
Accelerating Modern Scientific
Applications with FPGAs
Christian Plessl
joint work with Tobias Kenter, Paolo Gorlani, and Jens Förstner

Paderborn University, Germany
Paderborn Center for Parallel Computing

Cray User Group Conference 2019 – Montreal – 7 May 2019

• FPGA Fundamentals
– architecture
– execution model

• Accelerating scientific applications with FPGAs
– Discontinuous Galerkin PDE solver for Maxwell’s Equations
– Kernel analysis
– Implementation with OpenCL and High-Level Synthesis
– Results and Perspectives

• Conclusions

Outline

FPGA Fundamentals

• Cray CS500 Cluster System
• 256 CPU nodes

– 2 x Intel Xeon Skylake Gold 6148, 2 x 20 Cores, 2.4GHz
– 192 GB RAM

• 100 Gbps Intel Omni-Path network
• 700 TB Cray ClusterStor L300N storage system
• 16 FPGA nodes

– 2 x Intel Stratix 10 GX2800 (BittWare 520N boards)
PCIe 3.0 x16, 4 x 8GB DDR4 channels

– per board 4 QSFP28 ports
– currently one of worldwide largest and most modern FPGA

installation in academic HPC system

4

Noctua Cluster at Paderborn Center for Parallel Computing

Field Programmable Gate Array (FPGA) – Basic Architecture

5

X

X

X

X

X

X

X X X

LUT FF

DSP
operation

on-chip
SRAM

input/output
block pad

high-speed
serial

transceivers
pad

programmable switch
matrix

millions

What is missing in contrast to CPU
• no instructions, configuration bits

define function of each component
• no controllers, no sequence of

instructions (computing in space
instead of computing in time)

• no caches

thousands

thousands

hundreds

dozens

Execution Model: Temporal vs. Spatial Computing

6

for (int i = 0; i < SIZE; i++){
c[i] = a[i] * b[i];

}

loop:
ld %a $a(%i)
ld %b $b(%i)
%c = %a * %b
st $c(%i) %c
%i = %i + 1
branch i<SIZE: loop

Execution on CPU: repeated sequence of instructions (time-multiplexing of ALU, computing in time)

Execution on FPGA: spatial mapping of data-path and control (computing in space)

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE
enable

• Primary goal: Use functional units every cycle
• Initiation Intervall (II)

– describes pipeline fill rate
– number of clock cycles until new input values can be

accepted (target: II = 1)
• Replicate datapath

– >3900 instances for Stratix 10 GX2880
– saturate bandwidth

7

Optimizations: Pipelining and Data Path Replication

t

loop iteration

II=1

st $c(%i)

%a * %b

ld $b(%i)ld $a(%i)

%i = %i+1

i<SIZE
enable

8

Accelerating Scientific
Applications with FPGAs

• Examples:
– Linear algebra: CG solver for sparse linear equation systems [1]

§ 20-40x faster than CPU
– Geophysics: 3D convolution [1]

§ 70x faster than CPU, 14x faster than GPU
– Molecular dynamics [2]

§ 80x faster than NAMD (single core) CPU
– Bioinformatics (BLAST) [3]

§ 5x faster than optimized, parallel CPU implementation
– Climate modeling [4]

§ 4 FPGAs 19x faster than two socket CPU, 7x faster than GPU

9

FPGAs Have Shown Promise in Important HPC Domains

[1] O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu. Beyond traditional microprocessors for geoscience high-performance computing applications.
IEEE Micro, Mar.–Apr. 2011.
[2] M. Chiu and M. C. Herbordt. Molecular dynamics simulations on high-performance reconfigurable computing systems. ACM TRETS Nov. 2010.
[3] A. Mahram, and M. C. Herbordt. NCBI BLASTP on High-Performance Reconfigurable Computing System. ACM TRETS Jan 2015.
[4] L. Gan, H. Fu, W. Luk et. al. Solving the Global Atmospheric Equations through Heterogeneous Reconfigurable Platforms. ACM TRETS Mar. 2015

However: hardly any work that
supports parallel execution on FPGA
clusters

• Simulation of light in nano structured
materials
– antennas, polarization filters, wave guides
– collaboration with Prof. Jens Förstner,

Paderborn University

• Discontinuous Galerkin solver for
Maxwell equations

Kenter et. al: OpenCL-based FPGA design to
accelerate the nodal Discontinuous Galerkin
method for unstructured meshes.
Proc. Int. Symp. on Field-Programmable Custom
Computing Machines (FCCM). Apr. 2018.

10

Computational Nanophotonics

• Numerical method for solving (partial) differential equations
– From continuous field equations…
– Here: Maxwell’s equations

§ with electric field E, magnetic field M, material constants ε, μ
𝜕𝐻
𝜕𝑡

= −
1
𝜇
∇×𝐸 −

1
𝜇
(𝑀-./012 + 𝜎∗𝐻)

𝜕𝐸
𝜕𝑡

= −
1
𝜖
∇×𝐻 −

1
𝜖
(𝐽-./012 + 𝜎𝐸)

– … to a discrete system
§ over finite elements k, polynomial basis coefficients 𝜓

𝐻:; = <
=>?

@

A𝐻=; 𝜓= , 𝐸:; = <
=>?

@

C𝐸=; 𝜓=

(only field approximation, Maxwell’s equations not shown here)
– … to a computer program using linear algebra

11

Discontinuous Galerkin Method

§ over finite elements k
§ polynomial basis coefficients 𝜓

𝐻:; = <
=>?

@

A𝐻=; 𝜓=

• element k
• N nodal points

– depending on polynomial order
§ here: p=3

– for each point
§ expansion coefficient A𝐻=;

§ polynomial basis coefficient 𝜓

12

Unstructured Meshes, Nodal Representation

§ over finite elements k
§ polynomial basis coefficients 𝜓

𝐻:; = <
=>?

@

A𝐻=; 𝜓=

• Nodal points at edges
– two copies
– same coordinates
– different coefficients A𝐻=;, 𝜓=

13

Discontinuous Galerkin Method

• Nodal Discontinuous Galerkin Time Domain Method
– state-of-the-art method
– high numerical quality, provable stability
– unstructured 3D mesh

§ adapted to material boundaries and regions of interest
§ particularly suitable for non-linear materials and multi-physics
§ no global stiffness matrix required

– variable polynomial order
§ controls communication/computation-ratio
§ excellent parallel scaling
§ impacts arithmetic intensity

14

DG Method Properties

15

Application Structure

• Implementation based on MIDG2
code by Tim Warburton

• Algorithm divided in three kernels
running on FPGA
– Volume kernel
– Surface kernel
– Runge-Kutta kernel

• Method works uses tetrahedral
meshes as elements
– E and H field is defined at nodal points

in volume and at surface
– typ. mesh sizes 103–106 elements

Runge Kutta kernel

E, H fields

E, H fields

rhs valuesrhs values

time step

Volume kernel Surface kernel

T. Warburton: MIDG2 – https://github.com/tcew/MIDG2

16

DG Solver Kernel Analysis

• For every tetrahedron
• For every node (e.g. third

polynomial degree (p=3), 20
nodes)

• Read field values (here: x,y,z in E-
Feld, H-Feld, 6 values)

• Compute local updates (p=3)

17

Volume Kernel

rhs values

Volume kernel

18

Volume Kernel – Arithmetic Intensity
p=3, N=20 p=4, N=35

#total acc. 3600 11025
#unique 249 429

number of accesses to float variables
→ high reuse, small working sets

#FLOPs per k
• 36 ∗ 𝑁H

• 72 ∗ 𝑁

Arithmetic intensity [FLOPs/byte]

p=3, N=20 p=4, N=35
15840 46620

p=3, N=20 p=4, N=35
15.9 27.2

⨂ operation: curl-like vector operation

19

Surface Kernel

rhs values

• Data usage
– LIFT: constant memory
– ∆𝐸, ∆𝐻: local buffer inside k
– #unique float values per k

• FLOPs

• Arithmetic intensity [FLOPs/byte]

20

Surface Kernel – Arithmetic Intensity

p=3, N=20 p=4, N=35
3.4 7.4

p=3, N=20 p=4, N=35
880 970

p=3, N=20 p=4, N=35
12040 28860

61 ⨉ 4 Nf FLOPS

12 ⨉ N ⨉ 4 Nf FLOPS

indirect memory access

21

FPGA Accelerator Design with
High-Level Synthesis from OpenCL

• Accelerator model: Kernels + host code
• Pipelining

– pipeline independent work items or
– infer pipeline from (data parallel) loop
– between kernels: channels (adaptation from OpenCL 2.0 pipes)

• Parallelism
– work items, work groups
– vector data types
– unrolling
– multiple kernels

• Custom memory structures
– local memory for variables and fixed-size arrays
– mapped to FPGA on-chip SRAM blocks or registers
– independent ports per named array or through partitioning

22

High-Level Synthesis for FPGAs with OpenCL

• Configurable unrolling of inner loops
• Rule of thumb: 1000+ FLOPs/cycle

23

Parallelism

pipeline pipeline

unroll

unroll
12 ⨉ N ⨉ 4 Nf FLOPs

61 ⨉ 4 Nf FLOPS
36 ⨉ N2 FLOPS

72 ⨉ N FLOPS

• Nallatech 385A with Intel Arria 10 1150 GX FPGA
• Intel OpenCL SDK 16.0
• Optimize one design per polynomial order p (and corresponding N)

– containing all three kernels, RK not shown, fully unrolled for p = 3,4

24

Results: Synthesis and Kernel Performance

Volume Kernel Surface Kernel Synthesis results
p unr. FLOPs

/cycle
GFLOPs
/s

occ
[%]

BW
[GB/s]

unr. FLOPs
/cycle

GFLOPs
/s

occ
[%]

BW
[GB/s]

Freq
[MHz]

Logic
[%]

DSP
[%]

RAM
[%]

3 20 792 103 64 6.1 20 301 35 58 16.3 202 32 42 42

4 35 1332 164 66 6.1 20 301 42 75 12.3 187 35 60 46

5 14 576 99 86 2.3 28 397 60 75 11.6 201 37 39 61

6 12 504 74 83 1.2 56 913 102 95 13.4 176 38 48 72

• CPU Reference
– 2 x Xeon E5-2670v1, 2.60GHz
– 2 x 8 = 16 cores
– OpenMP and vectorized

• FPGA implementation outperforms dual-socket
Xeon by ~2x
– >100 GFLOP/s kernel designs
– using local RAM as buffers and constant memory
– achieving high off-chip bandwidth through decoupled

access

• Atypical application for FPGA, but works very well

25

Results: Performance and Scalability

[Kenter et al., OpenCL-based FPGA Design to Accelerate the Nodal Discontinuous Galerkin
Method for Unstructured Meshes, FCCM‘18]

29

Wrap Up

Example: Intel Stratix 10 GX2800 (used in Noctua)

• > 900,000 configurable logic blocks
– up to 4 Boolean functions of 8 inputs

• 5760 hardened arithmetic units (DSP)
– fixed point and IEEE 754 SP floating-point

• > 11,000 independent SRAM blocks
– width/depth/ports highly configurable

• integrated DDR4-2666 memory controllers
• 96 serial transceivers, up to 28.3 Gbps
• typically about 300-600MHz
• power consumption 50-225W

30

Capabilities of Todays Top-Of-The-Line FPGAs

100 TERRA-OPS

10 single-precision TFLOPS

20 TB/s internal SRAM bandwidth
(full duplex)

300 TB/s communication
bandwidth (full duplex)

up to 80 GFLOPS/W

31

How Can FPGAs Compete with CPUs or GPUs

• Compute-bound applications
– customization of operations and data formats
– new methods considering FPGA architecture

• Memory-bound applications
– unrolling and data flow computing with very deep

pipelines
– application-specific, distributed memory architectures

• Latency-bound applications
– speculative or redundant execution

• I/O-bound applications
– on-board network interfaces
– direct FPGA-to-FPGA communication

DRAM HBM

DRAM

O(10GB/s)

on-
chip

SRAM
O(10TB/s)

deep and/or
wide pipelines
with O(1000)
concurrent
operations

O(10GB/s)

HBM

HSSI

HSSI

O(100GB/s)

HBM: high-bandwidth memory
HSSI: high-speed serial interface, e.g. 100G Ethernet

• Demonstrated benefit of FPGAs for algorithms
working on unstructured grids

• State-of-the-art FPGAs provide a lot of
computation and communication performance

• Using high-level synthesis FPGAs can be
programmed without expert knowledge in digital
design

• Intersection of FPGA and HPC communities still
very small

• We are open for collaborations!

32

Conclusions

http://pc2.uni-paderborn.de

Further Information / Feedback

Christian Plessl
Paderborn University
christian.plessl@uni-paderborn.de

Twitter: @plessl @pc2_upb

mailto:christian.plessl@uni-paderborn.de

