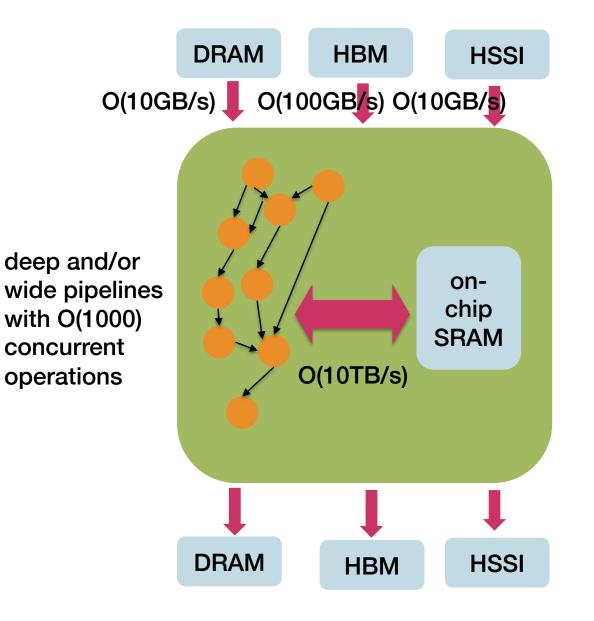
10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth (full duplex)

300 TB/s communication bandwidth (full duplex)

up to 80 GFLOPS/W

How Can FPGAs Compete with CPUs or GPUs



- Compute-bound applications
 - customization of operations and data formats
 - new methods considering FPGA architecture
- Memory-bound applications
 - unrolling and data flow computing with very deep pipelines
 - application-specific, distributed memory architectures
- Latency-bound applications
 - speculative or redundant execution
- I/O-bound applications
 - on-board network interfaces
 - direct FPGA-to-FPGA communication

HBM: high-bandwidth memory HSSI: high-speed serial interface, e.g. 100G Ethernet

Conclusions

- Demonstrated benefit of FPGAs for algorithms working on unstructured grids
- State-of-the-art FPGAs provide a lot of computation and communication performance
- Using high-level synthesis FPGAs can be programmed without expert knowledge in digital design
- Intersection of FPGA and HPC communities still very small
- We are open for collaborations!

Further Information / Feedback

Christian Plessl Paderborn University <u>christian.plessl@uni-paderborn.de</u>

Twitter: @plessl @pc2_upb

http://pc2.uni-paderborn.de

