
© 2019 Cray Inc.

C r a y P e r f o r m a n c e To o l s :

N e w F u n c t i o n a l i t y

a n d F u t u r e D i r e c t i o n s
Heidi Poxon

CUG, May 2019

© 2019 Cray Inc.

• Highlights since last CUG
• Ease-of-use
• Profiling at scale
• Data interpretation
• Application sensitivities

• What’s next

Content

2

© 2019 Cray Inc.

Do Not Assume You Know Your Application Profile

3

© 2019 Cray Inc.

• Which is dominant: computation or data movement and where?

• Is the program sensitive to memory bandwidth or memory latency?

• Is the program suffering from load imbalance and if so, where?

• What is the percent of peak memory bandwidth achieved?

• Is there any insight from the tool on the performance data collected?

4

© 2019 Cray Inc.

Cray Performance Tools
• Reduce the time investment

associated with porting and tuning
applications on Cray systems

• Analyze whole-program behavior
across many nodes to identify critical
performance bottlenecks within a
program

• Improve profiling experience by using
simple and/or advanced interfaces for
a wealth of capability that targets
analyzing the largest HPC jobs

Cray Performance Tools have profiled production applications with over 256,000 MPI ranks

5

© 2019 Cray Inc.

• Lite modes: simple interface for convenience

• Advanced interface for in-depth performance investigation and tuning assistance

• Both offer:
• Whole program analysis across many nodes
• Indication of causes of problems
• Ability to easily switch between the two interfaces

Two Modes of Use

Load module Build program Run

6

© 2019 Cray Inc.

Whole Program
Analysis
Subtitle here, if needed

© 2019 Cray Inc.

• Example application build scenario

• 12,382 Fortran files, some source created during pre-processing steps

• 2,079 C files, 965 of them created with pre-processing utility

• 54 C++ files

• 14,151 total source files to compile

• Creates 26 libraries

• Code takes 3 – 5 hours to compile depending on compiler used

• How do I obtain some performance information for this code?

When Waiting to Recompile Isn’t Practical…

8

© 2019 Cray Inc.

• To use: insert before executable in run command
• user@login> srun –n 16 pat_run ./my_program

• user@login> pat_report expdir > my_report

• pat_run now checks for dynamic vs static linked programs (-d option
asserts dynamic and skips validation)

• pat_run can profile MPMD codes:
• user@login aprun -n … \

pat_run a.out … pat_run b.out …

• pat_run requires dynamic linking and Linux 4.X kernel
• Not available on SLES 11 or Cray CS systems

Try pat_run, the ‘No-Re-Compile Necessary’ Tool !

9

© 2019 Cray Inc.

• Perftools now allows you to end an experiment early
• Just force the program to stop (abort, kill job, etc.)

• Collected data is processed as if it were the full run
• Useful for long running jobs
• Stepping stone to eventually get profile previews while job is running

Can’t Wait for a Profile?

10

© 2019 Cray Inc.

• pat_view takes multiple
experiment directories as input

• Helpful when assessing
performance differences
between runs

• Good for scaling analysis

Check Program Scaling with pat_view

11

© 2019 Cray Inc.

I s I t
Memory-bound?
and Other On-Node Analysis

© 2019 Cray Inc.

• Running perftools-lite identifies key program bottlenecks

• Running perftools-lite with default HW counters collected with each sample provides finer
granularity

• user@login> export PAT_RT_SAMPLING_DATA=perfctr@1

• Performance counter data presented in function profile

• perfctr@ratio will collect the selected performance counters in a specific frequency
• Ratio = 1 : Data will be collected each time the counter is sampled
• Ratio = 100 (default) : Data will be collected at every 100th sample

• It is helpful to run within a socket to avoid extra NUMA domains when analyzing application node
sensitivities

New Node Sensitivity Guidance

13

© 2019 Cray Inc.

Functions Slowed By Memory Bandwidth Utilization

The performance data for the functions shown below suggest that their performance is limited by memory
bandwidth. To confirm this, try running with fewer processes placed on each node.

Samp% | Memory | Stall | Function
| Traffic | PerCent | Numanode=HIDE
| / | | PE=HIDE
| Nominal | |
| Peak | |

|--
| 40.9% | 54.1% | 93.8% | daxpy_kernel_8
| 36.1% | 59.4% | 93.8% | dgemv_kernel_4x4
|==

Memory Bandwidth Sensitivity Guidance

14

© 2019 Cray Inc.

Example Traffic From an MPI+OpenMP Run

15

Notice remote
memory traffic by
OpenMP threads

Table 3: Memory Bandwidth by Numanode (limited entries shown)

Memory | Local | Remote | Thread | Memory | Memory | Numanode
Traffic | Memory | Memory | Time | Traffic | Traffic | Node Id=[max3,min3]
GBytes | Traffic | Traffic | | GBytes | / | PE=HIDE

| GBytes | GBytes | | / Sec | Nominal | Thread=HIDE
| | | | | Peak |

|---
| 184.47 | 173.59 | 10.89 | 11.578777 | 15.93 | 20.7% | numanode.0
||--
|| 183.50 | 173.59 | 9.91 | 11.569322 | 15.86 | 20.7% | nid.63
|| 182.61 | 172.40 | 10.21 | 11.578777 | 15.77 | 20.5% | nid.61
|| 178.55 | 167.75 | 10.80 | 11.563156 | 15.44 | 20.1% | nid.71
|| 178.10 | 168.14 | 9.96 | 11.562097 | 15.40 | 20.1% | nid.62
|| 178.08 | 168.07 | 10.01 | 11.564512 | 15.40 | 20.1% | nid.68
|| 178.01 | 167.20 | 10.82 | 11.572032 | 15.38 | 20.0% | nid.70
||==
| 60.36 | 14.73 | 45.62 | 9.073119 | 6.65 | 8.7% | numanode.1
||--
|| 60.36 | 14.73 | 45.62 | 9.072693 | 6.65 | 8.7% | nid.63
|| 59.88 | 14.33 | 45.55 | 9.071553 | 6.60 | 8.6% | nid.62
|| 59.48 | 14.19 | 45.29 | 9.068044 | 6.56 | 8.5% | nid.68
|| 58.78 | 13.70 | 45.08 | 9.069259 | 6.48 | 8.4% | nid.70
|| 58.67 | 13.87 | 44.81 | 9.071591 | 6.47 | 8.4% | nid.69
|| 58.53 | 13.86 | 44.67 | 9.067146 | 6.46 | 8.4% | nid.71
|===

© 2019 Cray Inc.

Functions with Low Vectorization

The performance data for the functions shown below suggest that their performance could be
improved by increased vectorization. Use compiler optimization messages to identify loops in
those functions that were not vectorized, and try to use directives or restructure the loops to
enable them to vectorize.

Samp% | Vector | Stall | Function
|intensity |PerCent | PE=HIDE
| | |Thread=HIDE

|--
|47.7% | 0.3%| 15.2% | depose_jxjyjz_esirkepov_1_1_1_
|==

Low Vectorization Guidance

16

© 2019 Cray Inc.

Functions Slowed By Memory Latency

The performance data for the functions shown below suggest that their performance is limited
by memory latency. It could be beneficial to modify prefetching in loops in those functions, by
modifying compiler-generated prefetches or inserting directives into the source code.

Samp% | Memory | Stall | Function
| Traffic | PerCent | Numanode=HIDE
| / | | PE=HIDE
| Nominal | |
| Peak | |

|--
| 72.8% | 34.8% | 33.9% | dim3_sweep$dim3_sweep_module_
|==

Memory Latency Sensitivity Guidance

17

© 2019 Cray Inc.

Improved pat_report Table Notes

Table 3: Profile by Function Group and Function

This table shows functions that have the most significant exclusive

time, taking for each thread the average time across ranks.

The imbalance percentage is relative to the team observed to

participate in execution.

Use -s th=ALL to see individual thread values.

For further explanation, see the "General table notes" below,

or use: pat_report -v -O profile_th_pe ...

Includes data aggregation

information

18

© 2019 Cray Inc.

Team Observed to Participate In Execution

Table 3: Profile by Function Group and Function

Samp% | Samp | Imb. | Imb. | Team | Group

| | Samp | Samp% | Size | Function=[MAX10]

| | | | | Thread=HIDE

| | | | | PE=HIDE

100.0% | 196.4 | -- | -- | -- | Total

|--

| 60.3% | 118.4 | -- | -- | -- | USER

||---

|| 56.8% | 111.5 | 55.7 | 99.9% | 2 | jacobi_mpiomp_

|| 1.4% | 2.8 | 1.5 | 31.8% | 16 | compute_diff_.LOOP@li.256

||===

Team size shows number of
threads participating or the
number of PEs, depending
on the context

19

© 2019 Cray Inc.

• NVIDIA Volta on Cray CS-Storm
• Available starting with perftools 7.0.2

• AMD Naples on Cray CS systems
• Available starting with perftools 7.0.2
• Includes CrayPat, Reveal, and Cray Apprentice2
• Access to performance counters not yet available

• Due to older RedHat/CentOS versions running on CS systems

• Intel CascadeLake on Cray XC
• Available starting with perftools 7.0.6

New Processor Support

20

© 2019 Cray Inc.

Profiling Python codes with CrayPat

Roofline plot to detect application sensitivities

Templates for profiling large, long running jobs

What’s Next?

21

© 2019 Cray Inc.

• Focus on whole program analysis

• Reduce the time investment associated with porting and tuning applications on new
and existing Cray systems

• Provide easy-to-use interfaces and a wealth of capability when you need it for
analyzing the most critical production codes

• Offer analysis and recommendations that focus on areas that impact performance
and scaling, such as

• Imbalance
• Communication overhead and inefficiencies
• Vectorization and memory utilization efficiency

Summary of Cray Performance Tools

22

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

23

Q U E S T I O N S ?

Thank You

