
Scaling Deep Learning Training

Mustafa Mustafa, Steven Farrell
and Thorsten Kurth

NERSC

Data Analytics Tutorial
CUG19 – Montreal, Canada

Overview

● Foundations of Distributed Training
● motivation
● training parallelization strategies
● large batch training

● learning rate scaling
● batch size scaling
● generalization gap

● Hands-On
● dataset introduction
● Horovod and CPE ML
● Some remarks for improving accuracy
● play around…

2

Why do we need to scale deep learning applications?

3

● Rapid prototyping/model evaluation

● Problem scale

● Volume of scientific datasets can be
large

● Scientific datasets can be complex
(multivariate, high dimensional)

ML@NERSC User Survey 2018 ML@NERSC User Survey 2018

Why do we need to scale deep learning applications?

4

Models get bigger and more compute
intensive as they tackle more complex tasks

“... total amount of compute, in petaflop/s-days,
that was used to train selected results ... A
petaflop/s-day (pfs-day) = ... 1015 neural net
operations per second for one day, or a total of
about 1020 operations.” -- OpenAI Blog

blog.openai.com/ai-and-compute/

https://blog.openai.com/ai-and-compute/

Parallelism strategies

5

Data Parallelism
Distribute input samples.

Model Parallelism
Distribute network
structure (layers).

Layer Pipelining
Partition by layer.

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941

https://arxiv.org/abs/1802.09941

Data parallelism, synchronous Updates

6

Gradients are computed locally and summed
across nodes. Updates are propagated to all
nodes

● stable convergence

● scaling is not optimal because all nodes have

to wait for reduction to complete

● global (effective) batch size grows with

number of nodes
Synchronous SGD, decentralized

Data parallelism, asynchronous Updates

7

Gradients are sent to parameters server.
Parameters servers incorporates gradients
into model as they arrive and sends back
the updated model
● nodes don’t wait (perfect scaling)

● resilient

● stale gradients impact convergence

rate (depends on #workers)

● parameter server is a bottleneck Asynchronous SGD, parameter-server

Data parallelism, stale-synchronous Updates (pipelining)

Current gradients are computed and pushed into
queue while at the same time, older gradients are
popped from the queue and reduced across all
the nodes synchronously.

● better scaling than fully synchronous
(especially on heterogeneous systems)

● not as extreme as fully asynchronous
● convergence can be negatively impacted if

lag (=number of steps between reduced and
current gradients) is large

● not resilient but smoothens runtime variability

8

W
W
W

Q
Q
Q

Q
Q
Q A

LL
-R

E
D

U
C

E
S

Y
N

C
. S

TE
P W

W
W

Large-Batch Training (LBT), synchronous weak scaling

9

Local batch-size = B

Global batch-size = N * B

B

B

B

.

.

.

P1

P2

PN

A
LL

-R
E

D
U

C
E

S
Y

N
C

. S
TE

P

gradients

● applies to SGD-type algorithms

○ data batch per node. Model updates are computed independently
○ updates are collectively summed and applied to the local model

Stochastic Gradient Descent (SGD)

10

N is total sample size

B is batch-size

η is learning rate

Δw is the parameter update in one gradient descent step

Linear learning-rate scaling

11

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * η

η → N * η
w0

w1

w2

w3

w’1

Linear learning-rate scaling

12

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * η

Where:

Assumption:

w0

w1

w2

w3

w’1

Sqrt learning-rate scaling

13

η → sqrt(N) * η

Motivated by the observation that the variance of the gradient scales with
1/batch-size:

Learning-rate scaling

In practice, we see anywhere between sub-sqrt (e.g.You et al. arXiv:1708.03888) to
linear scaling (e.g. Goyal et al. arXiv:1706.02677)

Recent OpenAI (arXiv:1812.06162) study has illuminated the dependence of optimal
learning-rate on batchsize:

14Fig. McCandlish, Kaplan and Amodei arXiv:1812.06162

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162

Challenges with Large Batch Training

15

● Training with large learning rates is not stable in the initial stages of the training

 assumption breaks when parameters are changing rapidly

● A generalization gap appears: networks trained with small batches tend to
optimize and generalize better

AlexNet You et al. arXiv:1708.03888

You et al. arXiv:1708.03888

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1708.03888

Challenges with Large Batch Training

16

● Training with large learning rates is not stable in the initial stages of the training

 assumption breaks when parameters are changing rapidly

● A generalization gap appears: networks trained with small batches tend to
optimize and generalize better

AlexNet You et al. arXiv:1708.03888

You et al. arXiv:1708.03888

Scaling generalization gap

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1708.03888

Explaining the generalization gap?

“... large-batch … converge to sharp minimizers of the training function … In
contrast, small-batch methods converge to flat minimizers” -- Keskar et al,
arXiv:1609.04836

17

Conceptual sketch of sharp and flat minimas of a loss function

Fig. credit: Keskar et al, arXiv:1609.04836

https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836

Explaining the generalization gap?

18

Loss at the end of training CIFAR-10 (axes are dominant eigenvectors of the Hessian)

B = 128 B = 256B = 64

B = 1024 B = 2048B = 512

Z. Yao et al. arXiv:1802.08241

https://arxiv.org/abs/1802.08241

Explaining the generalization gap?

19Z. Yao et al. arXiv:1802.08241

Hessian top-20 eigenvalues. Larger batchsize converge to points with higher spectrum.

https://arxiv.org/abs/1802.08241

ResNet-50 ImageNet in 1 hour

FaceBook scaling result in 2017, batch-size=8k (using 256 GPUs):

● Linear learning-rate warm-up over 5 epochs to target rate
● Linear scaling of learning-rate (N * η) followed by original decay schedule
● The paper also clarifies subtleties and common pitfalls in distributed training

20

No warm-up Gradual warm-up

Goyal et al. arXiv:1706.02677 Goyal et al. arXiv:1706.02677

This scheme breaks down
beyond batch-size = 8k for
ResNet on ImageNet

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677

Don’t decay the learning-rate, increase batch-size

Smith et al. arXiv:1711.00489 use batch-size scaling to train on ImageNet in 2500
parameter updates. Starting at batch-size 8k and scaling to 80k!

21

Inception-ResNet-V2 on ImageNet. Multiple runs to illustrate variance.

https://arxiv.org/abs/1711.00489

Adaptive batch-size scaling with 2nd-order information (ABSA)

Z. Yao et al. arXiv:1810.01021 close the generalization gap for a wide range of
architectures on image classification tasks, using
● 2nd-order info. (~ loss surface curvature) to adaptively increase the batch-size
● adversarial training to regularize against sharp-minima

22

ABS and ABSA with ResNet-18 on ImageNet dataset with up to 16k batch-size

https://arxiv.org/abs/1810.01021

23

Limits of batch-size scaling

24

McCandlish, Kaplan and Amodei arXiv:1812.06162
Recent empirical studies by OpenAI
(arXiv:1812.06162) and Google
Brain (arXiv:1811.03600) show that:

● A relationship between gradient
noise scale and critical
batch-size holds across many
models, algorithms and datasets

● gradient noise scale predicts
maximum useful batch-size

● More complex datasets/tasks
have higher gradient noise, thus
can benefit from training with
larger batch-sizes

http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1811.03600

Computational cost vs. training time trade-off

25Figures from McCandlish, Kaplan and Amodei arXiv:1812.06162

“Increasing parallelism makes it possible to train more complex models in a
reasonable amount of time… a Pareto frontier chart is [used] to visualize
comparisons between algorithms and scales” -- blog.openai.com/science-of-ai

http://arxiv.org/abs/1812.06162
https://blog.openai.com/science-of-ai/

Summary and outlook

● Distributed training is imperative for larger and more complex models/datasets

● Data parallelism distributes more data among more workers

● Large batch training is unstable and may impact generalization error if

hyper-parameters are not tuned well

● Use learning-warm up and linear scaling to scale to modest scales < 10x.

No guarantees that it will work for all models

● Batch-size scaling seems to be more robust across many models

● A simple statistic, gradient noise scale, can predict maximum useful batch-size
26

Let’s get practical

27

Distributed training hands-on session

We will use ResNet on CIFAR10 to demonstrate implementation and speedup.

● Note that this small dataset doesn’t necessarily require scale

● But it allows us to get some results in the allotted time frame

We will use Keras and Horovod/CPE ML for distributed training

● Easy to use/teach

● Fast (relies on optimized backend, MPI/RDMA)

● Only few code modifications necessary

28

CIFAR-10

29

● prepared by University of Toronto
● slightly more complicated than MNIST,

but less complex than Imagenet
● 60K, 32x32 color images
● 10 classes (plane, car, bird, car, deer,

dog, frog, horse, ship, truck)
● 50K training, 10K test
● cifar-10 link
● intuitive, fast training/model

development times, good for
demonstrating the essentials of
distributed training

● good for tutorials

https://www.cs.toronto.edu/~kriz/cifar.html

● convolution layers arranged in blocks

● skip connections combine input and output of block (residual learning)

● FC layer for classification

● ResNet performs well on image classification tasks

ResNet Topology (34-layer-version)

30

Horovod

Enables distributed synchronous
data-parallel training with minimal changes
to user code

Uses efficient all-reduces from MPI to
collectively combine gradients across
workers

Such approaches shown to scale better
than parameter-server approaches
(e.g. distributed TensorFlow with gRPC)

31

https://eng.uber.com/horovod/

https://eng.uber.com/horovod/

CPE ML (Cray Programming Environment ML Plugin)

32

Enables distributed synchronous
data-parallel training with minimal changes
to user code

Uses RDMA operations or reductions

Might perform better than Horovod on
large networks and large scales

Advanced training features already
implemented: pipelining, warmup,
cooldown, etc. NERSC CosmoFlow

Scaling concepts demonstrated today

Today we will utilize:

● Synchronous data-parallel
training (weak scaling) using
Horovod/CPE ML

● Learning rate linear warmup

● Linear learning rate scaling,
η → N * η, followed by original
decay schedule

33

Ingredients for multi-node training (Horovod)

Initialize Horovod and MPI:

Wrap your optimizer in the Horovod distributed optimizer:

Construct the variables broadcast callback:

34

hvd.init()

opt = keras.optimizers.SGD(lr=lr*hvd.size(), …)

opt = hvd.DistributedOptimizer(opt)
Linearly scaling the
learning rate

callbacks =

[hvd.callbacks.BroadcastGlobalVariablesCallback(0), …]

Comparison Horovod vs. CPE ML - Initialization

35

Import and MPI Initialization

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

import Horovod library
import horovod.keras as hvd

initialize Horovod
hvd.init()

Import and MPI Initialization

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

Additional pkgs used to calculate buffer sizes, etc.
import numpy as np
import math
import tensorflow as tf

import Cray ML library and user defined
Callbacks, Distributed Optimizer
import ml_comm as mc

 from plugin_keras import InitPluginCallback,
 BroadcastVariablesCallback, DistributedOptimizer

initialize CPE
mc.init_mpi()

Horovod CPE ML

Comparison Horovod vs. CPE ML - Model

36

Optimizer and model compile

base_lr = 1.0

Adjust epochs based on parallel throughput
epochs = int(epochs/hvd.size())

Non-distributed compile
 optimizer = optimizer=keras.optimizers.Adadelta(base_lr)

Horovod: Add Distributed Optimizer
optimizer = keras.optimizers.Adadelta(lr=1.0*hvd.size())
optimizer = hvd.DistributedOptimizer(optimizer)

Run the training loop
model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=optimizer,metrics=['accuracy'])

Optimizer and model compile

base_lr = 1.0

Adjust epochs based on parallel throughput
epochs = int(epochs/mc.get_nranks())

Non-distributed compile
 optimizer = optimizer=keras.optimizers.Adadelta(base_lr)

Cray ML Plugin: Add Distributed Optimizer
optimizer =
keras.optimizers.Adadelta(lr=1.0*mc.get_nranks())
optimizer = DistributedOptimizer(optimizer)

Run the training loop
model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=optimizer,metrics=['accuracy'])

Horovod CPE ML

CPE ML - DistributedOptimizer Implementation example

37

class _DistributedOptimizer(keras.optimizers.Optimizer):
 """
 Leveraging approach used in horovod.keras.DistributedOptimizer.
 """
 def __init__(self, name, **kwargs):
 if name is None:
 name = "Distributed%s" % self.__class__.__base__.__name__
 self._name = name
 super(self.__class__, self).__init__(**kwargs)

 def get_gradients(self, loss, params):
 grads = super(self.__class__, self).get_gradients(loss, params)
 grads_mc = mc.gradients(grads, 0)
 return grads_mc

 def DistributedOptimizer(optimizer, name=None):
 """
 An optimizer that wraps another keras.optimizers.Optimizer
 """
 cls = type(optimizer.__class__.__name__, (optimizer.__class__,),
 dict(_DistributedOptimizer.__dict__))
 return cls(name, **optimizer.get_config())

● implementation example for
DistributedOptimizer

● extracting gradients and reducing
them explicitly

● allows to inject/wrap other
optimizations such as gradient
manipulation (LARS/LARC)

● can be done in Horovod as well

Train model as usual; it should now synchronize at every mini-batch step:

Launch your script with MPI

(we’ll use SLURM and srun instead of mpirun for generic MPI installations)

Ingredients for multi-node training (Horovod/CPE ML)

38

model.fit(..., callbacks=callbacks)

srun -n ${SLURM_NNODES} … -u python train.py …

Running the multi-node training

39

Refer again to the documentation on the github repo:

https://github.com/NERSC/cug19-da-tutorial

You can try these examples out on your own system

Feel free to try and tweak things and get better performance

● Change optimizer

● Change learning rate, number of warmup epochs, decay schedule

● Change learning rate scaling (e.g., lr*sqrt(N) instead of lr*N)

https://github.com/NERSC/cug19-da-tutorial

Scaling results for ResNet CIFAR10

Training time goes down

Training loss and accuracy are still converging at similar rates

40

Training time Validation loss

Validation
accuracy

Thank You

Deep Learning for science excites you?

We are hiring: goo.gl/De4wBU

https://goo.gl/De4wBU

