# Scaling Deep Learning Training

## Mustafa Mustafa, Steven Farrell and Thorsten Kurth NERSC



Data Analytics Tutorial CUG19 – Montreal, Canada



### Overview

- Foundations of Distributed Training
  - motivation
  - training parallelization strategies
  - large batch training
    - learning rate scaling
    - batch size scaling
    - generalization gap
- Hands-On
  - dataset introduction
  - Horovod and CPE ML
  - Some remarks for improving accuracy
  - play around...



### Why do we need to scale deep learning applications?





• Problem scale



- Volume of scientific datasets can be large
- Scientific datasets can be complex (multivariate, high dimensional)



### Why do we need to scale deep learning applications?

output size: 7

R4-layer plain

34-layer residual

V66-19

Models get bigger and more compute intensive as they tackle more complex tasks



"... total amount of compute, in petaflop/s-days, that was used to train selected results ... A petaflop/s-day (pfs-day) = ...  $10^{15}$  neural net operations per second for one day, or a total of about  $10^{20}$  operations." -- OpenAI Blog



### **Parallelism strategies**







Data Parallelism

Distribute input samples.

### **Model Parallelism**

Distribute network structure (layers).

Layer Pipelining Partition by layer.



Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941 5

## Data parallelism, synchronous Updates

Gradients are computed locally and summed across nodes. Updates are propagated to all nodes

- stable convergence
- scaling is not optimal because all nodes have to wait for reduction to complete
- global (effective) batch size grows with number of nodes



Synchronous SGD, decentralized



### Data parallelism, asynchronous Updates

Gradients are sent to parameters server. Parameters servers incorporates gradients into model as they arrive and sends back the updated model

- nodes don't wait (perfect scaling)
- resilient
- stale gradients impact convergence rate (depends on #workers)
- parameter server is a bottleneck



Asynchronous SGD, parameter-server



### Data parallelism, stale-synchronous Updates (pipelining)

Current gradients are computed and pushed into queue while at the same time, older gradients are popped from the queue and reduced across all the nodes synchronously.

- better scaling than fully synchronous (especially on heterogeneous systems)
- not as *extreme* as fully asynchronous
- convergence can be negatively impacted if lag (=number of steps between reduced and current gradients) is large
- not resilient but smoothens runtime variability





### Large-Batch Training (LBT), synchronous weak scaling

- applies to SGD-type algorithms
  - data batch per node. Model updates are computed independently
  - updates are collectively summed and applied to the local model



Local batch-size = B

Global batch-size = N \* B



### Stochastic Gradient Descent (SGD)

$$w_{t+1} \leftarrow w_t - rac{\eta}{B}\sum_{i=1}^B 
abla L(x_i,w_t)$$

 ${\bf N}$  is total sample size

B is batch-size

 $\boldsymbol{\eta}$  is learning rate

 $\Delta w$  is the parameter update in one gradient descent step





### Linear learning-rate scaling

 $\eta \rightarrow N * \eta$ 



Upper: 3 SGD steps w. learning-rate =  $\eta$ Lower: 1 SGD step w. learning-rate = 3 \*  $\eta$ 



### Linear learning-rate scaling

$$w_{t+1} \leftarrow w_t - \frac{\eta}{B} (\sum_{i=1}^B \nabla L(x_i, w_t) + \sum_{j=1}^B \nabla L(x_j, w_{t+1})$$
  
 $w_{t+1} \leftarrow w_t - \frac{\eta_2}{2B} \sum_{i=1}^{2B} \nabla L(x_i, w_t)$ 

Where:

$$\eta_2 = 2 * \eta$$

**Assumption:** 

$$\nabla L(x_j, w_{t+1}) \approx L(x_j, w_t)$$

Upper: 3 SGD steps w. learning-rate =  $\eta$ Lower: 1 SGD step w. learning-rate =  $3 * \eta$ 

W

W<sub>3</sub>



Sqrt learning-rate scaling

## $\eta \rightarrow sqrt(N) * \eta$

Motivated by the observation that the variance of the gradient scales with 1/batch-size:

$$ext{cov}(\Delta w,\Delta w)pproxrac{\eta^2}{B}(rac{1}{N}\sum_{i=1}^N \mathbf{g_ig_i^T})$$



### Learning-rate scaling

In practice, we see anywhere between sub-sqrt (e.g.You et al. <u>arXiv:1708.03888</u>) to linear scaling (e.g. Goyal et al. <u>arXiv:1706.02677</u>)

Recent OpenAI (<u>arXiv:1812.06162</u>) study has illuminated the dependence of optimal learning-rate on batchsize:







Fig. McCandlish, Kaplan and Amodei arXiv:1812.06162 14

## Challenges with Large Batch Training

- Training with <u>large learning rates</u> is not stable in the initial stages of the training  $\nabla L(w_{t+1}) \approx \nabla L(w_t)$  assumption breaks when parameters are changing rapidly
- A generalization gap appears: networks trained with small batches tend to optimize and generalize better



| Batch | Base LR | accuracy,% |
|-------|---------|------------|
| 512   | 0.02    | 60.2       |
| 4096  | 0.16    | 58.1       |
| 4096  | 0.18    | 58.9       |
| 4096  | 0.21    | 58.5       |
| 4096  | 0.30    | 57.1       |
| 8192  | 0.23    | 57.6       |
| 8192  | 0.30    | 58.0       |
| 8192  | 0.32    | 57.7       |
| 8192  | 0.41    | 56.5       |

### AlexNet You et al. arXiv:1708.03888



## Challenges with Large Batch Training

- Training with <u>large learning rates</u> is not stable in the initial stages of the training  $\nabla L(w_{t+1}) \approx \nabla L(w_t)$  assumption breaks when parameters are changing rapidly
- A generalization gap appears: networks trained with small batches tend to optimize and generalize better



Scaling generalization gap

| Batch | Base LR | accuracy,% |
|-------|---------|------------|
| 512   | 0.02    | 60.2       |
| 4096  | 0.16    | 58.1       |
| 4096  | 0.18    | 58.9       |
| 4096  | 0.21    | 58.5       |
| 4096  | 0.30    | 57.1       |
| 8192  | 0.23    | 57.6       |
| 8192  | 0.30    | 58.0       |
| 8192  | 0.32    | 57.7       |
| 8192  | 0.41    | 56.5       |





### Explaining the generalization gap?

"... large-batch ... converge to sharp minimizers of the training function ... In contrast, small-batch methods converge to flat minimizers" -- Keskar et al, <u>arXiv:1609.04836</u>



Conceptual sketch of sharp and flat minimas of a loss function



### Explaining the generalization gap?



Loss at the end of training CIFAR-10 (axes are dominant eigenvectors of the Hessian)



### Explaining the generalization gap?



Hessian top-20 eigenvalues. Larger batchsize converge to points with higher spectrum.



### ResNet-50 ImageNet in 1 hour

FaceBook scaling result in 2017, batch-size=8k (using 256 GPUs):

- Linear learning-rate warm-up over 5 epochs to target rate
- Linear scaling of learning-rate (N \* η) followed by original decay schedule
- The paper also clarifies subtleties and common pitfalls in distributed training





### Don't decay the learning-rate, increase batch-size

Smith et al. <u>arXiv:1711.00489</u> use batch-size scaling to train on ImageNet in 2500 parameter updates. Starting at batch-size 8k and scaling to 80k!



Inception-ResNet-V2 on ImageNet. Multiple runs to illustrate variance.



## Adaptive batch-size scaling with 2nd-order information (ABSA)

Z. Yao et al. <u>arXiv:1810.01021</u> close the generalization gap for a wide range of architectures on image classification tasks, using

- 2nd-order info. (~ loss surface curvature) to adaptively increase the batch-size
- adversarial training to regularize against sharp-minima



ABS and ABSA with ResNet-18 on ImageNet dataset with up to 16k batch-size



### ImageNet/ResNet-50 Training in 224 Seconds

Hiroaki Mikami, Hisahiro Suganuma, Pongsakorn U-chupala, Yoshiki Tanaka and Yuichi Kageyama

Sony Corporation {Hiroaki.Mikami, Hisahiro.Suganuma, Pongsakorn.Uchupala, Yoshiki.Tanaka, Yuichi.Kageyama}@sony.com

### Abstract

Scaling the distributed deep learning to a massive GPU cluster level is challenging due to the instability of the large mini-batch training and the overhead of the gradient synchronization. We address the instability of the large mini-batch training with batch size control. We address the overhead of the gradient synchronization with 2D-Torus all-reduce. Specifically, 2D-Torus all-reduce arranges GPUs in a logical 2D grid and performs a series of collective operation in different orientations. These two techniques are implemented with Neural Network Libraries (NNL)<sup>1</sup>. We have successfully trained ImageNet/ResNet-50 in 224 seconds without significant accuracy loss on ABCI<sup>2</sup> cluster.



## Limits of batch-size scaling

Recent empirical studies by OpenAl (<u>arXiv:1812.06162</u>) and Google Brain (<u>arXiv:1811.03600</u>) show that:

- A relationship between gradient noise scale and *critical* batch-size holds across many models, algorithms and datasets
- gradient noise scale predicts maximum useful batch-size
- More complex datasets/tasks have higher gradient noise, thus can benefit from training with larger batch-sizes



**Critical batch size** is the maximum batch size above which scaling efficiency decreases significantly



### Computational cost vs. training time trade-off



*"Increasing parallelism makes it possible to train more complex models in a reasonable amount of time... a Pareto frontier chart is [used] to visualize comparisons between algorithms and scales" -- <u>blog.openai.com/science-of-ai</u>* 



Figures from McCandlish, Kaplan and Amodei arXiv:1812.06162 25

### Summary and outlook

- Distributed training is imperative for larger and more complex models/datasets
- Data parallelism distributes more data among more workers
- Large batch training is unstable and may impact generalization error if hyper-parameters are not *tuned* well
- Use learning-warm up and linear scaling to scale to modest scales < 10x.</li>
   No guarantees that it will work for all models
- Batch-size scaling seems to be more robust across many models
- A simple statistic, gradient noise scale, can predict maximum useful batch-size



# Let's get practical



### Distributed training hands-on session

We will use ResNet on CIFAR10 to demonstrate implementation and speedup.

- Note that this small dataset doesn't necessarily *require* scale
- But it allows us to get some results in the allotted time frame

### We will use Keras and Horovod/CPE ML for distributed training

- Easy to use/teach
- Fast (relies on optimized backend, MPI/RDMA)
- Only few code modifications necessary



## CIFAR-10

- prepared by University of Toronto
- slightly more complicated than MNIST, but less complex than Imagenet
- 60K, 32x32 color images
- 10 classes (plane, car, bird, car, deer, dog, frog, horse, ship, truck)
- 50K training, 10K test
- cifar-10 link
- intuitive, fast training/model development times, good for demonstrating the essentials of distributed training
- good for tutorials



### ResNet Topology (34-layer-version)

- convolution layers arranged in blocks
- skip connections combine input and output of block (residual learning)
- FC layer for classification
- ResNet performs well on image classification tasks





### Horovod

Enables distributed synchronous data-parallel training with minimal changes to user code

Uses efficient all-reduces from MPI to collectively combine gradients across workers

Such approaches shown to scale better than parameter-server approaches (e.g. distributed TensorFlow with gRPC)

https://eng.uber.com/horovod/





## CPE ML (Cray Programming Environment ML Plugin)

Enables distributed synchronous data-parallel training with minimal changes to user code

Uses RDMA operations or reductions

Might perform better than Horovod on large networks and large scales

Advanced training features already implemented: pipelining, warmup, cooldown, etc.



NERSC CosmoFlow



### Scaling concepts demonstrated today

Today we will utilize:

- Synchronous data-parallel training (weak scaling) using Horovod/CPE ML
- Learning rate linear warmup
- Linear learning rate scaling,  $\eta \rightarrow N * \eta$ , followed by original decay schedule





```
Ingredients for multi-node training (Horovod)
```

Initialize Horovod and MPI:

hvd.init()

Wrap your optimizer in the Horovod distributed optimizer:

opt = keras.optimizers.SGD(lr=lr\*hvd.size(), ...)
opt = hvd.DistributedOptimizer(opt)

Construct the variables broadcast callback:

callbacks =

[hvd.callbacks.BroadcastGlobalVariablesCallback(0), ...]



Linearly scaling the

learning rate

### Comparison Horovod vs. CPE ML - Initialization

### # Import and MPI Initialization

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

### # import Horovod library

import horovod.keras as hvd

# initialize Horovod
 hvd.init()

#### # Import and MPI Initialization

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

# Additional pkgs used to calculate buffer sizes, etc. import numpy as np import math import tensorflow as tf

# import Cray ML library and user defined # Callbacks, Distributed Optimizer import ml comm as mc

from plugin\_keras import InitPluginCallback,
BroadcastVariablesCallback, DistributedOptimizer

# initialize CPE
mc.init\_mpi()

### Horovod





### Comparison Horovod vs. CPE ML - Model

### # Optimizer and model compile

 $base_{lr} = 1.0$ 

```
# Adjust epochs based on parallel throughput
epochs = int(epochs/hvd.size())
```

```
# Non-distributed compile
optimizer = optimizer=keras.optimizers.Adadelta(base lr)
```

```
# Horovod: Add Distributed Optimizer
optimizer = keras.optimizers.Adadelta(lr=1.0*hvd.size())
optimizer = hvd.DistributedOptimizer(optimizer)
```

### # Run the training loop

Horovod

#### # Optimizer and model compile

base lr = 1.0

# Adjust epochs based on parallel throughput
epochs = int(epochs/mc.get nranks())

```
# Non-distributed compile
optimizer = optimizer=keras.optimizers.Adadelta(base lr)
```

```
# Cray ML Plugin: Add Distributed Optimizer
    optimizer =
keras.optimizers.Adadelta(lr=1.0*mc.get_nranks())
    optimizer = DistributedOptimizer(optimizer)
```

### # Run the training loop



### CPE ML - DistributedOptimizer Implementation example

- implementation example for DistributedOptimizer
- extracting gradients and reducing them explicitly
- allows to inject/wrap other optimizations such as gradient manipulation (LARS/LARC)
- can be done in Horovod as well

```
class DistributedOptimizer(keras.optimizers.Optimizer):
 Leveraging approach used in horovod.keras.DistributedOptimizer.
  def init (self, name, **kwargs):
    if name is None:
      name = "Distributed%s" % self. class . base . name
    self. name = name
    super(self. class , self). init (**kwargs)
  def get gradients(self, loss, params):
    grads = super(self. class , self).get gradients(loss, params)
    grads mc = mc.gradients(grads, 0)
    return grads mc
  def DistributedOptimizer(optimizer, name=None):
    An optimizer that wraps another keras.optimizers.Optimizer
    cls = type(optimizer.__class__.__name__, (optimizer.__class__,),
           dict( DistributedOptimizer. dict ))
    return cls(name, **optimizer.get config())
```



### Ingredients for multi-node training (Horovod/CPE ML)

Train model as usual; it should now synchronize at every mini-batch step:

model.fit(..., callbacks=callbacks)

Launch your script with MPI

srun -n \${SLURM\_NNODES} ... -u python train.py ...

(we'll use SLURM and srun instead of mpirun for generic MPI installations)



### Running the multi-node training

Refer again to the documentation on the github repo:

https://github.com/NERSC/cug19-da-tutorial

You can try these examples out on your own system

Feel free to try and tweak things and get better performance

- Change optimizer
- Change learning rate, number of warmup epochs, decay schedule
- Change learning rate scaling (e.g., Ir\*sqrt(N) instead of Ir\*N)



### Scaling results for ResNet CIFAR10



### Training time goes down

Training loss and accuracy are still converging at similar rates



## Deep Learning for science excites you?

We are hiring: goo.gl/De4wBU



## **Thank You**



