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Overview

● Foundations of Distributed Training
● motivation
● training parallelization strategies
● large batch training

● learning rate scaling
● batch size scaling
● generalization gap

● Hands-On
● dataset introduction
● Horovod and CPE ML
● Some remarks for improving accuracy
● play around…
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Why do we need to scale deep learning applications?
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● Rapid prototyping/model evaluation

● Problem scale

● Volume of scientific datasets can be 
large

● Scientific datasets can be complex 
(multivariate, high dimensional)

ML@NERSC User Survey 2018 ML@NERSC User Survey 2018



Why do we need to scale deep learning applications?
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Models get bigger and more compute 
intensive as they tackle more complex tasks

“... total amount of compute, in petaflop/s-days, 
that was used to train selected results ... A 
petaflop/s-day (pfs-day) = ... 1015 neural net 
operations per second for one day, or a total of 
about 1020 operations.” -- OpenAI Blog

blog.openai.com/ai-and-compute/

https://blog.openai.com/ai-and-compute/


Parallelism strategies
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Data Parallelism
Distribute input samples.

Model Parallelism
Distribute network 
structure (layers).

Layer Pipelining
Partition by layer.

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941

https://arxiv.org/abs/1802.09941


Data parallelism, synchronous Updates
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Gradients are computed locally and summed 
across nodes. Updates are propagated to all 
nodes

● stable convergence

● scaling is not optimal because all nodes have 

to wait for reduction to complete

● global (effective) batch size grows with 

number of nodes
Synchronous SGD, decentralized



Data parallelism, asynchronous Updates
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Gradients are sent to parameters server. 
Parameters servers incorporates gradients 
into model as they arrive and sends back 
the updated model
● nodes don’t wait (perfect scaling)

● resilient

● stale gradients impact convergence 

rate (depends on #workers)

● parameter server is a bottleneck Asynchronous SGD, parameter-server



Data parallelism, stale-synchronous Updates (pipelining)

Current gradients are computed and pushed into 
queue while at the same time, older gradients are 
popped from the queue and reduced across all 
the nodes synchronously.

● better scaling than fully synchronous
(especially on heterogeneous systems)

● not as extreme as fully asynchronous
● convergence can be negatively impacted if 

lag (=number of steps between reduced and 
current gradients) is large

● not resilient but smoothens runtime variability
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Large-Batch Training (LBT), synchronous weak scaling

9

Local batch-size = B

Global batch-size = N * B
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● applies to SGD-type algorithms

○ data batch per node. Model updates are computed independently
○ updates are collectively summed and applied to the local model 



Stochastic Gradient Descent (SGD)
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N is total sample size

B is batch-size

η is learning rate

Δw is the parameter update in one gradient descent step



Linear learning-rate scaling
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Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * η

η → N * η
w0

w1

w2

w3

w’1



Linear learning-rate scaling
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Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * η

Where:

Assumption:

w0

w1

w2

w3

w’1



Sqrt learning-rate scaling
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η → sqrt(N) * η

Motivated by the observation that the variance of the gradient scales with 
1/batch-size:



Learning-rate scaling

In practice, we see anywhere between sub-sqrt (e.g.You et al. arXiv:1708.03888) to 
linear scaling (e.g. Goyal et al. arXiv:1706.02677)

Recent OpenAI (arXiv:1812.06162) study has illuminated the dependence of optimal 
learning-rate on batchsize:

14Fig. McCandlish, Kaplan and Amodei arXiv:1812.06162

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162


Challenges with Large Batch Training
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● Training with large learning rates is not stable in the initial stages of the training

                        assumption breaks when parameters are changing rapidly

● A generalization gap appears: networks trained with small batches tend to 
optimize and generalize better

AlexNet You et al. arXiv:1708.03888

You et al. arXiv:1708.03888

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1708.03888


Challenges with Large Batch Training
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● Training with large learning rates is not stable in the initial stages of the training

                        assumption breaks when parameters are changing rapidly

● A generalization gap appears: networks trained with small batches tend to 
optimize and generalize better

AlexNet You et al. arXiv:1708.03888

You et al. arXiv:1708.03888

Scaling generalization gap

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1708.03888


Explaining the generalization gap?

“... large-batch … converge to sharp minimizers of the training function … In 
contrast, small-batch methods converge to flat minimizers”  -- Keskar et al, 
arXiv:1609.04836
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Conceptual sketch of sharp and flat minimas of a loss function

Fig. credit: Keskar et al, arXiv:1609.04836

https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836


Explaining the generalization gap?
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Loss at the end of training CIFAR-10 (axes are dominant eigenvectors of the Hessian)

B = 128 B = 256B = 64

B = 1024 B = 2048B = 512

Z. Yao et al. arXiv:1802.08241

https://arxiv.org/abs/1802.08241


Explaining the generalization gap?

19Z. Yao et al. arXiv:1802.08241

Hessian top-20 eigenvalues. Larger batchsize converge to points with higher spectrum.

https://arxiv.org/abs/1802.08241


ResNet-50 ImageNet in 1 hour

FaceBook scaling result  in 2017, batch-size=8k (using 256 GPUs):

● Linear learning-rate warm-up over 5 epochs to target rate
● Linear scaling of learning-rate (N * η) followed by original decay schedule
● The paper also clarifies subtleties and common pitfalls in distributed training
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No warm-up Gradual warm-up

Goyal et al. arXiv:1706.02677 Goyal et al. arXiv:1706.02677

This scheme breaks down 
beyond batch-size = 8k for 
ResNet on ImageNet

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677


Don’t decay the learning-rate, increase batch-size

Smith et al. arXiv:1711.00489 use batch-size scaling to train on ImageNet in 2500 
parameter updates. Starting at batch-size 8k and scaling to 80k!
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Inception-ResNet-V2 on ImageNet. Multiple runs to illustrate variance.

https://arxiv.org/abs/1711.00489


Adaptive batch-size scaling with 2nd-order information (ABSA)

Z. Yao et al. arXiv:1810.01021 close the generalization gap for a wide range of 
architectures on image classification tasks, using
● 2nd-order info. (~ loss surface curvature) to adaptively increase the batch-size
● adversarial training to regularize against sharp-minima
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ABS and ABSA with ResNet-18 on ImageNet dataset with up to 16k batch-size

https://arxiv.org/abs/1810.01021
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Limits of batch-size scaling
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McCandlish, Kaplan and Amodei arXiv:1812.06162
Recent empirical studies by OpenAI 
(arXiv:1812.06162) and Google 
Brain (arXiv:1811.03600) show that:

● A relationship between gradient 
noise scale and critical 
batch-size holds across many 
models, algorithms and datasets

● gradient noise scale predicts 
maximum useful batch-size

● More complex datasets/tasks 
have higher gradient noise, thus 
can benefit from training with 
larger batch-sizes

http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1811.03600


Computational cost vs. training time trade-off

25Figures from McCandlish, Kaplan and Amodei arXiv:1812.06162

“Increasing parallelism makes it possible to train more complex models in a 
reasonable amount of time… a Pareto frontier chart is [used] to visualize 
comparisons between algorithms and scales” -- blog.openai.com/science-of-ai

http://arxiv.org/abs/1812.06162
https://blog.openai.com/science-of-ai/


Summary and outlook

● Distributed training is imperative for larger and more complex models/datasets

● Data parallelism distributes more data among more workers

● Large batch training is unstable and may impact generalization error if 

hyper-parameters are not tuned well

● Use learning-warm up and linear scaling to scale to modest scales < 10x. 

No guarantees that it will work for all models

● Batch-size scaling seems to be more robust across many models

● A simple statistic, gradient noise scale, can predict maximum useful batch-size
26



Let’s get practical
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Distributed training hands-on session

We will use ResNet on CIFAR10 to demonstrate implementation and speedup.

● Note that this small dataset doesn’t necessarily require scale

● But it allows us to get some results in the allotted time frame

We will use Keras and Horovod/CPE ML for distributed training

● Easy to use/teach

● Fast (relies on optimized backend, MPI/RDMA)

● Only few code modifications necessary

28



CIFAR-10
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● prepared by University of Toronto
● slightly more complicated than MNIST, 

but less complex than Imagenet
● 60K, 32x32 color images
● 10 classes (plane, car, bird, car, deer, 

dog, frog, horse, ship, truck)
● 50K training, 10K test
● cifar-10 link
● intuitive, fast training/model 

development times, good for 
demonstrating the essentials of 
distributed training

● good for tutorials

https://www.cs.toronto.edu/~kriz/cifar.html


● convolution layers arranged in blocks

● skip connections combine input and output of block (residual learning)

● FC layer for classification

● ResNet performs well on image classification tasks

ResNet Topology (34-layer-version)

30



Horovod

Enables distributed synchronous 
data-parallel training with minimal changes 
to user code

Uses efficient all-reduces from MPI to 
collectively combine gradients across 
workers

Such approaches shown to scale better 
than parameter-server approaches 
(e.g. distributed TensorFlow with gRPC)

31

https://eng.uber.com/horovod/

https://eng.uber.com/horovod/


CPE ML (Cray Programming Environment ML Plugin)
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Enables distributed synchronous 
data-parallel training with minimal changes 
to user code

Uses RDMA operations or reductions

Might perform better than Horovod on 
large networks and large scales

Advanced training features already 
implemented: pipelining, warmup, 
cooldown, etc. NERSC CosmoFlow



Scaling concepts demonstrated today

Today we will utilize:

● Synchronous data-parallel 
training (weak scaling) using 
Horovod/CPE ML

● Learning rate linear warmup

● Linear learning rate scaling, 
η → N * η, followed by original 
decay schedule

33



Ingredients for multi-node training (Horovod)

Initialize Horovod and MPI:

Wrap your optimizer in the Horovod distributed optimizer:

Construct the variables broadcast callback:

34

hvd.init()

opt = keras.optimizers.SGD(lr=lr*hvd.size(), …)

opt = hvd.DistributedOptimizer(opt)
Linearly scaling the 
learning rate

callbacks = 

[hvd.callbacks.BroadcastGlobalVariablesCallback(0), …]



Comparison Horovod vs. CPE ML - Initialization
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# Import and MPI Initialization

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

#  import Horovod library
import horovod.keras as hvd

# initialize Horovod
hvd.init()

# Import and MPI Initialization

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

# Additional pkgs used to calculate buffer sizes, etc.
import numpy as np
import math
import tensorflow as tf

# import Cray ML library and user defined 
# Callbacks, Distributed Optimizer
import ml_comm as mc

 from plugin_keras import InitPluginCallback, 
 BroadcastVariablesCallback, DistributedOptimizer

# initialize CPE
mc.init_mpi()

Horovod CPE ML



Comparison Horovod vs. CPE ML - Model
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# Optimizer and model compile

base_lr = 1.0

# Adjust epochs based on parallel throughput
epochs = int(epochs/hvd.size())

# Non-distributed compile
 optimizer = optimizer=keras.optimizers.Adadelta(base_lr)

# Horovod: Add Distributed Optimizer
optimizer = keras.optimizers.Adadelta(lr=1.0*hvd.size())
optimizer = hvd.DistributedOptimizer(optimizer)

# Run the training loop
model.compile(loss=keras.losses.categorical_crossentropy,                                                                       
             optimizer=optimizer,metrics=['accuracy'])

# Optimizer and model compile

base_lr = 1.0

# Adjust epochs based on parallel throughput
epochs = int(epochs/mc.get_nranks())

# Non-distributed compile
 optimizer = optimizer=keras.optimizers.Adadelta(base_lr)

# Cray ML Plugin: Add Distributed Optimizer
optimizer = 
keras.optimizers.Adadelta(lr=1.0*mc.get_nranks())
optimizer = DistributedOptimizer(optimizer)

# Run the training loop
model.compile(loss=keras.losses.categorical_crossentropy,                                                                       
             optimizer=optimizer,metrics=['accuracy'])

Horovod CPE ML



CPE ML - DistributedOptimizer Implementation example
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class _DistributedOptimizer(keras.optimizers.Optimizer):  
   """ 
   Leveraging approach used in horovod.keras.DistributedOptimizer. 
   """
    def __init__(self, name, **kwargs):
        if name is None:
            name = "Distributed%s" % self.__class__.__base__.__name__
        self._name = name
        super(self.__class__, self).__init__(**kwargs)

    def get_gradients(self, loss, params):
        grads = super(self.__class__, self).get_gradients(loss, params)
        grads_mc = mc.gradients(grads, 0)
        return grads_mc

    def DistributedOptimizer(optimizer, name=None):
        """
        An optimizer that wraps another keras.optimizers.Optimizer
        """
        cls = type(optimizer.__class__.__name__, (optimizer.__class__,),
                   dict(_DistributedOptimizer.__dict__))
        return cls(name, **optimizer.get_config())

● implementation example for 
DistributedOptimizer

● extracting gradients and reducing 
them explicitly

● allows to inject/wrap other 
optimizations such as gradient 
manipulation (LARS/LARC)

● can be done in Horovod as well



Train model as usual; it should now synchronize at every mini-batch step:

Launch your script with MPI

(we’ll use SLURM and srun instead of mpirun for generic MPI installations)

Ingredients for multi-node training (Horovod/CPE ML)
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model.fit(..., callbacks=callbacks)

srun -n ${SLURM_NNODES} … -u python train.py … 



Running the multi-node training
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Refer again to the documentation on the github repo:

https://github.com/NERSC/cug19-da-tutorial 

You can try these examples out on your own system

Feel free to try and tweak things and get better performance

● Change optimizer

● Change learning rate, number of warmup epochs, decay schedule

● Change learning rate scaling (e.g., lr*sqrt(N) instead of lr*N)

https://github.com/NERSC/cug19-da-tutorial


Scaling results for ResNet CIFAR10

Training time goes down

Training loss and accuracy are still converging at similar rates

40

Training time Validation loss

Validation 
accuracy



Thank You

Deep Learning for science excites you? 

We are hiring: goo.gl/De4wBU 

https://goo.gl/De4wBU

