
# Impact of Large Jobs and Reservations on Cray Systems





Yun (Helen) He, Emily Zhang, Woo-Sun Yang, NERSC





#### **Outline**



- Introduction and goal for drain analysis
- Drain analysis definitions
- Impact from large jobs
- Impact from large reservations
- Hand-holding users running large jobs
- Impact from system monitoring benchmark runs
- New "flex" QOS to mitigate the impact



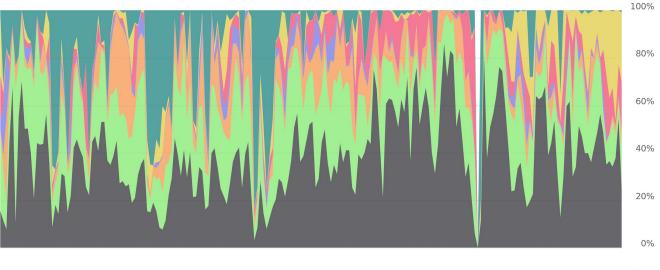


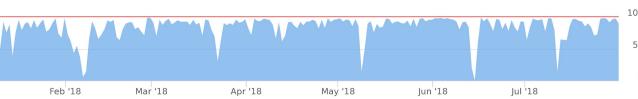
# **NERSC** production Cray systems



- Cori (Cray-XC40)
  - 9,688 KNL nodes
  - 2,388 Haswell nodes
- Edison (Cray-XC30)
  - 5,586 Ivybridge nodes
- Slurm batch scheduler used on both systems
  - QOS: regular, debug, premium, interactive, shared, realtime, etc.
  - Long queue backlogs








#### Cori KNL job size distribution, 1/10-7/31, 2018







~30% on KNL are jobs use >1,024 nodes

Utilization impacted by system maintenances and scheduling holes from large jobs and large reservations, even with queue backlogs.

Number of Nodes Used in Job

**●** 1-63 **●** 64-255 **●** 256-511 **●** 512-1023 **●** 1024-2047 **●** 2048-4095 **●** 4096+





#### **Introduction and Goal**



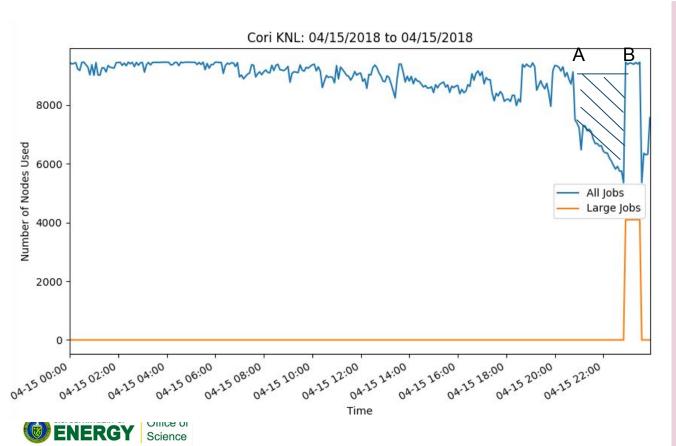
- When the batch scheduler gathers nodes for a large job or reservation, the system "drains" and affects utilization:
  - Fewer and fewer nodes can be used for other jobs except small and short "backfill" jobs that won't affect the start time of the large job.
- The goal of this study is understand the impact from large jobs and system reservations on Cori and Edison to system utilizations.
- We also investigated the impact of routinely run large SSP benchmarks on Cori, especially on Haswell.
- How could these results guide us to improve scheduling policies and help users?
- We used Slurm jobs database and python script for analysis.





#### **Definitions**




- Large Job or Large Reservation: a "regular" QOS job that uses or a reservations that requests:
  - > 2,048 Cori KNL nodes
  - or > 512 Cori Haswell nodes
  - or > 1,024 Edison nodes
  - Back-to-back reservations are counted as 1 due to no additional drain is needed.
- 95% Threshold: a predefined node count for perceived "normal" usage on each architecture for the "regular" QOS jobs.
  - 9,000 for Cori KNL (total 9,482 nodes)
  - 1,680 for Cori Haswell (total 1,772 nodes)
  - 5,150 for Edison (total 5,421 nodes)





## Example drain analysis of a large Job





The shaded area is the **Drain Node Hours**. This is the integrated area of "time duration" times "difference of total nodes used from threshold". (5 min interval)

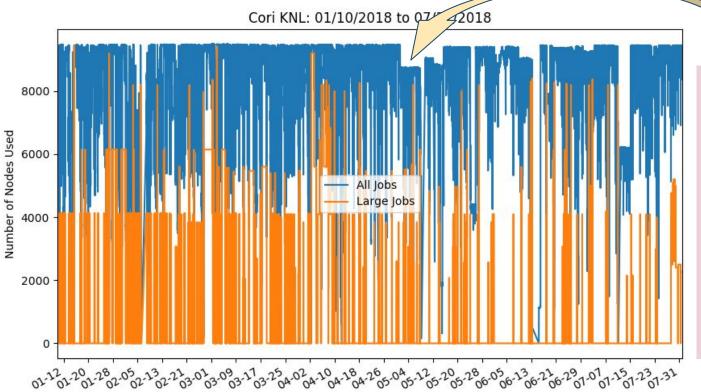
Time duration from A to B is the **Drain Time**.

**Drop-off Loss** is the percentage of the above Drain Time over Total Available node hours during the time period for this plot.

**Drop-off Ratio** is Node hours used by this job / Drain Time. The larger this ratio is, the worthier the drain is.

## For all large jobs during a time period




$$\frac{\Sigma \text{ (Large Jobs' Node Hours)}}{\Sigma \text{ (Total Drain Node Hours)}}$$





### **Drain analysis of large Cori KNL jobs**





Not counted in overall Drop-off calculation for large jobs run during this period of system degradation since total nodes used always < Threshold





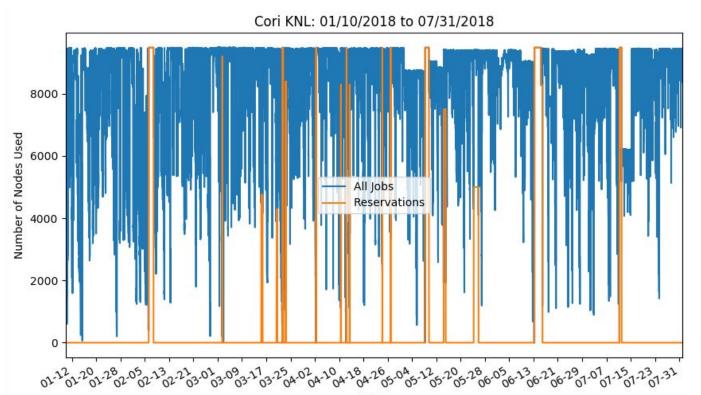
### **Drain analysis of large Cori jobs**



#### Cori Haswell, 1/10-7/31/2018

| Total Drain Time              | 170,684 Node Hours |
|-------------------------------|--------------------|
| Drop-off Ratio                | 1.48               |
| Drop-off Loss                 | 2.1% of Machine    |
| Average Drop-off Time         | 1.12 Hours         |
| Average Job Length            | 0.82 Hours         |
| Average Job Size              | 1,005.07 Nodes     |
| Total Number of Large<br>Jobs | 361 Jobs           |
| Total Number of Jobs          | 430,877 Jobs       |

#### Cori KNL, 1/10-7/31/2018


| Total Drain Time           | 2,684,876 Node Hours |
|----------------------------|----------------------|
| Drop-off Ratio             | 1.70                 |
| Drop-off Loss              | 6.5% of Machine      |
| Average Drop-off Time      | 1.62 Hours           |
| Average Job Length         | 1.67 Hours           |
| Average Job Size           | 4,263.34 Nodes       |
| Total Number of Large Jobs | 591 Jobs             |
| Total Number of Jobs       | 968,930 Jobs         |





# Drain analysis of large Cori KNL reservations Nersc





Full system reservations used for scheduled maintenances:

- Feb 6-7
- Mar 22
- May 8-9
- Jun 13-15
- Jul 11

And other large user reservations





### **Drain analysis of large Cori reservations**



#### Cori Haswell, 1/10-7/31/2018

|                                       | i                 |
|---------------------------------------|-------------------|
| Total Drain Time                      | 28,234 Node Hours |
| Drop-off Loss                         | 0.3% of Machine   |
| Average Drop-off Time                 | 3.47 Hours        |
| Average Reservation Length            | 22.40 Hours       |
| Average Reservation Size              | 2,164.5 Nodes     |
| Total Number of Large<br>Reservations | 8 Reservations    |
| Total Number of Jobs                  | 430,882 Jobs      |

#### Cori KNL, 1/10-7/31/2018

| Total Drain Time                      | 526,150 Node Hours |  |
|---------------------------------------|--------------------|--|
| Drop-off Loss                         | 1.3% of Machine    |  |
| Average Drop-off Time                 | 6.12 Hours         |  |
| Average Reservation Length            | 10.32 Hours        |  |
| Average Reservation Size              | 8,005.56 Nodes     |  |
| Total Number of Large<br>Reservations | 18 Reservations    |  |
| Total Number of Jobs                  | 968,935 Jobs       |  |
|                                       |                    |  |





### **Drop-off time and drop-off loss**



|                 | Large Jobs       |                                    |                                   | Large Reservations |                                     |                                      |
|-----------------|------------------|------------------------------------|-----------------------------------|--------------------|-------------------------------------|--------------------------------------|
|                 | Drop-off<br>Time | Drop-off<br>Loss (Per<br>Job Loss) | #jobs / Average<br>Large Job Size | Drop-off<br>Time   | Drop-off<br>Loss (Per<br>resv Loss) | #reservations /<br>Average Resv Size |
| Cori KNL        | 1.67 hr          | <b>6.5%</b> (0.0110%)              | 591 / 4,263<br>nodes              | 6.12 hr            | 1.3%<br>(0.0722%)                   | 18 / 8,006 nodes                     |
| Cori<br>Haswell | 1.12 hr          | 2.1%<br>(0.0058%)                  | 361 / 1,005<br>nodes              | 3.47 hr            | 0.3%<br>(0.0375%)                   | 8 / 2,164 nodes                      |
| Edison          | 2.01 hr          | 2.3%<br>(0.0106%)                  | 216 / 2,051<br>nodes              | 8.65 hr            | 0.6%<br>(0.1%)                      | 6 / 5,603 nodes                      |





### **Observations: large jobs and reservations**



#### Cori KNL:

- average large job size is 4,263 nodes, average drop-off time is 1.67 hr
- average large reservation is 8,006 nodes, average drop-off time is 6.12 hr

#### Cori Haswell:

- o average large job size is 1,005 nodes, average drop-off time is **1.12 h**r
- o average large reservation is 2,164 nodes, average drop-off time is **3.47 hr**
- The average drop-off time and drop-off loss per reservation is much larger than those per large job, due to average reservation sizes being much larger.
  - Reservations are expensive





#### Jobs of highest & lowest drain-worthiness



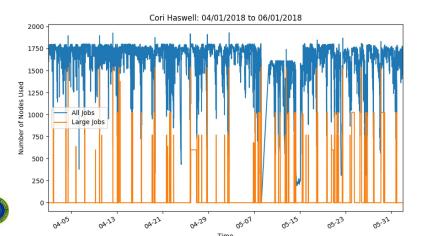
| User  | #jobs | Average job | Drop-off Ratio | Total Node Hours | Total Drain Time |
|-------|-------|-------------|----------------|------------------|------------------|
| рхххх | 9.00  | 2472.00     | 107.31         | 268493.00        | 2502.00          |
| hxxxx | 4.00  | 4096.00     | 46.68          | 6162.00          | 132.00           |
| jxxxx | 5.00  | 2151.00     | 32.10          | 17657.00         | 550.00           |
| nxxxx | 2.00  | 5000.00     | 30.47          | 80783.00         | 2651.00          |
| hxxxx | 21.00 | 6144.00     | 18.67          | 1267376.00       | 67898.00         |
| mxxxx | 5.00  | 3400.00     | 8.59           | 37715.00         | 4393.00          |
| uxxxx | 28.00 | 6631.00     | 5.41           | 1729949.00       | 319754.00        |
|       |       |             |                |                  |                  |
| lxxxx | 15.00 | 5768.00     | 0.17           | 11989.00         | 70101.00         |
| fxxxx | 73.00 | 3840.00     | 0.16           | 32178.00         | 196464.00        |
| lxxxx | 3.00  | 6144.00     | 0.15           | 4438.00          | 29545.00         |
| axxxx | 24.00 | 4096.00     | 0.10           | 10316.00         | 103259.00        |
| axxxx | 17.00 | 5024.00     | 0.09           | 6086.00          | 67020.00         |
| lxxxx | 7.00  | 4827.00     | 0.08           | 5993.00          | 77886.00         |
| mxxxx | 9.00  | 4186.00     | 0.05           | 1264.00          | 26142.00         |

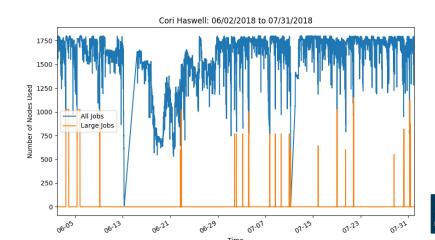
We analyzed all user large jobs and obtained individual users drop-off ratios.

We contacted each user at the bottom of the table individually

- -- helped debug job failures
- -- suggested bundle jobs and order jobs from large to small

to reduce drain cost and increase drain worthiness.




### "fbench" jobs analysis



- Staff user "fbench" runs regularly Cori SSP benchmarks. Does it have large impact on draining compared to other large jobs, especially on Haswell? Some benchmarks use close to >90% available regular QOS Haswell nodes.
- We changed from weekly runs in production to monthly runs dedicated under reservation from 6/1/2018.
- We performed two-month large jobs analysis before and after this change.









#### fbench jobs vs. non-fbench jobs on Haswell



#### 4/1 - 6/1 fbench only

| Total Drain Time           | 27,856 Node Hours |
|----------------------------|-------------------|
| Drop-off Loss              | 1.1% of Machine   |
| Average Drop-off Time      | 0.75 Hours        |
| Average Job Length         | 0.07 Hours        |
| Average Job Size           | 1226.67 Nodes     |
| Total Number of Large Jobs | 67 Jobs           |

#### 4/1 - 6/1 non fbench

| Total Drain Time           | 57,773 Node Hours |
|----------------------------|-------------------|
| Drop-off Loss              | 2.4% of Machine   |
| Average Drop-off Time      | 1.66 Hours        |
| Average Job Length         | 1.80 Hours        |
| Average Job Size           | 907.98 Nodes      |
| Total Number of Large Jobs | 103 Jobs          |





### **Observations: "fbench" SSP jobs**



- No strong evidence that "fbench" large SSP jobs affected system draining significantly.
  - Average fbench job size is larger than that of non-fbench jobs.
  - Average Drop-off Time and per job Drop-off Loss are smaller.
  - The above is due to the **optimal ordering of fbench SSP jobs** from biggest to smallest at submission which achieved minimal draining needed.
  - After June 1, the average Drop-off Time (no fbench jobs) is larger than before.
- It is management decision whether we run SSP Haswell benchmarks regularly (~weekly) or only during maintenances (~monthly)
  - 1.1% Drop-off Loss from 67 jobs ran 4/1-6/1.
  - Do we want to waste 1.1% to get weekly data or not?
    - No. So we are running monthly dedicated during system maintenances only since then.





#### What type of jobs are good for backfill



- The average drop-off time is related to the job size and wall time limit we need as backfill jobs.
- Variable-time jobs and low charge factors for small short jobs may help with getting more backfill to reduce the drain impact.
  - Variable-time jobs are jobs that request a time-min request and a regular wall time limit. The scheduler is free to allocate time duration between these two limits.
  - Attractive since it reduces wait time in the queue
  - Even more attractive if combines with queue discount





### New "flex" QOS to mitigate drain impact



- Encourage users to submit more small short jobs to be eligible as "backfill" jobs to run during system drains
- We added a new "flex" qos on KNL on April 22, 2019
  - For user jobs that can produce useful work with a relatively short amount of run time before terminating, such as jobs capable of checkpointing and restarting where left off
  - Helps to improve throughput by submitting jobs that can fit into cracks in Slurm job scheduling
  - Required to use "--time-min" of <= 2hrs, max "--time" is 12 hrs</li>
  - Free of charge during the first month
  - 4700 jobs ran in 2 weeks as of May 8. We will examine the effect of "flex" later.





#### **Summary**



- System drains caused by large jobs or large reservations are very costly to system utilizations.
  - The larger the size of a job or reservation is, the larger the drop-off time usually is, which could be up to 6 hrs on KNL.
  - Due to large number large KNL jobs ran, the overall Drop-off Loss adds up to 6.5%.
- The drain analysis helped us to mitigate these impacts by:
  - Encouraging users to analyze and optimize their behaviors in running large jobs.
  - Verifying staff benchmarking did not cause significant drain (1.1%).
  - Adding new "flex" qos to help getting more small and short jobs to fill the drain gaps.





#### Acknowledgement



• The drain analysis algorithm is inspired by and adapted from the algorithm developed by the Cray intern Mark Thornburg in 2014.







**Thank You** 



