
© 2019 Cray Inc.

Kristyn Maschhoff <kristyn@cray.com>

Mike Ringenburg <mikeri@cray.com>

Mustafa Mustafa <mmustafa@lbl.gov>

Tu to r i a l : Ana l y t i c s and A I
on C ray Sys tems

CUG 2019
Mustafa Mustafa (NERSC), Kristyn Maschhoff, Mike Ringenburg (Cray)

© 2019 Cray Inc.

• Session I: 8:30-10:00
• Welcome and Introductions
• Urika XC and CS overview (Mike)
• Introduction to Deep Learning (Mike)
• Hyperparameter Optimization (Kristi)

• Break: 10:00-10:30
• Session II: 10:30-12:00

• Distributed Deep Learning (Mustafa)
• Cray PE ML Plugin Update (Kristi/Pete)

• Lunch:12:00-1:00
• Session III: 1:00-2:30

• Hands-on Deep Learning (Mustafa)
• Spark and Dask (Mike)

• Break: 2:30-3:00
• Session IV: 3:00-4:30

• R and pbdR (Kristi)
• Cray Graph Engine (Kristi)
• Hands-on: HPO, R, Cray Graph Engine (Kristi)

Agenda

This Photo is licensed under CC BY-SA-NC

http://www.eoi.es/blogs/mintecon/2013/06/09/la-gestion-del-tiempo/
https://creativecommons.org/licenses/by-nc-sa/3.0/

© 2019 Cray Inc.

Don’t miss the Data Science Bird of a Feather
Session right after this tutorial!

Tools and Utilities for Data Science Workloads
and Workflows

Speakers from KAUST, CSCS, and Cray
Salle Edward C

Monday, 4:40-6:00PM

© 2019 Cray Inc.

Ur ika-XC and
Urika-CS

© 2019 Cray Inc.

CRAY URIKA® SUITES

Focus Analytics and AI software suite on a leadership supercomputer platform
for Analysis, Machine Learning, Deep Learning and Graph applications

Scale Any scale form single node to 1000s of nodes

Infrastructure Cray Linux Environment, Centos, Cray Aries, InfiniBand™, Omni Path,
Shifter containers (XC), Singularity containers (CS)

Key Capabilities

• Apache Spark Environment
• Anaconda and Dask Python-based Environment
• Programming with Big Data in R (pbdR) Distributed Environment
• Keras, TensorFlow, PyTorch and BigDL for Deep Learning
• Distributed DL Training Frameworks – Horovod, CrayPE ML plugin
• Distributed Hyperparameter Optimization (HPO)
• Cray Graph Engine (XC only)

© 2019 Cray Inc.

CRAY URIKA SUITES
INTEGRATED AND READY FOR THE CRAY XC AND CS SERIES

Reduce Time and Complexity
of AI Environments

• Right tools for today’s data-intensive environments
• Easy to use parallelization for distributed deep learning

Expand the use of your XC/CS
Series Investments

Pre-integrated AI software package that is current with evolving AI
frameworks/tools

Make your researchers and data
scientists more productive

AI and Analytics side-by-side with research and simulation

© 2019 Cray Inc.

Urika-XC/CS Focus: Support the Entire AI Workflow

Deep Learning
workflows are not
limited to training

Similar to other HPC and
analytics workloads,
significant portions of DL
jobs are devoted to data
collection, preparation and
management.

Data
Acquisition

Data
Preparation

Model
Training

Model
Testing

• Cleansing
• Shaping
• Enrichment

Data Annotation
(Ground Truth)

Test
Set

Validation
Set

Train
Model

Evaluate Performance and
optimize model

Cross-
Validation

Iterative

Training
Set

© 2019 Cray Inc.

CRAY URIKA-CS AI & ANALYTICS SUITE

Pre-integrated and supported AI stack with popular open source AI frameworks and libraries delivered in a

container for ease of development and deployment

UIs: Jupyter Notebooks, TensorBoard

MLlib,Spark

SQL, Spark

Streaming,

GraphX

BigDL

Anaconda

Python, Dask
pbdR

PyTorch Keras,

TensorFlow™

Apache Spark™
Distributed Training Framework

Horovod, CrayPE ML Plugin

Intel® MKL, Intel MKL-DNN, OpenMPI

© 2019 Cray Inc.

CRAY URIKA-XC AI & ANALYTICS SUITE

Pre-integrated and supported AI stack with popular open source AI frameworks and libraries delivered in a
container for ease of development and deployment

UIs: Jupyter Notebooks, TensorBoard

MLlib,Spark
SQL, Spark
Streaming,
GraphX

BigDL

Anaconda
Python,
Dask

pbdR

PyTorch Keras,
TensorFlow™ Cray Graph

Engine
(CGE)

Apache Spark™
Distributed Training

Framework
Horovod, CrayPE ML Plugin

Intel® MKL, Intel MKL-DNN, Cray MPI

© 2019 Cray Inc.

EASILY LEVERAGE SYSTEM RESOURCES
FOR BIG DATA ANALYTICS & AI

nidA nidB nidC nidD

nidE nidF nidG nidH

User
Slurm/
PBSPro
allocation

Shifter
Container:

Master Node

Container:
Worker Node

Container:
Worker Node

Container:
Worker Node

Container:
Worker Node

Container:
Worker Node

Container:
Worker Node

Shifter
Container:
Interactive

Node

Spark master
Dask scheduler

Spark worker
Dask worker

Bash shell
Conda manager
Jupyter Server

Compilers

start_analytics
launches containers

© 2019 Cray Inc.

INCLUDES ANACONDA DISTRIBUTION

• Large set of data science packages
• 250+ Python and R packages preinstalled
• >1000 available in repositories
• Many optimized – e.g., work with Intel Python

team
• Conda environment manager

• Linked to conda repos for more Python and R
packages

• Ability to create, clone, share custom
environments with your own python/package
versions

• Handles all dependencies

• Allows sharing environments

© 2019 Cray Inc.

OPTIMIZED DISTRIBUTED DEEP LEARNING
TRAINING WITH CRAY PE ML PLUGIN

Users can easily achieve ideal scaling performance across multiple DL

frameworks, such as TensorFlow, utilizing stochastic gradient descent

• Load a module

• Plug in few simple lines to the serial Python or C-based

training script

• Tunable through API and environment variables

• Scale up training workload to hundreds of nodes on Cray systems

Highly optimized communication plugin tuned for Cray XC and CS Series

systems and DL workloads

• Perfectly overlaps gradient communication with computation

Delivers high performance and scale for XC and CS Series node

architectures

• NVIDIA® Tesla® GPUs, Intel® Xeon® , and AMD EPYC™

Keras, PyTorch, TensorFlow™

Cray Distributed Training Framework
(Cray PE ML Plugin)

Open MPI, Cray MPI

A scalable solution to accelerate
Deep Learning training

© 2019 Cray Inc.

OPTIMIZED DISTRIBUTED DEEP LEARNING
TRAINING WITH HOROVOD
• Urika-CS and Urika-XC now include Horovod distributed training

framework for TensorFlow, Keras, and PyTorch

• Enables optimization of CNN distributed model training on dense GPU
systems

• Enables faster time to model accuracy

• Leverages the Cray MPI library on Urika-XC and OpenMPI on Urika-CS

• Open sourced by Uber, significant ongoing contributions from NVIDIA and
others

• General Recommendation for use (current release*):

• Use Cray PE ML plugin on XC Series and CS500 systems

• Use Horovod on CS-Storm dense-GPU systems

• In session II, Pete Mendygral will discuss some next-release
enhancements to the Cray PE ML plugin for dense-GPU systems

© 2019 Cray Inc.

HYPERPARAMETER OPTIMIZATION

Cray HPO
• New Distributed Hyper Parameter Optimization (HPO) tools for machine

learning that automates the time-consuming process of model selection and

parameter setting – enabling data scientists to achieve a desired level of
model accuracy in a shorter amount of time

• Leverages Deep learning and Analytics stack

• Allows seamless distribution via familiar WLM

Supports three techniques for HPO
• Genetic optimization

• Grid sweep

• Random search

Supports Population Based Training (PBT)
• Learn a custom training parameter schedule while training

• Trains a better model in less time

© 2019 Cray Inc.

Jupyter Notebooks
Interactive computing and visualization

TensorBoard
• Visualize training

• Examine DNN layers

• Run live (monitor training)
or after-the-fact

WEB UI FOR INTERACTIVITY & MONITORING

© 2019 Cray Inc.

In t roduct ion to
Deep Learning
Mike Ringenburg

© 2019 Cray Inc.

A Specific Example

• An organic gardener is building a robot in his garage to recognize the 10
insects found in his garden, and decide which ones to kill with a laser

• The robot will have a camera, and will capture JPEG files of the insects

• The robot needs a ‘program’ to classify each JPEG according to which of
the 10 kinds of insect was photographed

This Photo is licensed
under CC BY-SA

JPEG ‘Program’
“That’s a
Japanese
beetle”!

This Photo is licensed under CC BY

https://en.wikipedia.org/wiki/Japanese_beetle
https://creativecommons.org/licenses/by-sa/3.0/
http://blogs.lse.ac.uk/impactofsocialsciences/2014/02/10/the-death-of-the-theorist-in-digital-social-research/
https://creativecommons.org/licenses/by/3.0/

© 2019 Cray Inc.

Inputs & Outputs
• Our input is a JPEG

• 224x224 pixels, 3 colors à a 224x224x3 element vector of the pixel values

• Our output is a classification

• One of 10 categories à a 10 element vector with a “1” in the position
representing the category to which the image belongs

How many “IF” statements will we need to figure out that a bunch of pixel values is a Japanese beetle?

This Photo is licensed
under CC BY-SA

JPEG ‘Program’
“That’s a
Japanese
beetle”!

This Photo is licensed under CC BY

https://en.wikipedia.org/wiki/Japanese_beetle
https://creativecommons.org/licenses/by-sa/3.0/
http://blogs.lse.ac.uk/impactofsocialsciences/2014/02/10/the-death-of-the-theorist-in-digital-social-research/
https://creativecommons.org/licenses/by/3.0/

© 2019 Cray Inc.

This is an Artificial Intelligence Problem

• If you can’t get the output from the input with a bunch of loops and
conditionals, it’s AI

• But, if that won’t work, how can we do it?

This Photo is licensed
under CC BY-SA

JPEG ‘Program’
“That’s a
Japanese
beetle”!

This Photo is licensed under CC BY

https://en.wikipedia.org/wiki/Japanese_beetle
https://creativecommons.org/licenses/by-sa/3.0/
http://blogs.lse.ac.uk/impactofsocialsciences/2014/02/10/the-death-of-the-theorist-in-digital-social-research/
https://creativecommons.org/licenses/by/3.0/

© 2019 Cray Inc.

This is an Artificial Intelligence Problem

• If you can’t get the output from the input with a bunch of loops and
conditionals, it’s AI

• But, if that won’t work, how can we do it?

• Hint #1: Any mapping of inputs to outputs is a function
• Hint #2: A function can be approximated using a (good) approximating function

This Photo is licensed
under CC BY-SA

JPEG ‘Program’
“That’s a
Japanese
beetle”!

This Photo is licensed under CC BY

https://en.wikipedia.org/wiki/Japanese_beetle
https://creativecommons.org/licenses/by-sa/3.0/
http://blogs.lse.ac.uk/impactofsocialsciences/2014/02/10/the-death-of-the-theorist-in-digital-social-research/
https://creativecommons.org/licenses/by/3.0/

© 2019 Cray Inc.

An Approximating Function

• How can we determine a good approximating function?

• Choose its form (linear, polynomial, …)

• Minimize the overall error at a finite number of
inputs with known outputs - - fit the curve

• We have to find the values of the free
parameters of the function that minimize the
error – it doesn’t matter how we do it

Fitting the curve by adjusting free parameters is
training the function to know the answer for
arbitrary inputs

This Photo is licensed under CC BY-SA

http://stats.stackexchange.com/questions/66199/maximum-likelihood-curve-model-fitting-in-python
https://creativecommons.org/licenses/by-sa/3.0/

© 2019 Cray Inc.

Training via Gradient Descent
• We want to approximate y=f(x)

• Really, we want to find a function that maps a set of inputs to a set of outputs, to
some level of accuracy

• We know yi=f(xi), for i=1,N
• Iterate:

• First iteration only: initialize the free parameters of f
• Calculate error (over our N known points)
• Calculate gradient of error, as a function of the free parameters of function f
• Adjust the free parameters of function f a ‘small’ distance in the direction of the

negative of the error gradient
• Assess convergence & stop when ‘good enough’

© 2019 Cray Inc.

Training Error and Validation Error

• Here, we chose the function
y=ax+b, with “a” and “b” as the
free parameters

• “a” and “b” were chosen to
minimize the training error, using
the 5 points shown

• If we test this function against a
distinct set of known data points,
we could determine the
validation error

y = 0.8889x + 0.8156

0

2

4

6

8

10

12

0 2 4 6 8 10 12

y

© 2019 Cray Inc.

A Really Useful Kind of Function
• This image shows a deep

neural network

• An approximating function,
with free parameters called
weights and biases

• Deep networks have been
found to be especially
powerful

• Neural networks can
approximate any
continuous function
arbitrarily wellX

f(X)

© 2019 Cray Inc.

The Big Picture

• Training a “sufficiently complex” neural network on a “large” and
“representative” data set should allow it to “know” about novel data

• If we show the neural network 1,000,000 pictures of cats, it should
recognize new pictures of cats

• If we only show the network pictures of black cats, it might not recognize
white cats

• If the network only has 4 “neurons”, it probably can’t learn to recognize cats

© 2019 Cray Inc.

Some Terminology

• The training data consists of training examples

• Each example is an input with a known correct output, called a label

• Having labeled examples is a special but common case, and we won’t go
deeper on this topic today

• A subset of the training data is often called a minibatch
• One ‘trip’ through the whole training set is called an epoch

• Often, bookkeeping, convergence testing, checkpointing, etc. are done
after each epoch

© 2019 Cray Inc.

Gradient Descent Algorithm

Calculate
gradient, using

the entire
training set

Use gradient to
update the

model

Converged
? Done

Yes

No

© 2019 Cray Inc.

Training Schematic

Weights

Weights

Weights

Error

dW

dW

dW

Weights

Weights

Weights

dW

dW

dW

One or more training examples
feedforward through the layers
of weights, producing an output

The error, which is the
difference between the
label and the output, is
backpropagated through
the layers, producing the
gradients

The weights are
updated by adding
the gradients (scaled
by a multiplier) to
them

Weights

Weights

Weights

Example

Output

+ Label

Feedforward
Backpropagate Update

Feedforward and
backpropagate are
much more
expensive than
update (>100X)

© 2019 Cray Inc.

Variations on the Gradient Descent Algorithm
• Stochastic Gradient Descent

• A gradient is calculated, and the model is updated, for each training
example

• Batch Gradient Descent

• The training examples are divided into minibatches

• A gradient is calculated and the model is updated for each minibatch

• Strict Gradient Descent is seldom if ever used

• Strict Stochastic Descent is seldom if ever used

• Batch Gradient Descent is almost always used

• And, everyone calls it Stochastic Gradient Descent (SGD)

© 2019 Cray Inc.

Parallelizing SGD

• Data parallel methods

• “Minibatch Parallel”

• Every worker independently calculates a “local gradient” using a “local
minibatch”

• All workers participate in an allreduce, or communicate with a parameter
server, to average all the gradients and synchronize with other workers

• Model parallel methods

• Break the neural network up – different layers on different nodes

• Useful if the model is too large for a single node

• But often more communication than data parallel methods

© 2019 Cray Inc.

For More Information…

A good overview:

Efficient Processing of Deep Neural Networks: A Tutorial and
Survey

https://arxiv.org/abs/1703.09039

https://arxiv.org/abs/1703.09039

© 2019 Cray Inc.

TensorFlow

• Developed by Google

• Most popular DL framework

• Large open source community

• APIs for

• Python

• C++

• Go

• Java

• Optimized for CPU and GPU architectures

• Ships with Urika-XC

• Learn TensorFlow

• Docs: https://www.tensorflow.org/get_started/

• Programmer’s Guide: https://www.tensorflow.org/programmers_guide/

• Tutorials: https://www.tensorflow.org/tutorials/

https://www.tensorflow.org/get_started/
https://www.tensorflow.org/programmers_guide/
https://www.tensorflow.org/tutorials/

© 2019 Cray Inc.

Keras

• High-level neural networks API – just add layers!
• New versions of TensorFlow include Keras APIs

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

© 2019 Cray Inc.

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

Construct Model

• High-level neural networks API – just add layers!
• New versions of TensorFlow include Keras APIs

© 2019 Cray Inc.

• High-level neural networks API – just add layers!
• New versions of TensorFlow include Keras APIs

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

Configure Model for Training

© 2019 Cray Inc.

• High-level neural networks API – just add layers!
• New versions of TensorFlow include Keras APIs

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

Train Model

© 2019 Cray Inc.

• High-level neural networks API – just add layers!
• New versions of TensorFlow include Keras APIs

model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3),activation='relu’,input_shape=ish))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size,

epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)

Keras

Evaluate Model

© 2019 Cray Inc.

H ype rpa rame te r

Op t im i za t i on

Kristyn Maschhoff, Ph.D., Cray Inc.

kristyn@cray.com

© 2019 Cray Inc.

• Introduce the concept of Hyperparameter Optimization (HPO)
• What are hyperparameters?
• Why are they important?

• Introduce automatic distributed hyperparameter optimization
• Using the Cray HPO library

• Demo HPO Jupyter Notebook integration on Cori
• Hands-On Exercises

Goals of this Session

‹#›

© 2019 Cray Inc.

• Model parameters – internal values in a model determined from data
• In neural networks: weights (connection, bias)

• Model hyperparameters – external values to model that determine model capacity
• In neural networks:

• Topology:
• Number of neurons in fully connected layers
• Filters, kernel sizes, convolutional / pooling strides
• Nonlinearity: logistic, ReLU, tanh

• Training:
• Learning rate, batch size, momentum
• Dropout probability, batch normalization
• Optimizers (SGD, Adam, RMSProp, AdaGrad, etc)

Background: Hyperparameters

‹#›

© 2019 Cray Inc.

• By hand
• Hyperparameters are selected and tuned manually
• Guided by intuition and rules of thumb

• Hyperparameter optimization
• Brute-force of entire search space intractable

• More combinations of hyperparameters than atoms in the observable universe
• Evaluate a subspace

• Grid search
• Random search
• Bayesian
• Genetic / evolutionary algorithms

Background: Hyperparameter Optimization

‹#›

crayai.hpo

© 2019 Cray Inc. 42

Hyperparameter Optimization

• Grid Search
• Random Search
• Genetic / Evolutionary Algorithms (“population-based training”)

(-510,19)
(313,-199)

(-10,-919)
(314,159)

(58,747)

(657,430)

(-10,-919)

(58,747)

© 2019 Cray Inc.

• Finding a good set of hyperparameters can have a big impact:

• Accuracy

• Time-to-accuracy

• Preventing underfitting / overfitting

• Analysts consistently highlight importance of HPO in their workflows

Background: Importance of Hyperparameters

‹#›

© 2019 Cray Inc.

• LeNet-5, 7 layers, 5 hidden:

• MNIST, 70k 28x28 greyscale images, 10 classes:

HPO Example – LeNet and MNIST

‹#›

© 2019 Cray Inc. 45

HPO Results – LeNet on MNIST

© 2019 Cray Inc.
46

Another Example: Machine Translation PBT

• Neural Machine Translation (NMT)

• Encoder-decoder architecture

• Recurrent neural network

• English to French

© 2019 Cray Inc. 47

Population Based Training

• Optimize hyperparameters and
parameters

• Hyperparameters optimized
as usual with GA / EA

• Parameters optimized with
checkpoint / restore:

• At the end of each epoch,
population copies best
parameters

• Creates a “training schedule”
with customized epochs checkpoint / restore

© 2019 Cray Inc.

• Cray integrated HPO support with Python
interface and Chapel backend

• Supported distributed optimization as well
as distributed training

• E.g., 20 nodes, 5 HPO instances each
training on 4 nodes

• Simple steps to use:
• Create a python wrapper script

• Define optimizer and configuration
• Provide parameters, search range and

executable command

• Run wrapper script to optimize

48

Cray Hyperparameter Optimization

hpo_example.py

from crayai import hpo

eval = hpo.Evaluator(‘python …’)
params = ([[“--learning_rate”, 0.01, (1e-6, 0.1)],

[“--dropout_rate”, 0.5, (0.3, 0.7)],
...]

Optimizer = hpo.{genetic,grid,random}.Optimizer(
params, eval, launcher=“urika”,
generations=5)

__
$ python hpo_example.py

© 2019 Cray Inc.

• The Cray HPO package comes with Urika integration
• Leverages deep learning and analytics resources of the Urika image
• Allows seamless distribution with workload managers

• Supports three techniques for HPO
• Genetic optimization
• Grid sweep
• Random search

• Supports Population Based Training
• Learn a custom training parameter schedule while training
• Trains a better model in less time

Cray Hyperparameter Optimization

‹#›

© 2019 Cray Inc. 50

Interface: Model Training Script

Expose hyperparameters
as command line args

Utilize hyperparameters
from command line args

Print field of merit

© 2019 Cray Inc. 51

Interface: HPO Script
Import crayai module

Set model training script

Provide hyperparameters flags,
default values, and
bounds/possible values

Setup and run hyperparameter
optimizer

Results stored in optimizer object

© 2019 Cray Inc. 52

CrayAI HPO Strategies

• Traditional HPO
• Grid Search
• Random Search
• Genetic Search

• Schedule training
• Population-based Training

© 2019 Cray Inc. 53

Grid Search

• Advantages
• Simple
• Easily parallelizable

• Disadvantages
• Curse of dimensionality
• Computation expense

• Baseline HPO

Learning Rate

W
ei

gh
t D

ec
ay

© 2019 Cray Inc. 54

Grid Search: Example

© 2019 Cray Inc.

• Advantages
• Simple
• Easily parallelizable
• More efficient than grid

• Disadvantages
• Computation expense

Random Search

‹#›
Learning Rate

W
ei

gh
t D

ec
ay

© 2019 Cray Inc.

• Generate random hyperparameters

• Simple yet surprisingly effective

• Samples each hyperparameter at a higher rate for a given computation

‹#›

Random Search

“for any distribution over a sample space with a finite maximum, the maximum of 60

random observations lies within the top 5% of the true maximum, with 95% probability.”

© 2019 Cray Inc. 57

Random Search: Example

© 2019 Cray Inc.

• Think of a genetic algorithms applied to HPO as:

• “Automatic, iterative, stochastic grid search with pruning.”

• Inspired by biological systems found in nature:

• Mutation

• Crossover

• Selection

Genetic Search

‹#›

© 2019 Cray Inc. 59

Genetic Search: Generation Cycle

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

Create initial population
around default HPs.

Choose pair of
parent NNs.

Train in TF and get
NNs’ accuracy.

Create child from
parents with crossover

and mutation.

Kill old population;
children “grow up”.

© 2019 Cray Inc.

Evaluate

60

Genetic Search: Founder

Initial HPs

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 61

Genetic Search: Initial Mutation

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

Mutated HPs

© 2019 Cray Inc. 62

Genetic Search: Evaluate Fitness 1

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 63

Genetic Search: Mate Selection 1

Parent A

Parent B

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 64

Genetic Search: Reproduction 1

Child C1

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 65

Genetic Search: Mate Selection 2

Parent A

Parent B

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 66

Genetic Search: Reproduction 2

Child C2

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 67

Genetic Search: Mate Selection 3

Parent A

Parent B

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 68

Genetic Search: Reproduction 3

Child C3

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 69

Genetic Search: Reproduction N

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 70

Genetic Search: Next Generation

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 71

Genetic Search: Evaluate Fitness 2

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 72

Genetic Search: Evaluate Fitness 1

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 73

Genetic Search: Evaluate Fitness 2

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 74

Genetic Search: Evaluate Fitness N

Evaluate

Founder

Mutation

Selection
Reproduce
Next Gen

© 2019 Cray Inc. 75

Genetic Search: Example

© 2019 Cray Inc. ‹#›

Genetic Search: Example Verbose Output
Global best FoM, improvement
from original HPs, average

Global best HPs

Local best HPs per deme

Results logged per generation

Local best FoM, average per deme

© 2019 Cray Inc.

• Train hyperparameters and parameters simultaneously
• Apply genetic search to find best set of hyperparameters per epoch
• Results in a training schedule adapted to model and data

‹#›

Population-based Training

© 2019 Cray Inc.

• Originally published from Google DeepMind in November, 2017
• Not widely available in other HPO frameworks yet

• CrayAI’s PBT improves upon DeepMind’s PBT (publication pending)
• Reproduction with probabilistic multi-point crossover between 3 parents

• 2 hyperparameter parents
• 1 parameter parent

• Advantages:
• Increased speed of adaptation
• Increased ability to shed deleterious genes from population

• Especially helpful for large numbers of HPs

‹#›

Population-based Training

© 2019 Cray Inc.

• Resnet-20

• CIFAR-10

PBT Example1: ResNet-20 on CIFAR-10

‹#›

© 2019 Cray Inc. 80

PBT Example1: Results

• 11% reduction in error

(relative)

• 103 Cicero nodes (4,944

IVB cores)

• Runtime:

1 epoch in ~5 min

© 2019 Cray Inc. 81

PBT Example1: Training Schedule

• Discovered improved
training schedule

• Optimizes both:
• Learning rate

• Weight decay

© 2019 Cray Inc. 82

PBT Example1: Training Schedule

• Discovered improved
training schedule

• Optimizes both:
• Learning rate

• Weight decay

© 2019 Cray Inc.

• Current distribution mechanism utilizes system workload managers

• Existing strategies are trivially parallellizable

• Easy to support across Cray systems

• Supports launching multiple distributed model trainings within an allocation

• Launching schemes available to users:

• local

• Slurm

• given a slurm job ID or from an existing salloc

• Urika

• Must be on an existing allocation, supports slurm, pbs, moab torque

‹#›

Distribution

© 2019 Cray Inc.

S t a t u s a n d N e x t S t e p s

84

© 2019 Cray Inc.

• Available in Urika XC 1.2 and Urika CS 1.1

• Accessible through analytics module or crayai module:

> module load crayai
> module load analytics

• Being tested early by users

• Updates to documentation

• Actively addressing user feedback

‹#›

Status

© 2019 Cray Inc.

• Continue improving HPO features

• More options for configuring a given optimizer or evaluator

• Distinct PBT module

• Improve workload manager interface

• Implement new strategies

• Bayesian

• Lower the barrier to contributing new HPO strategies

• Solidify and document interface between internal objects

• Allow anyone to easily contribute their own HPO strategy

‹#›

Next Steps

© 2019 Cray Inc.

Do I fully understand my data? Does it
need to be cleaned?

D A T A

E X P L O R A T I O N

Which features should be used
for accurate predictions?

S E L E C T I N G

F E A T U R E S

What are the correct values to set the
variables to before training?

H Y P E R

P A R A M E T E R S

Which ensemble of AI/ML models will
be more performant?

M O D E L

E N S E M B L E S

Do I trust my model? Why
does it predict that way?

M O D E L

R A T I O N A L E

DISCOVERY ROADBLOCKS
D a t a S c i e n c e P a i n P o i n t s

© 2019 Cray Inc.

• Population Based Training of Neural Networks
https://arxiv.org/pdf/1711.09846.pdf

• Random Search for Hyper-parameter Optimization
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

• The MNIST Database of Handwritten Digits (MNIST Dataset)
http://yann.lecun.com/exdb/mnist/

• Recombination of Artificial Neural Networks
https://arxiv.org/abs/1901.03900

• Gradient Based Learning Applied to Document Recognition (LeNet CNN)
http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

‹#›

References

https://arxiv.org/pdf/1711.09846.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1901.03900
http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

© 2019 Cray Inc.

• Aaron Vose – early development of EvoDevo

• HPO framework

• Ben Albrecht

• balbrecht@cray.com

• Alex Heye

• aheye@cray.com

Acknowledgements

‹#›

mailto:balbrecht@cray.com
mailto:aheye@cray.com

© 2019 Cray Inc. 90

H P O H a n d s - o n E x e r c i s e s
NERSC Cori system

© 2019 Cray Inc.

• On Cori:

• /global/cscratch1/sd/kristyn/CUG2019/crayai_hpo/README.cori

• /global/cscratch1/sd/kristyn/CUG2019/crayai_hpo/examples

• Example 1: HPO with Topology (Tensorflow)

• Traditional approach using simultaneous optimization of
hyperparameters controlling NN topology and training hyperparameters

• Example 2: HPO with PBT (Tensorflow)

• Population-based training example with genetic search

• Generating the learning rate schedule

• Example 3: HPO with the Cray ML PE Plugin (PyTorch)

Hands-on examples

91

© 2019 Cray Inc.

• Genetic algorithm optimization applied to LeNet-5 (MNIST) Tensorflow example
• Optimization of hyperparameters controlling NN topology and training hyperparameters
• LeNet-5 consists of two convolutional layers, each of which is followed by a subsampling

layer, and then a pair of fully-connected layers with a final output layer

• Hyperparameters used for HPO
params = hpo.Params([["--dropout", 0.5, (0.005, 0.9)],

["--momentum", 1.0e-4, (1.0e-6, 1.0e-2)],
["--c1_sz", 5, (2, 8)],
["--c1_ft", 32, (8, 128)],
["--c2_sz", 5, (2, 8)],
["--c2_ft", 64, (16, 256)],
["--fullyc_sz", 1024, (64, 4096)]])

Example 1: HPO with Topology

‹#›

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

93

THANK YOU
Q U E S T I O N S ?

© 2019 Cray Inc.

Spark and Dask
on Cray Systems
Mike Ringenburg

© 2019 Cray Inc.

Agenda

• Introduction to Spark

• History and Background

• Computation and Communication Model

• Spark on the XC40

• Installation and Configuration
• Local storage

This Photo is licensed under CC BY-SA-NC

http://www.eoi.es/blogs/mintecon/2013/06/09/la-gestion-del-tiempo/
https://creativecommons.org/licenses/by-nc-sa/3.0/

© 2019 Cray Inc.

What is Spark?

• Analytics and ML framework released in 2014
• Originally from Berkeley AMPLab/BDAS stack, now

Apache project
• Native APIs in Scala. Java, Python, and R APIs

available as well.
• Many view as successor to Hadoop MapReduce

• Aimed to address some shortcomings of Hadoop
MapReduce

• More programming flexibility – not constrained to
one map, one reduce, write, repeat.

• Many operations can be pipelined into a single in-
memory task

• Can "persist" intermediate data rather than

This Photo is licensed under CC BY-SA

• Aimed to address some shortcomings of Hadoop MapReduce
• More programming flexibility – not constrained to one map, one reduce,

write, repeat.
• Many operations can be pipelined into a single in-memory task
• Can "persist" intermediate data rather than regenerating every stage

https://commons.wikimedia.org/wiki/File:Apache_Spark_logo.svg
https://creativecommons.org/licenses/by-sa/3.0/

© 2019 Cray Inc.

Spark Execution Model
• Master-slave parallelism
• Driver (master)

• Executes main
• Distributes work to executors

• Executors (slaves)
• Lazily execute tasks (local operations on partitions

of the RDD)
• Rely on local disks for spilling data that's too large,

and storing shuffle data
• Resilient Distributed Dataset (RDD)

• Spark's original data abstraction
• Partitioned amongst executors
• Fault-tolerant via lineage
• Dataframes/Datasets extend this abstraction

Driver
main()

…
Executor

Task

Task

Node 1

Executor

Task

Task

Executor

Task

Task

Node N

Executor

Task

Task

Node 0

= Java Virtual Machine Instance

= TCP Socket-based communication

Local disk(s)

Local disk(s)

© 2019 Cray Inc.

DAGs, Pipelining, and Lazy Evaluation
• Spark is lazily evaluated

• Operations are only executed when and if needed

• Needed operations: return result, or parent of needed
operation

• Spark DAG (Directed Acyclic Graph)

• Transformation APIs (operations that produce new RDDs) just
add a new node to the DAG, indicating data dependencies
and operation

• Action APIs (return data) trigger execution of DAG nodes

• If an node’s dependencies are exclusively on local data from its
parent(s), the operations can be pipelined into a single task

• Spark stage: Execution of task on all RDD partitions

• Every stage ends with a shuffle (all-to-all communication), an
output, or returning data back to the driver.

• Global barrier between stages. This Photo is licensed under CC BY-SA

http://stackoverflow.com/questions/35146482/spark-scala-transformations-immutability-memory-overheads
https://creativecommons.org/licenses/by-sa/3.0/

© 2019 Cray Inc.

Spark Communication
Model (Shuffles)

• All data exchanges between
executors implemented via shuffle

• Senders (“mappers”) send data
to block managers; block
managers write to disks, tell
scheduler how much destined for
each reducer

• Barrier until all mappers
complete shuffle writes

• Receivers (“reducers”) request
data from block managers that
have data for them; block
managers read and send

Map task
thread

Block
manager

Disk

Reduce
task

threadRequest

TCP

Spark
Scheduler

Shuffle write

Shuffle read

Meta data

© 2019 Cray Inc.

Spark Example: Word Count
val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

flatMap maps one
value to (possibly)

many, instead of one-
to-one like map

groupByKey combines all
key-value pairs with the

same key (k, v1), …, (k,vn)
into a single key-value pair

(k, (v1, …, vn)).

Collect returns all
elements to the driver

Load file

• Let's like at a simple example: computing the number of
times each word occurs

• Load a text file
• Split it into words
• Group same words together (all-to-all communication)
• Count each word

More efficient: replace
group and sum with

reduceByKey

© 2019 Cray Inc.

val lines = sc.textFile("mytext")
val words = lines.flatMap (

line => line.split(" ")
)

val wordKV = words.map(s => (s, 1))
val groupedWords = wordKV.groupByKey()
val wordCounts = groupedWords.map(

t => (t._1, t._2.sum)
)

val counts = wordCounts.collect()

The Spark DAG

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

Execute!

© 2019 Cray Inc.

Execution

"fox jumps
over"

"the brown
dog"

"the quick
brown"

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

© 2019 Cray Inc.

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

No cr
oss-

node

dependencie
s: o

perations

pipelined into sin
gle ta

sk

© 2019 Cray Inc.

Execution

"fox jumps
over"

"the brown
dog"

(the, 1)
(brown, 1)
(dog, 1)

"the quick
brown"

(the, 1)
(quick, 1)
(brown, 1)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Write shuffle data to local file system

Barrier
HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

© 2019 Cray Inc.

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, (1))
(brown, (1, 1))

(fox, (1))
(jumps, (1))
(over, (1))

(the, (1, 1))
(dog, (1))

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

Fetch shuffle data from remote file systems

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

© 2019 Cray Inc.

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

These are also
 pipelined

into a sin
gle ta

sk
per

node

© 2019 Cray Inc.

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

… Collect

© 2019 Cray Inc.

Execution

"the quick
brown"

"fox jumps
over"

"the brown
dog"

(quick, 1)
(brown, 2)

(fox, 1)
(jumps, 1)
(over, 1)

(the, 2)
(dog, 1)

(the, 1), (quick,
1), (brown, 1)

(fox, 1), (jumps,
1), (over, 1)

(the, 1), (brown,
1), (dog, 1)

HDFS Block 1

…HDFS Block 2

HDFS Block N

Partition 1

Partition 2

Partition N

Split 1

Split 2

Split N

Pair 1

Pair 2

Pair N

Group 1

Group 2

Group N

… … … …
Count 1

Count 2

Count N

…

Take(2)

© 2019 Cray Inc.

Spark on Cray XC

© 2019 Cray Inc.

Spark on XC: Typical Setup Options
• Cluster Compatibility Mode (CCM) option

• Set up and launch standalone Spark cluster in CCM mode; run interactively from
Mom node or submit batch script

• An example recipe can be found in:
“Experiences Running and Optimizing the Berkeley Data Analytics
Stack on Cray Platforms”, Maschhoff and Ringenburg, CUG 2015

• Container option
• Shifter container runtime (think “Docker for XC”) developed at NERSC
• Acquire node allocation: run master image on one node, interactive image on

another, worker images on rest
• Cray’s Urika-XC analytics suite uses this approach

• Challenge: Lack of local storage for Spark shuffles and spills.

© 2019 Cray Inc.

Reminder: Spark Shuffle –
Standard Implementation

• Senders (“mappers”) send data to
block managers; block managers
write to local disks, tell driver how
much destined for each reducer

• Barrier until all mappers complete
shuffle writes

• Receivers (“reducers”) request data
from block managers that have data
for them; block managers read from
local disk and send

• Key assumption: large, fast local
block storage device(s) available on
executor nodes

Map task
thread

Block
manager

Disk

Reduce
task

threadRequest

Driver
(scheduler,
block and

shuffle trackers)

Shuffle write

Shuffle read

Meta data

Node

© 2019 Cray Inc.

Shuffle on XC – Version 1

• Problems: No local disk on standard XC40
• First try: Write to Lustre instead

• Biggest Issue: Poor file access pattern for lustre (lots of small files, constant
opens/closes). Creates a major bottleneck on Lustre Metadata Server (MDS).

• Issue 2: Unnecessary extra traffic through network

Map task
thread

Block
managerLustre

Reduce
task

threadRequest

© 2019 Cray Inc.

Shuffle on XC – Version 2

• Second try: Write to RAMDisk
• Much faster, but …
• Issues: Limited to lessor of: 50% of node DRAM or unused DRAM; Fills up

quickly; takes away memory that could otherwise be allocated to Spark
• Spark behaves unpredictably when it's local scratch space fills up (failures not

always simple to diagnose)

Map task
thread

Block
managerRAMDisk

Reduce
task

threadRequest

© 2019 Cray Inc.

Shuffle on XC – Version 3

• Third try: Write to RAMDisk and Lustre
• Set local directories to RAMdisk and lustre (can be list)
• Initially fast and keeps working when RAMDisk full
• Issues: Slow once RAMDisk fills; Round robin between directories (no bias towards faster

RAM)

Map task
thread

Block
managerRAMDisk

Reduce
task

threadRequest

TCP

Lustre

© 2019 Cray Inc.

Shuffle on XC – Version 3

• Third try: Write to RAMDisk and Lustre

• Set local directories to RAMdisk and lustre (can be list)

• Initially fast and keeps working when RAMDisk full

• Issues: Slow once RAMDisk fills; Round robin between directories (no bias towards faster
RAM), but can specify multiple RAM directories

Map task

thread

Block

managerRAMDisk

Reduce

task

threadRequest

TCP

Lustre

© 2019 Cray Inc.

Shuffle on XC – with Shifter PerNodeCache

• Shifter implementation: Per-node loopback file system
• NERSC’s Shifter containerization (in Cray CLE6) provides optional loopback-mounted per-node temporary

filesystem

• Local to each node – fully cacheable

• Backed by a single sparse file on Lustre – greatly reduced MDS load, plenty of capacity, doesn’t waste space

• Performance comparable to RAMDisk, without capacity constraints (Chaimov et al, CUG ‘16)

• Urika-XC ships as a Shifter image and uses this approach

Map task
thread

Block
manager

Sparse,
cacheable “local”

filesystem

Reduce
task

threadRequest

TCP

Lustre
File

© 2019 Cray Inc.

Spark Performance on XC: HiBench

0	

20	

40	

60	

80	

100	

120	

Sc
ala
Km
ea
ns
	

Sc
ala
Pa
ge
ra
nk
	

Sc
ala
Sle
ep
	

Sc
ala
So
rt	

Sc
ala
Te
ra
so
rt	

Sc
ala
W
or
dc
ou
n

Sc
ala
Ba
ye
s	

El
ap

se
d	
?
m
e	
(s
)	

Performance	of	HiBench	on	XC40	vs	Urika-XA	
Huge	Scale:	48	nodes,	12	cores/node		

XC40		

Urika-XA		

• Intel HiBench

• Originally MapReduce, Spark
added in version 4

• Compared performance with
Urika XA system

• XA: FDR Infiniband, XC40:
Aries

• Both: 32 core Haswell nodes
• XA: 128 GB/node, XC40: 256

GB/node (problems fit in
memory on both)

• Similar performace on Kmeans,
PageRank, Sleep

• XC40 faster for Sort, TeraSort,
Wordcount, Bayes

© 2019 Cray Inc.

How can we make this even better?

Don’t miss the Alchemist talk on Wednesday!
Salle Edward C

Wednesday, 1:00 PM

© 2019 Cray Inc.

Dask and Dask Distributed
• Dask

• Set of parallel collections and operations for Python

• Integrated with most common packages, e.g., parallel
version of numpy arrays

• Supports multiple task schedulers

• Threaded scheduler

• Backed by low-overhead thread pool

• Subject to Python Global Interpreter Lock (GIL)

• Best if application dominated by non-Python code

• Multi-process scheduler

• Tasks shipped to separate local processes

• Not subject to Python GIL – allows true on-node parallelism

• Low overhead to launch/utilize pool, but overhead of moving data

• Best for mostly Python code (allows parallelism even with GIL)

© 2019 Cray Inc.

Dask and Dask Distributed

• Distributed scheduler

• Dask scheduler for multi-node parallelism

• Runs a scheduler on one node, workers
across allocated nodes

• Nanny processes for fault tolerance
• Supports distributed versions of all Dask

data structures

• Allows asynchronous execution (futures)

client scheduler

nanny

worker

nanny

worker

nanny

worker

© 2019 Cray Inc.

Setting Up a dask.distributed Cluster on Cray

• Set up a dask distributed environment in anaconda python
• conda create --name mydask dask distributed

• Get allocation
• salloc -N 4

• Activate dask distributed
• source activate mydask

• Start scheduler on one node, start workers on rest
• Urika-XC can do this automatically:

• start_analytics --dask-env mydask

• Otherwise can use ssh or srun/aprun (details will vary based on your system)

THANK YOU
Q U E S T I O N S ?

mikeri@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

© 2019 Cray Inc.

kristyn@cray.com

HPC and Ana l y t i c s w i t h R

Kristyn Maschhoff, Ph.D., Cray, Inc.

© 2019 Cray Inc.

• R project for Statistical Computing
• https://www.r-project.org
• Environment for statistical computing and graphics
• “GNU S”
• Freely available – but note most R packages have licenses

• (GPL-2, GPL-3, MIT, Apache, etc.)
• Latest Version R 3.6.0 (Planting of a Tree)

• R version 3.6.0 (2019-04-26) -- ”Planting of a Tree"
• CRAN - The Comprehensive R Archive Network

• https://cran.r-project.org
• Network of ftp and web servers that store identical, up-to-date, versions of code and

documentation for R
• R manuals

• https://cran.r-project.org/doc/manuals/

What is R?

‹#›

https://www.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/doc/manuals/

© 2019 Cray Inc.

• R community was developed with the goal of interactive exploration of data

• Basic R interactive console – provided with standard distribution

• Many R users work use R using an IDE

• RStudio is by far the most popular IDE for R

• R Markdown files and R Notebooks

• Files have extension .Rmd

• R can also be run using Jupyter Notebooks

• Install IRKernel

Interactivity and R

‹#›

© 2019 Cray Inc.

• Versions of R on Cray-XC
• Cray PE version
• R provided with Urika-XC

• Installing R packages
• Using Anaconda to manage R packages and multiple R versions (environments)
• pbdR Ecosystem provided on Urika-XC 1.2

What we plan to cover in the tutorial

‹#›

© 2019 Cray Inc.

• Cray PE provides R prebuilt with Cray libsci using the GNU compiler
• module load cray-R
• Currently supported version is 3.4.2 (2017-09-28)

• R is also provided within Urika-XC image
• Urika-XC 1.2

• R version 3.5.1 (2018-07-02) -- "Feather Spray"
• R prebuilt with openBLAS + GNU compiler
• R built as a shared/dynamic library
• pbdR Ecosytem pre-installed using Cray MPI (initial base set of packages)
• Support for using Jupyter notebooks via IRKernel

• Urika-XC 1.3
• R version 3.6.0 (2019-04-26) -- ”Planting of a Tree"

Versions of R provided on XC

‹#›

© 2019 Cray Inc.

• Bring up R on login node and install needed packages

• Need external access to download packages

• In general, most tested, and most reliable compiler for R packages are the GNU

compilers (gcc, gfortran)

• Note, if using a site-installed version, any additional installed packages will be saved

to a location in your home directory

• ~/R/x86_64-pc-linux-gnu-library/3.5

> R packages we will be using for the tutorial

> install.packages(“foreach”)

> install.packages(“doParallel”)

> install.packages(“rlecuyer”)

> install.packages(“randomForest”)

> install.packages(“SPARQL”)

Installing R Packages from CRAN

‹#›

© 2019 Cray Inc.

• Use start_analytics -d
• Specify interactive node to run on login node
• Better connectivity than from XC compute node

• For Urika-XC 1.2
• R version 3.5.1 (2018-07-02) -- "Feather Spray"
• User packages installed to

• ~/R/x86_64-pc-linux-gnu-library/3.5

Installing R packages within Urika-XC

‹#›

© 2019 Cray Inc.

kristyn@cicero:~> module load analytics
kristyn@cicero:~> start_analytics –d

Once inside the container, bring up R
interactive shell to install packages

bash-4.2$ R

Inside R interactive shell

> install.packages("foreach")

Installing package into ‘/usr/lib64/R/library’

(as ‘lib’ is unspecified)

Warning in install.packages("foreach") :

'lib = "/usr/lib64/R/library"' is not writable

Would you like to use a personal library instead? (y/n) y

Would you like to create a personal library

~/R/x86_64-pc-linux-gnu-library/3.5

to install packages into? (y/n) y

13
2

Running R using Urika-XC

© 2019 Cray Inc.

• Anaconda R
• Quite useful for managing R packages and multiple R environments on XC
• List of R language packages available for install from conda is located at http://repo.continuum.io/pkgs/r/
• R Essentials bundle includes about 100 of the most popular packages for R
• Most recent version available: r-essentials 3.5.1

> conda create --name myR -c r r-essentials
> source activate myR

• Also can specify specific versions of R

> conda create --name myR_3.2.2 -c r r=3.2.2

• When using an older version of R it works better to create the conda environment first, activate this, then install the
allowing packages, allowing conda to manage the package version dependencies

> source activate myR_3.2.2
> conda install -c r r-essentails r-xml

Managing R using Anaconda

‹#›

http://repo.continuum.io/pkgs/r/

© 2019 Cray Inc.

• On SLURM-based systems (with Shifter SPANK plugin installed)

• salloc -N 4 --image=custom:analytics-1.01.0000.201712122205_0082-latest
start_analytics –ssh

• On interactive node

�# Determine nid allocations

�echo “$SLURM_NODELIST” or env | grep SLURM

�SLURM_NODELIST=nid0000[4-7]

�# Start up R

�R

Enabling ssh between nodes using start_analytics

‹#›

© 2019 Cray Inc.

• Basic functionality

• Runs 'Rscript' on the specified host(s) to set up a worker process which

listens on a socket for expressions to evaluate, and returns the results (as

serialized objects).

• Commonly used R packages which then build upon the “parallel” package

• “foreach” package

• Provides looping construct

• “doParallel” package

• Provides mechanism needed to execute foreach loops in parallel

• https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

Simple Parallel Socket Cluster

‹#›

https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

© 2019 Cray Inc.

� library(parallel)

� library(foreach)

� library(doParallel)

� machineVec <- c(rep("nid00004",4), rep("nid00005",4), rep("nid00006",4), rep("nid00007",4))

� cl <- makeCluster(machineVec)

� # To use the "foreach", we need to register the cluster with

� registerDoParallel(cl)

� getDoParWorkers()

� # sequential execution

� system.time(foreach(i=1:100000) %do% sum(tanh(1:i)))

� # parallel execution

� system.time(foreach(i=1:10000) %dopar% sum(tanh(1:i)))

� mcoptions <- list(preschedule=FALSE, set.seed=FALSE, cores=4)

� system.time(foreach(i=1:100000,.options.multicore=mcoptions) %dopar% sum(tanh(1:i)))

Example Code: using foreach and doParallel

‹#›

© 2019 Cray Inc.

• Standard approach – use Rprof
• Profile R code is to use

the Rprof function to profile and
the summaryRprof function to
summarize the result

�help(Rprof)

�Rprof(tmp <- tempfile())
�example(glm)
�Rprof()
�summaryRprof(tmp)

14
0

R profiling

© 2019 Cray Inc.

• Set of highly scalable R packages for distributed computing
in data science

• http://r-pbd.org/
• George Ostrouchov, Wei-Chen Chen, Drew Schmidt,

Pragneshkumar Patel
• Winner of the Oak Ridge National Laboratory 2016

Significant Event Award for "Harnessing HPC Capability at
OLCF with the R Language for Deep Data Science

Programming with Big Data in R (pbdR)

‹#›

http://r-pbd.org/

© 2019 Cray Inc.

• The Urika-XC 1.2UP00 image ships with an optimized version of R, built with OpenBLAS
• R version 3.5.1 (2018-07-02) -- ”Feather Spray"
• OpenBLAS 0.2.19 (from latest Debian libopenblas-dev package)

• Added new run_pbdR command
• Allows the user to execute a distributed R application inside the Urika image using

the pbdMPI package
• Sets up the run-time environment to utilize optimized R library provided in the Urika-

XC image along with the pbdR ecosystem and Cray MPI communication libraries.
• pbdR on Urika-CS 1.1

• Singularity
• Utilizes system optimized openMPI libraries

pbdR Ecosystem – Urika-XC & Urika-CS

‹#›

© 2019 Cray Inc.

pbdR component Description

pbdMPI simple R interface for MPI programming

pbdBASE Base utilities for distributed matrices

pbdSLAP The Scalable Linear Algebra Package (distribution of ScaLAPACK)

pbdDMAT A distributed matrix of classes and methods. This package includes
numerous methods for manipulating and reshaping distributed matrices, as
well as linear algebra and statistics routines

pbdML Machine learning algorithms

pmclust Tools for parallel model-based clustering. These include k-means and
Gaussian mixture modeling

pbdIO Parallel I/O packages (SPMD)

pbdR Ecosystem – initial set of packages

‹#›

© 2019 Cray Inc.

Procedure

Using run_pbdR

‹#›

mpi_hello_world.r

load the package
suppressMessages(library(pbdMPI, quietly = TRUE))

initialize the MPI communicators
init()

Hello world
message <- paste("Hello from rank", comm.rank(),

"of", comm.size())
comm.print(message, all.rank=TRUE, quiet=TRUE)

shut down the communicators and exit
finalize()

Load the analytics module

$ module load analytics

Obtain job allocation

$ salloc -N 4

$ run_pbdR -n 4 --ppn 16 “Rscript ./mpi_hello_world.r”

Run distributed R application

© 2019 Cray Inc.

• Laptop

• pbdR Docker builds hosted on dockerhub

• https://hub.docker.com/u/rbigdata/

• pbdR Dockerfiles on github

• https://github.com/RBigData/docker

• Tutorial/Workshop

• https://github.com/RBigData/docker/tree/master/special/workshop

pbdR – Getting started

‹#›

https://hub.docker.com/u/rbigdata/
https://github.com/RBigData/docker

© 2019 Cray Inc.

• HPSC Cookbook – Wei-Chen Chen
• https://snoweye.github.io/hpsc/cookbook.html

• In addition there are several tutorials available with source code available for
download

• Tutorials 1 and 2 both use the Iris dataset already available with base R install

pbdMPi – beyond “Hello World”

‹#›

https://snoweye.github.io/hpsc/cookbook.html

THANK YOU
Q U E S T I O N S ?

kristyn@cray.com

© 2019 Cray Inc.

kristyn@cray.com

CRAY GRAPH ENGINE

(CGE)

Kristyn Maschhoff, Ph.D., Cray, Inc.

© 2019 Cray Inc.

• Background on CGE
• Pattern matching, whole-graph analysis
• Trillion Triples benchmark (CUG 2018)

• Hands-on exercises
• Build and start up a database (cge-launcher)
• Run queries

• Using the cge-cli command line
• Using the CGE Web UI

• Integration with R and Python
• Connecting to the CGE SPARQL endpoint

• Using R SPARQL package
• Using Python SPARQLwrapper package

What we plan to cover in the tutorial

‹#›

© 2019 Cray Inc.

• Scalable parallel graph analytics framework
• Semantic in-memory graph database

• Basic graph pattern search
• Graph-theoretic algorithms (whole graph algorithms)

• W3C Standards Based
• Uses RDF Data representation
• Uses SPARQL as query language

• Built for “vertical scaling” based on parallel and distributed computing
principles — competitors are all horizontally scaled

• Brings interactivity to graph-based discovery
• Scaling and performance enables interactive analysis of very large datasets

Cray Graph Engine (CGE)

‹#›

© 2019 Cray Inc.

• Multi-Architecture Support
• CGE is available on the Urika-GX and the XC platforms.
• Strong scaling becomes a key differentiator

• Bigger datasets => more nodes => better performance
• Integration with Spark

• Interface to data sources - support for end-end analytic workflow realization
• Integration with Python/Jupyter Notebooks

• Connect to SPARQL endpoint using sparqlwrapper or sparql-client packages
• CGE Python API – utilizes the CGE Java API

• Start up server, run queries, updates, checkpoint, shut down
• Integration with R

• SPARQL package – connect to SPARQL endpoint, run queries, updates

Cray Graph Engine: Updates and Features

‹#›

© 2019 Cray Inc.

• Resource Description Framework (RDF)
• A standardized abstract data model centered around the notion of Triples
• A Triple expresses a directed relationship between two entities e.g.

• Components of a Triple are commonly known as Subject, Predicate and
Object

• Subject – The thing I am making a statement about
• Predicate – The relationship being stated
• Object – The thing which is related

What is RDF?

‹#›

Rob Cray
WorksFor

http://www.cray.comhttp://www.dotnetrdf.org/people/RobVesse (URIs)

http://schema.org/worksFor

© 2019 Cray Inc.

• Two main workloads
• Pattern matching
• Whole graph analysis

• Typical systems only good at one

• CGE excels at both

Graph analysis workloads

‹#›

© 2019 Cray Inc.

Given a pattern of interest find all instances thereof…

A Graph-pattern matching workload

‹#›

© 2019 Cray Inc.

LUBM Query 9

What SPARQL Can Do

‹#›

Basic Graph Pattern (BGP)

• Primary unit of search for the

SPARQL query language

• A SPARQL query always

starts with a BGP, followed by

additional filters, joins, or other

operators

• Subgraph isomorphism

problem

• Consists of SCAN, JOIN,

MERGE phases

SELECT ?pupil, ?prof, ?class
WHERE
{ ?pupil rdf:type ub:Student .

?prof rdf:type ub:Faculty .
?class rdf:type ub:Course .
?pupil ub:advisor ?prof .
?prof ub:teacherOf ?class .
?pupil ub:takesCourse ?class

} class

advisor

teacherOf

takesCourse

pupil

prof

Student

Course Faculty

type

type

type

© 2019 Cray Inc. 15
9

A Graph-theoretic Workload

What is the ranking of the targeted vertex?

What's the shortest route from A to B?

© 2019 Cray Inc.

• Current CGE release supports SPARQL 1.1 features
• SPARQL 1.1 Released 2011

• Basic pattern matching, filters, unions
• SPARQL 1.1 Update (SPARUL) functionality added

• INSERT, DELETE, LOAD, DROP

• Not supported in Current CGE release
• Some features of Property paths
• SERVICE keyword

• Special CGE features not in SPARQL 1.1
• Built-in Graph Functions (BGFs)
• Interval Analytics Functions
• Haversine Functions
• Square Root Functions

SPARQL versions

‹#›

© 2019 Cray Inc.

• RDF and SPARQL are graph-oriented, but SPARQL is limited in its ability to
express graph processing

• We augmented SPARQL with a capability of calling library graph algorithms

• You can go from SPARQL to a graph algorithm and back to SPARQL for further
refinement

• The whole is greater than the sum of its parts

Built-in Graph Functions (BGFs)

‹#›

© 2019 Cray Inc.

• BadRank

• PageRank

• S-T connectivity

• Betweenness centrality

• Community detection via Label Propagation

• S-T Set connectivity

• Triangle Counting

• Triangle Finding

• Vertex Triangle Counting

Directions and input parameters are in the manual…

Status: what we now have on Urika-XC

‹#›

© 2019 Cray Inc.

Interval functions can be used to gather fine-grained detail about intervals. For
example, you can use them to:

• Determine whether or not two or more time intervals intersect.

• Determine if a time period that ends at the same time is contiguous with one that
starts at the same time.

• Determine the continuity of a given time period.

Interval Analytics Functions For Temporal Analysis

‹#›

© 2019 Cray Inc.

• Square Root
• sqrt(argument)
• Fairly self-explanatory, not in SPARQL 1.1

• Urika Haversine Functions
• haversinemeters(latStart, longStart, latEnd, longEnd)
• haversinemiles(latStart, longStart, latEnd, longEnd)
• The haversinemeters() function returns the distance between two points in

meters, whereas the haversinemiles() function returns the distance between
two points in miles.

Geospatial Functions

‹#›

© 2019 Cray Inc.

Cambridge Semantics, Oct 2016

• Second to achieve a trillion triples

• Dedicated in-memory semantic
database, but it is horizontally scaled
and more cloud-oriented

• LUBM 4400K, Turtle format, also
created 1T triples after inferencing.
Data generated and loaded from local
SSD on-node

• Software / hardware:

• Anzo Graph Query Engine (AGQE)

• 200 nodes Google Compute
Platform, each 32 vCPUs, 208 GB

Oracle, September 2014

• First to achieve trillion triples

• Uses a semantic layer over their
standard Relational database product

• Disk-based with an SSD cache

• LUBM 4400K, N-Triples format,
created 1T triples after inferencing

• Software / hardware:
• Oracle Database 12c

• Exadata X4-2 High capacity full rack, 8
DB nodes, 14 storage nodes

16
7

State of the Art for Trillion Triples

© 2019 Cray Inc. 16
8

Comparison of Trillion Triples benchmarks

Software Load time Inference time Query time

Oracle
Database 12c

115.2 hours 86.5 hours 22.5 hours

Cambridge
Semantics
AGQE

1764 seconds 4574 seconds 840 seconds

Cray CGE
(2018)

4124 seconds 535 seconds 98 seconds

© 2019 Cray Inc.

• CGE can accommodate all
relevant databases in one
environment

• Enables seamless cross-
database queries

• Able to load relevant and realistic
life sciences datasets in minutes
rather than hours or days

• Build time: 10 minutes (256 nodes)

• Load time: 105 sec (256 nodes)

Dataset Size
(GB)

of Triples

Biomodels (r31) 0.2 1057465

Biosamples (v20160912) 61 352661330

ChEMBL (23.0) 75 496019419

Ensembl (Jan 2018) 307 1926736803

Expressionatlas (18-05-2017) 138 685755602

OLS (March 2018) 9.6 73898957

Reactome (r61) 3.6 22354615

UniProt (Feb 2018) 6274 42157935260

OrthoDB (9v2) 137 1128153578

Integrated Total 7 TB 47 Billion
16
9

Integrated Life Sciences Dataset

© 2019 Cray Inc.

• Database owner launches the
database server

• Users interact via their preferred
interface

• Commands Line
• Web Browser
• SPARQL Tools & APIs
• CLI may be used for scripted

workflows

17
0

CGE User Interface Model

© 2019 Cray Inc.

• cge-launch is used to build databases:

• cge-launch is a script that takes care of resource allocation for the user!

• After a successful build, the database directory will contain:

dataset.nt

rules.txt

dbQuads

string_table_chars

string_table_chars.index

graph.info

Building and launching

‹#›

cge-launch –N 8 –I 16 –o /mnt/lustre/myresults –d
/mnt/lustre/mydata –l logfile

© 2019 Cray Inc.

• A TCP port used for communication with this server instance:

cge-launch –N 8 –I 16 –p 3750 …

• The default is 3750

• Changing this port allows multiple versions

The database port

‹#›

© 2019 Cray Inc.

• The database directory, typically:

/mnt/lustre/user/datasets/lubm0

• Is the start of a directory tree containing all checkpoints, and potentially
authorized_keys

• It can be moved, archived and returned (!)

• Multiple users can access it, with permissions

The database directory

‹#›

© 2019 Cray Inc.

• The CLI is used for most interactions with the server, and has many options…

• cge-cli help (or cge-cli help checkpoint) will give verbose
information on options

• Designed for scripted control, querying and updates with database server

• Communications are secure SSH

The Command Line Interface (CLI)

‹#›

cge-cli –db-port 3750 query myquery.rq

© 2019 Cray Inc.

query – submits SPARQL queries

update – submits SPARUL updates

sparql – submits both queries and updates

checkpoint – creates a database checkpoint

echo – check status of server

CLI — most common options

‹#›

© 2019 Cray Inc.

• Retrieve the Default NVP Configurations

• For some systems, need to modify internal memory allocator defaults settings due to
accommodate smaller 64GB nodes

• CGE uses a internal memory allocator to avoid issues with observed memory
fragmentation on XC systems

• cge.server.BuddyMemPercent 20 (current default 35)
• cge. server.PersistBuddyMemPercent 20 (current default 25)

• More information
• https://pubs.cray.com/content/S-3014/3.2.UP01/cray-graph-engine-user-guide

Customization using NVPs and cge.properties file

‹#›

$ cge-cli nvp-info

© 2019 Cray Inc.

• See README for instructions and exercises

• /global/cscratch1/sd/kristyn/CUG2019/CGE/README

• To use CGE Web UI, need to set up ssh tunneling

• Current cge-launch script for XC depends on xtprocadmin

• Only available on internal Cori MOM nodes cmom02 and cmom05, need to ssh to these nodes from login node

• Create tunnel from my laptop to internal cmom02 node on Cori

• Use a random port number (8022) to connect to ssh port 22

• ssh –L localhost:8022:cmom02:22 cori.nersc.gov

Enter password+OSA

• Then ssh directly into cmom02 from laptop, choosing another random port number (15000) for CGE fe

• ssh –p 8022 –L localhost:15000:localhost:15000 localhost

Enter password (no OSA)

• The command line interface does not need tunneling

• cge-cli commands may be scripted for batch submission

Hands on Exercises: Running CGE on Cori (1)

‹#›

© 2019 Cray Inc.

• Set up database directory on Lustre
• Make sure Lustre striping is set

• lfs setstripe –c 16 –stripe-size 16m .
• Needed files: dataset.nt, graph.info, rules.txt

• Set up query_results directory on Lustre
• Make sure Lustre stripiing is set

• Be sure to set passwordless ssh
• ssh-keygen
• cat id_dsa.pub >> authorized_keys

Hands on Exercises: Running CGE on Cori (2)

‹#›

THANK YOU
Q U E S T I O N S ?

kristyn@cray.com

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements that
are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time concerning
factors that could affect the Company and
these forward-looking statements.

180

