URIKA-GX PLATFORM'S MULTI-TENANCY: LESSONS LEARNED

Oleksandr Shcherbakov, D. Hoppe, Dr. T. Bönisch, M. Gienger (HLRS)
S. Andersson, J. Kuebler, N. Mujkanovic (Cray)
OUTLINE

- Introduction to HLRS
- Data Analytics @ HLRS
- Urika-GX. Towards multi-tenancy
- Summer school
- Current state
- Summary
HIGH PERFORMANCE COMPUTING CENTER
STUTTGART (HLRS)

- Member of the Gauss Centre for Supercomputing
- Basic and applied research
 - Publicly funded national and European projects
 - Focused industrial collaborations
- Consultancy and training activities
- Providing High Performance Computing services
 - Academia
 - Industry
IMPORTANT HLRS SYSTEMS

HAZEL HEN CRAY XC40

- 7,712 nodes
- 185,088 cores Intel Haswell
- 7,40 PFLOPS Peak performance
- 1 PB main memory
- 15 PB disk storage

GILGAMESCH & ENKIDU CRAY URIKA-GX

- 64 nodes (48 + 16)
- 2,400 cores
- 33 TB main memory
- 100 TB HDFS Storage
CATALYST

- Project established in 2016 to evaluate and push the incorporation of data analytics for HPC
- Cooperation with Cray and Daimler
 - Real-world case studies with partners from academia and industry
- Focus on the engineering domain in comparison to the general application of data analytics for natural sciences
- Integration and evaluation of 2 Cray Urika-GX systems into the production environment of HLRS
 - Additional requirements concerning multi-user support and security arise
SELECTED CASE STUDIES

OVERVIEW

- “3D City over Night” (nFrames)
- EOPEN, an European H2020 project
- SmartSHARK (University of Goettingen)
- Performance variations in HPC jobs (HLRS)
“3D CITY OVER NIGHT” (NFRAMES)

- Company provides software for photogrammetry
- Aerial images are huge, and thus processing large areas with high resolution is very compute intensive
- nFrames deployed their application on our system in order to process an entire city “over night” compared to 100 days with a single workstation

https://www.nframes.com/gallery/
EOPEN—H2020 EUROPEAN PROJECT (2017–2020)

- Platform targeting non-expert Earth Observation (EO) data users, experts, and the SME community
- Make Copernicus data and services easy to use for Big Data
 - e.g. by providing infrastructure to support data analytics

http://eopen-project.eu/
EOPEN—H2020 (CONT’D)

- Image clustering of flooding images
 - Using TensorFlow with Keras
- Community detection in Twitter
 - Exploit the Cray Graph Engine
 - TBD in 2019
SMARTSHARK

- Project by the University of Goettingen
 - Steffen Herbold, Software Engineering for Distributed Systems
- Analysis of software projects
 - defect prediction
 - sentiment mining
 - detection of social networks
- SmartSHARK collects data from version control systems, and allows to seamlessly perform data analytics on the data using Apache Spark

https://www.swe.informatik.uni-goettingen.de/research/smartshark
SMARTSHARK (CONT’D)

- University of Goettingen has no access to required hardware to analyze large software repositories with several TB of data
 - data consists not just from all revisions of available files, but also additional software metrics (≈ 200 features)
- HLRS case study
 - build a logistic regression model over software code entity states to predict which commits likely fix defects
 - University of Goettingen was able to analyze a GitHub repository with more than 2 TB of data for the 1st time
PERFORMANCE VARIATION IN HPC JOBS

• Performance variability on HPC platforms is a critical issue with serious implications for the users
 ▪ Irregular runtimes prevent users from correctly assessing performance and from efficiently planning allocated machine time
 ▪ Hundreds of applications concurrently sharing thousands of resources escalate the complexity of identifying the causes of runtime variations
• On production systems, implementing trial-and-error approaches is practically impossible!
PERFORMANCE VARIATION IN HPC JOBS (CONT’D)

- What type of applications can impact the performance of other applications?
 - Victims
 - Applications that show high variability
 - Aggressors
 - Applications potentially causing the variability
- Understanding the nature of both types of applications is crucial for developing a meaningful detection mechanism
PERFORMANCE VARIATION IN HPC JOBS (CONT’D)

Victim Detection Approaches

1. Simple statistics
 - inter quartile distance
 - kernel density estimation
2. Machine learning and data mining techniques
 - neuronal networks
 - clustering (e.g. k-means)
URIKA-GX
TOWARDS MULTI-TENANCY
“Secure multi-tenancy is the key to utility computing, and now we can scale more securely”

Aisling MacRunnels CMO, JIVE Software
WHAT WAS WRONG?..
...apart from admin:admin
URIKA-GX V 1.0

- HDFS - "Simple" authentication by default
- No authentication in Mesos:
 - Any user could start jobs as any other user
 - Also as root (default configuration)
- munge credentials as environment variables for Marathon jobs
 - cron job with credentials for root
- No authentication in YARN
 - `http://.../?user.name=root`
URIKA-GX V 2.0

- Tenant VMs
 - Jobs are executed bare-metal
 - Commands are wrapper-scripts like (simplified):
 `ssh host $0`
URIKA-GX V 2.1+

- Multi-tenancy
- Kubernetes (k8s)
 - Multi-tenancy is work-in-progress
- A user can mount host file systems, including /
- Default user in containers is root
- No authentication for Docker Registry
- "It’s not a bug, it’s a feature"
URIKA-GX 2.2UP02

released
CUSTOMER'S REQUIREMENTS

SUMMER SCHOOL

Proof of concept
REQUIREMENTS

- Users must not be able do download or copy the data
- Cassandra
- Knime

https://www.knime.com/
IMPLEMENTATIONS

- (Default mode)
- xorgxrdp
- Desktop VMs for each user
- Spark Job Server (SJS) as Spark-Knime connector
- Mesos and Hadoop ACLs for SJS
- Cassandra
- Fortigate VPN
- LDAP connections for all services
PROBLEMS ENCOUNTERED

- SJS met ulimit -u -S
- spark.port.maxRetries = 16
- Summer school pilot was running in "Default" mode
CURRENT STATE

- Urika-GX 2.1+, multi-tenancy on k8s with Cray wrappers
- Cassandra on k8s
- “spark-submit only”
CASSANDRA ON K8S

- **Statefulset**
 - Provides guarantee regarding ordering and uniqueness of pods
 - Pods created from same spec, but not interchangeable

- **LocalPersistentVolume**
 - Mounted local storage device
 - Ensures pod-to-node affinity
 - Must be manually created
 - Enabled alpha feature in Kubernetes 1.9

- **PersistentVolumeClaim**
 - Consumes persistent volume and binds to pod
CASSANDRA INSTALLATION (ABSTRACT VIEW)
SUMMARY

- Data analytics @ HLRS
 - Evaluation of Urika-GX in a real production environment
 - Focus on solutions for the engineering domain
 - Close collaboration with academia and industry
 - Collaboration partners are always welcome
- Security
 - Data analytics apps are not secure with default settings
 - Secure multi-tenancy support is still an ongoing challenge
THE END

Oleksandr Shcherbakov
High Performance Computing Center Stuttgart
Nobelstrasse 19
70569 Stuttgart
Phone: +49-711-685-87201
Email: shcherbakov@hlrs.de