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Abstract—When scientists run their applications on high-
performance computing (HPC) systems, they often experience
highly variable runtime I/O performance, and sometimes un-
expected I/O performance degradations can dramatically slow
down the applications’ execution. This issue is mainly caused
by I/O bandwidth contention, since the storage subsystem of
HPC systems is usually shared by many concurrently running
applications and the I/O performance of each application might
be affected by I/O traffic from others. In order to mitigate the
I/O bandwidth contention, scientific applications running on HPC
systems need to schedule their I/O operations in a proactive and
intelligent manner, which necessitates the capability of predicting
the near-future runtime I/O performance. However, the runtime
I/O performance prediction in production HPC environments is
extremely challenging, as the storage subsystems are complex
and the I/O operations of those running applications might have
irregular patterns.

In this paper, we formulate the I/O performance prediction
on production HPC systems as a classification problem and
exploit a range of machine learning techniques to address it.
Our I/O prediction model is lightweight and its effectiveness
is validated using real performance traces collected from two
Cray supercomputer systems. Our results show that transitions
between different I/O performance states can be predicted by
our model with high average accuracy (75% when SVM is used).
Moreover, the prediction is robust even when only limited training
data is available. We also study and demonstrate how to leverage
the prediction results to improve the efficiency of I/O bandwidth
utilization on these two Cray supercomputer systems.

I. INTRODUCTION

As scientific applications running on HPC systems become
increasingly data-intensive, one of the major challenges faced
by these applications is the nondeterministic execution time
caused by the highly variable I/O performance on production
HPC systems. As has been observed and analyzed by several
existing studies [1], [2], [3], [4], even on DoE’s leadership
supercomputers, it is possible for running applications to
experience more than an order of magnitude variation in I/O
performance, which significantly increases the uncertainty of
applications’ execution time. There are three main causes of
I/O performance variability on production HPC systems. First,
although the I/O bandwidth of HPC systems has increased
steadily during the past decade, the ratio of compute capability
to I/O bandwidth has continued to grow, meaning the I/O
bandwidth is still limited and might not be able to satisfy
all data transfer requirements, especially those from data-
intensive applications. Second, due to the nature of parallel

programming model, applications running on HPC systems
often generate bursty I/O traffic. When the limited I/O band-
width is shared by these applications, the potential risk of
resource contention and load imbalance on storage subsystems
also increases. Third, not every application developer or user
has enough expertise in storage subsystems, a simple misuse
or misconfiguration in their codes might lead to a system-wide
I/O congestion.

As a result, developers or users often adopt conservative
I/O strategies for their applications based on some empirical
assumptions. These strategies are usually composed of some
static policies and hard-coded into the code or job scripts.
For instance, an application developer may notice that the
timing on a particular I/O routine varies over an order of
magnitude. In order to make sure that I/O time does not exceed
10% of the total execution time, the developer can make a
pessimistic assumption on the I/O performance, and therefore
let the code write data out less often than the more optimistic
case. Even if the available I/O bandwidth is actually high
and stable when the job is running, managing data movement
based on these static policies would not be able to take full
advantage of it. Since the static I/O policies are not feasible to
either accurately characterize the complex storage subsystems
or quickly capture the highly-variable I/O patterns in HPC
environments, they are not able to help applications make
intelligent I/O decisions. For example, when to read or write
the data can applications achieve the best I/O performance?
Where to place the data can applications make the data
movement more efficient? How much data should be read or
written if sacrificing some precision of the data for a better
I/O performance is allowed? All these questions can be well
answered only if we are able to accurately characterize and
predict the runtime I/O performance on HPC systems.

I/O performance prediction is particularly challenging in
HPC environments, since there might be hundreds of jobs
competing for the I/O bandwidth simultaneously (with none
or little performance isolation mechanism in place), and there
is no way to know the I/O behaviors of these jobs in advance.
To the best of our knowledge, this problem has not been well
addressed by existing research efforts. Most of existing ap-
proaches were designed for system administrators rather than
average users, and their models or algorithms were built upon
some historical system traces that are either nonpublic or too



expensive to collect. Since the I/O performance characteristics
of HPC systems change over time, the predictive model need
to be updated with latest trace to achieve satisfying prediction
accuracy. For instance, many existing studies, such as [5],
[6], [7], build predictive models using some internal system
traces. These traces are not always collected and might require
administrator privileges to access, which makes continuously
updating the models impossible.

In this paper, we design and develop a lightweight parallel
test harness to periodically collect I/O performance and job
status traces for applications running on production HPC sys-
tems. By analyzing the collected traces, we observe different
I/O performance states on storage subsystems and come up
with a machine learning-based approach to predict the transi-
tions between those performance states during runtime. Specif-
ically, we realize continuously measuring the performance of
large I/O operations is not feasible as the measurement might
cause too much overhead and interfere with other running jobs,
thus we only periodically measure the end-to-end I/O latency
by sending small write requests to storage servers of Lustre
file system. However, the latency of small I/O operations does
not always reflect the performance state of storage systems.
To overcome this problem, we also periodically record the
status of running jobs on the system by querying the job
queue. We combine these two type of traces and build machine
learning models to predict the time required to complete an
I/O operation with certain size.

The contribution of this paper can be summarized as these
aspects:

• We design and develop a lightweight parallel test harness
to periodically collect I/O performance and job status
traces on two Cray supercomputer systems (OLCF’s Titan
and NERSC’s Cori).

• We present a detailed analysis of the traces we collected
to understand the I/O performance characteristics of these
two systems.

• We formulate the I/O performance prediction as a classi-
fication problem and exploit a range of machine learning
techniques to train classification models which can be
used to predict the runtime I/O performance.

• We demonstrate how to leverage the prediction results to
improve the efficiency of I/O bandwidth utilization for
applications running on Titan and Cori.

The remainder of this paper is organized as follows. In
Section II, we present more details on the methodology for
gathering our source data, while in Section III we describe
and analyze the raw I/O performance and job status data.
How to build, train and validate the machine learning models
are introduced in Section IV. A case study that demonstrates
how to use the machine learning-based prediction models to
improve efficiency of I/O bandwidth utilization is presented in
Section V.

II. BACKGROUND

Our studies are conducted on two Cray supercomputer sys-
tems. One is OLCF’s Titan supercomputer [8] and its center-
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Fig. 2: Cori and its backend storage

wide file system Spider II, while the other is NERSC’s newest
supercomputer Cori [9] and its SCRATCH file system. Since
these two supercomputers adopt different types of system
architectures, their I/O performance characteristics are quite
dissimilar from each other. By evaluating our I/O performance
prediction approach on these two systems, we can have a better
understanding of how generic our approach is. In order to
facilitate the follow-up discussion, we provide a brief overview
on both Titan and Cori.

Titan is a hybrid-architecture Cray XK7 system that features
18,688 compute nodes, and a total system memory of 710
TB. As shown in Figure 1, all XK7 nodes on Titan are part
of the Gemini network in a 3D torus topology, where 440
of them are configured as Lustre I/O routers (LNET routers),
which provide the connectivity to the backend storage system,
which consists of 288 Lustre object storage servers (OSSs)
and 2,016 Lustre object storage targets (OSTs), via InfiniBand
FDR links.

Cori is a Cray XC40 system built with two different types of
nodes, 2,388 Intel Xeon “Haswell” processor nodes and 9,688
Intel Xeon Phi “Knight’s Landing” nodes. Cori adopts Cray’s
Aries dragonfly interconnect for inter-node communication. As
shown in Figure 2, the compute side of Cori is also connected
to its Lustre-based backend storage through LNET routers and
InfiniBand network.

To summarize, production HPC systems like Titan and Cori
usually have complex storage subsystems. Critical components
on the I/O path, such as IB switches or OSSs, are shared by



many running jobs simultaneously. I/O contention and inter-
ference might occur on any of them at any time, which could
lead to significant I/O performance variability and uncertainty.
Therefore, predicting I/O performance on production HPC
systems is extremely challenging.

III. FIELD DATA COLLECTION AND ANALYSIS

In order to build an accurate and practical I/O performance
prediction model, we have developed a lightweight parallel test
harness to periodically collect I/O performance and job status
traces from the production HPC systems. In this section, we
first introduce our test harness and data collection methodol-
ogy on Titan and Cori, then provide a detailed analysis of the
field data we collected.

A. Data Collection Methodology

Two principles are taken into account when we design our
test harness and data collection methodology. First, although
a few high-performance computing sites maintain internal I/O
performance numbers, such as the throughput or IOPS of
their I/O nodes, they usually do not share those numbers with
application and middleware developers. Therefore, we focus
on measuring and collecting I/O performance numbers at user
space. Second, since the I/O performance characteristics on
production HPC systems can change dramatically over time,
in order to maintain the prediction accuracy, we need to collect
the data and update our predictive model periodically. Our data
collection is designed to be lightweight, meaning it only incurs
negligible overhead so that the interference with other running
applications is minimized.

In each run of our data collection routine, three types
of data are measured and collected. First, we measure the
end-to-end I/O latency which reflects the busyness of the
storage subsystem. The default size of data transfers between
the Object Storage Clients (OSCs) and OSSs on Lustre file
system is usually set to 1MB. If an I/O request is larger than
1MB, Lustre will split it into multiple 1MB data chunks and
send them to the OSSs through the RPC (Remote Procedure
Call) protocol. In other words, the latency of I/O requests
larger than 1MB can be estimated as the sum of multiple
1MB requests’ latency. Therefore, we developed an MPI-
based program which can periodically write 1MB data from
a compute node to a specific OSS (using the llapi provided
by Lustre file system) and measure the latency of each 1MB
request. The purpose of periodically measuring the end-to-end
latency is to capture the performance dynamics along each I/O
path with low overhead (similar to sending probing packets to
measure network delay).

Second, we snapshot and save the status of each running job
by calling “qstat” or “sqs” command, depending on which job
scheduler the system uses (Titan uses PBS job scheduler [10]
while Slurm job scheduler [11] is used by Cori). The job status
data we collected from the job scheduler includes total number
of running jobs, number of compute nodes each running job
occupies, amount of memory allocated to each running job,
amount of wall-clock time allocated to each running job, etc.

There are two purposes for collecting job status data: 1) The
status of each running job might be correlated with current
and future I/O performance of the storage subsystem. 2) It is
easy and inexpensive for applications or I/O middleware to
obtain.

Third, in order to train and validate our I/O performance
prediction model, we also measure the performance of I/O
requests with actual sizes as the ground-truth. We measure
the performance of write requests with three different sizes
(64MB, 256MB and 1GB). Figure 3 is an example of the
collected data we saved in the trace file, which shows part
of the job status and I/O performance traces collected in
one repetition (Some of the sensitive information has been
anonymized).

Fig. 3: An example of data collected in the trace file

We implemented a job script for our data collection routine
and submitted it to both Titan and Cori. Specifically, we
reserved 288 compute nodes on Titan and 248 on Cori for our
data collection jobs as there are 288 OSSs on Titan and 248 on
Cori. To measure the end-to-end latency, the data collection job
launched one MPI process per node and each process issued a
1MB write request to each OSS every 30 seconds. Only one of
these processes is used to collect the job status data from the
job scheduler every 5 minutes (the job status does not change
as frequently as the end-to-end latency values). Since the
scheduling policy of Titan and Cori do not allow jobs at this
scale to run for long time, we have implemented a background
process which monitors the job queue associated with our
account and automatically resubmits the data collection job
once the previous submission is completed. We ran our data
collection job for 10 days on Titan and 2 days on Cori (We
do not have enough hours left on our Cori account for us to
run longer data collection job.).

In practice, once the I/O prediction model is trained, users
do not need to launch a separate job to collect the data. Instead,
the data collection code can share the compute node with
their own applications and run as a background process on
a single core of that computer node. Since the compute nodes
on supercomputers often adopt many-core architectures, we do
not expect our data collection approach will notably affect the
performance of the original applications.



B. Analysis of the Field Data

The analysis of the data we collected is presented in this
subsection.

1) I/O Performance Data: Let us have a look at the
performance of writing 1GB data on Titan and Cori first. As
shown in Figure 4, on both Titan and Cori, the distribution
of time spent on writing 1GB data has very long tail. In fact,
although most 1GB writes can be completed in 2 seconds on
Titan and 3.5 seconds on Cori, a few of them might need 50
seconds or even more. This means the execution efficiency of
applications running on these two systems might suffer from
high I/O variability. For example, when a scientific simulation
code running on Titan writes a checkpoint, there might be
more than 10,000 MPI processes writing data to the storage
system simultaneously. Some of them might complete the
writing much faster than the others. However, those faster
processes cannot restart the simulation until the slower ones
finish writing their checkpoints, as all processes must be
synchronized before starting a new simulation step.
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Fig. 4: Time used to write 1GB data on Titan and Cori

Another interesting observation is, on both Titan and Cori,
the distribution of time spent on writing 1GB data shows some
bimodal characteristics. For example, as shown in Figure 4(a),
the histogram has two distinguishable peaks, one is at around
1.85 seconds and the other is at around 2.7 seconds. Similarly,
in Figure 4(b), the distriubtion also shows two different modes,
one is centered at around 3.2 seconds while the other is
centered at around 4 seconds. This observation indicates that
the degree of busyness of storage subsystems on production
supercomputers can be characterized by two different per-
formance states: idle and busy state. Besides performance
of 1GB write requests, similar bimodal characteristics are
also observed when writing data with other sizes (64MB and
256MB, for instance).

So why there are two different performance states? If we
look at Figure 5, the distributions of end-to-end I/O latency

on both Titan and Cori also show two different modes. As
mentioned in previous section, Lustre splits all large I/O
requests and transfers them through 1MB RPCs. The RPC
traffic from different jobs are competing for the limited I/O
bandwidth to the storage backend. When there is not much
I/O traffic from other jobs, the storage subsystem is in idle
state and the RPC traffic can be forwarded to the storage
backend quickly. When the I/O bandwidth is saturated by RPC
traffic, the storage subsystem is in busy state and the average
latency of the RPC transfer increases significantly. Therefore,
on Lustre file system, performance of writing large data has
similar bimodal characteristic as that of writing 1MB data
chunks.
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Fig. 5: Latency of writing 1MB data to the storage backend
on Titan and Cori

2) Job Status Data: TABLE I provides an overview of the
job status data we collected from Titan and Cori. As shown in
TABLE I, the average number of running jobs per day on Cori
is higher than that on Titan. Moreover, it seems that most jobs
running on Cori are small jobs. For example, more than 50%
of the jobs running on Cori use less than 10 compute nodes,
while on Titan, only 18% of the jobs use less than 10 compute
nodes. Another interesting finding is that jobs running on Cori
use more memory and have longer running time than those on
Titan. All these differences between Titan and Cori’s job status
data suggest that scientific applications running on these two
supercomputers might experience different I/O performance
characteristics.

The I/O performance of each application often depends on
other jobs running on the system since the I/O bandwidth is
shared by all running jobs from all compute systems attached
to the storage backend. However, in reality, finding the cor-
relation between status of running jobs and I/O performance
is difficult. In Section IV, we will demonstrate that machine
learning techniques can help us bridge this gap.



Titan (10 days) Cori (2 days)
Avg number of jobs per day 820 1,340

Job size Min 1 1
(node) Median 64 8

Max 17,920 5,468
Job memory usage Min 0.001 1.0
(GB) Median 3.27 360.0

Max 3,135.9 492120.0
Job running time Min 0.0014 0.05
(hour) Median 1.58 1.95

Max 28.0 48.0

TABLE I: Overview of collected job status data

IV. I/O PERFORMANCE PREDICTION

In this section, we demonstrate how to leverage the traces
we collected and machine learning techniques to predict the
transitions between different I/O performance states.

A. Problem Formulation

We formulate the I/O performance prediction on HPC sys-
tem as a classification problem. As two different performance
states are observed in the I/O performance data, we can use
the historical data to parameterize the distribution of I/O time
in each performance state. Then we train a classifier that
can predict which performance state an I/O operation will
encounter given the job status as well as the end-to-end I/O
latency. Although we cannot obtain the exact I/O performance
number from the classifier, knowing the performance state
of storage subsystems and distribution of I/O time in each
performance state beforehand is still useful for applications or
I/O middleware to intelligently schedule their I/O operations.
For example, if the classifier shows the I/O paths to some
of the OSSs on Titan will be in busy state, we can write
more data to those idle OSSs instead of these busy ones.
More details about how we use a variety of machine learning-
based approaches to train classifiers and how we validate the
prediction results are presented in following subsections.

B. Data Preprocessing

Before building the classification model, we need to pre-
process the data we collected and convert the raw data into
response and explanatory variables which will be used to train
and test the classifiers.

1) The Response Variable: The response variable is the the
variable we try to classify or predict, which in our case is
the performance state of I/O paths to each OSSs on Titan and
Cori.

First, we use a mixture of two log-normal distributions
to fit the performance numbers, which is parameterized by
maximum likelihood estimation (MLE) and expectation max-
imization (EM) algorithm [12]. We also tried other long-tail
distributions, but the log-normal distribution always fits the
data best. As an example shown in Figure 6, the mixture of two
log-normal distributions can capture the bimodal characteristic
observed in performance numbers of 1GB writes fairly well.

Second, for each performance number we collected, we use
the mixture model to compute the probability of being in each
state. Since the two performance states overlap each other
(short write time might belong to busy state while long write

idle state

busy state

We use a mixture of two 
lognormal distributions to fit 
the performance numbers 

Fig. 6: A mixture of two log-normal distributions that fits
performance numbers of 1GB writes

#ID Feature
1 Total number of running jobs
2 Number of running jobs from batch queue
3 Number of running jobs from debug queue
4 Number of exta-large running jobs (nodes ≥ 11,250)
5 Number of large running jobs (3,750 ≤ nodes < 11,250)
6 Number of medium running jobs (313 ≤ nodes < 3,750)
7 Number of small running jobs (126 ≤ nodes < 313)
8 Number of extra-small running jobs (0 < nodes < 126)
9 Number of new running jobs

10 Number of middle-aged running jobs
11 Number of old running jobs
12 Amount of virtual memory used by all running jobs
13 Amount of physical memory used by all running jobs
14 Current 1MB write latency
15 Average 1MB write latency in a 10-minute time window
16 Standard deviation of 1MB write latency in a 10-minute time window

TABLE II: Features of classification model built for predicting
I/O performance of an OSS on Titan

time might belong to idle state), we do not simply assign the
state with higher probability as a label to the performance
number, instead, we randomly generate the label for each
performance number based on the calculated probability. Now
the performance number becomes a binary variable which is
either 0 (idle state) or 1 (busy state). This binary variable is
the response variable our classification model needs to predict.

2) The Explanatory Variables: In machine learning, the
explanatory variable are also termed features, which are used
to predict or explain variability in the response variable.
All features we used to build the classification model for
predicting I/O performance on Titan are listed in TABLE II.

In TABLE II, feature 1 to 13 are extracted from the job
status data. Specifically, the definition of extra-large to extra-
small job used by feature 4 to 8 are based on Titan’s job
priority policy, which can be found on OLCF’s website [13].
For feature 9 to 11, new running jobs are those that have used
less than 1/3 of their allocated hours, middle-aged running
jobs are those that have used more than 1/3 but less than 2/3
of their allocated hours, and old running jobs are those that
have used more than 2/3 of their allocated hours. Feature 14 to
16 are extracted from the end-to-end 1MB write latency data.
Particularly, we maintained a 10-minute shifting time-window
for the latency data and we calculate the average and standard
deviation of end-to-end latency within that time-window. The
features we selected for predicting I/O performance on Cori
are similar to those listed in TABLE II.



C. Training the Classifiers

We apply six commonly used machine learning approaches
to our dataset. They are classification and regression trees
(CART) [14], naive bayes (NB) [15], gradient boosting (GBT)
[16], support vector machines (SVM) [17], random forests
(RF) [18] and neural networks (NN) [19]. All these methods
are implemented based on scikit-learn library [20] in Python.
For the first three methods, we use the default parameter
settings provided by scikit-learn. For support vector machines,
we choose the radial basis function (RBF) kernel as it gives
the best bias variance trade-off. For random forests, we set
the number of trees as 50 in our evaluation. We also tested
it using up to 100 trees, but did not observe significant
improvement in prediction accuracy. For neural networks, we
adopt the multi-layer perceptron structure and build a network
with 3 layers and 100 neurons in total. Although neural
networks with complex structure and more neurons might
provide better prediction accuracy, training such a model is
apparently much more expensive and time-consuming, which
is not very feasible in our scenario as the model needs to be
updated periodically.

For each OSS, we train a classifier using the historical
job status as well as the end-to-end latency measured by
periodically sending 1MB data to that OSS. Specifically, for
Titan, we use the data collected in the first 8 days to train
a classifier for each OSS, while for Cori, we use the data
of the first day as the training data. In order to avoid the
overfitting/overtraining, we split the training data into 8 subsets
and run 8-fold cross-validation on them to make sure the
parameter setting that achieves fairly good performance on
all validation splits is selected. The training usually finishes
in less than 30 seconds.

D. Prediction Results

We apply the classification algorithms to the data collected
from each OSS on Titan and evaluate the prediction accuracy
of these algorithms on all OSSs. As shown in Figure 11(a),
each boxplot illustrates the distribution of prediction accuracy
when certain classification algorithm is applied to the data
collected from 288 OSSs on Titan. From this figure, we can
see that SVM classifier achieves the best prediction accuracy.
When SVM is used, the accuracy of I/O performance state
prediction for most of the OSSs on Titan is more than 70%.
Besides SVM, random forests classifier also performs fairly
well. Another interesting finding is the prediction accuracy for
smaller write sizes (64MB and 256MB) is more stable among
different OSSs. This is because small I/O requests forward
less RPC calls to the OSSs on Lustre file system, thus are less
likely to be affected by I/O traffic from other running jobs.

Similarly, SVM also achieves the best prediction accuracy
on data collected from Cori. As shown in Figure 7(b), when
SVM is used, the accuracy of I/O performance state prediction
for most of the OSSs on Cori is more than 90%. Gradient
boosting classifier also performs well on Cori dataset, and the
average prediction accuracy it has achieved among all OSSs
is around 80%.
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Fig. 7: Prediction accuracy of applying different classification
algorithms to I/O performance data collected from all OSSs
on Titan and Cori

Accuracy score is just one metric to evaluate the classifica-
tion or prediction results. Another commonly used metric is
the receiver operating characteristic curve (ROC curve), which
is created by plotting the true positive rate (TPR) against the
false positive rate (FPR) at various threshold settings. The
definition of true positive rate and false positive rate are given
as follows.

TPR =
# of true positives

# of true positives + # of false negatives
(1)

FPR =
# of false positives

# of false positives + # of true negatives
(2)

Since we train a classification model for each of the OSSs on
Titan and Cori, we can plot an ROC curve for each of them.
Here we randomly pick three OSSs from Titan and another
three from Cori, then we plot the ROC curve for each classifier
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Fig. 8: Histogram of Titan’s 1GB write performance numbers
in the testing dataset that are predicted as being in idle and
busy state. The bottom figure shows a zoom-in view where
the write time is within [0, 2.5] on the x-axis. The prediction
results are given by an SVM classifier.
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Fig. 9: ROC curves of using different classifiers to predict three Titan OSSs’ I/O performance
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Fig. 10: ROC curves of using different classifiers to predict three Cori OSSs’ I/O performance

after we apply them to predicting the 1GB write performance
of these OSSs. All the ROC curves can be found in Figure 9
and 10.

After generating the ROC curve, area under the ROC curve
(AUC) is often used to evaluate how good a classifier is.
As shown in Figure 9, for the three OSSs on Titan, SVM
and random forest classifier outperform other classifiers since
the AUC of these two classifiers are greater than that of the
others. On Cori, as shown in Figure 10, the difference between
AUC of any two classifiers is not very significant, though the
gradient boosting classifer is slightly better than the others.

Based on the accuracy score and ROC curve, we know how
accurate a classifier can be when it is used to predict the I/O
performance state. Now our question is: in the testing dataset,
are all the data points that have been predicted as being in the
idle state have short I/O time? Or how many data points that
have long I/O time are incorrectly predicted as being in the
idle state? Here we separately plot the histogram of Titan’s
1GB write performance numbers (from all 288 OSSs) that
are predicted as being in idle and busy state in Figure 8.
From the top figure we can see that almost all of the data
points that have long write time are correctly predicted as
being in busy state. Also, from the bottom figure we can
see that most of the data points that have been predicted as
being in idle state have very short write time (less than 2.1
seconds). Although, a small portion of the data points that
have short write time are predicted as being in busy state,
this kind of misprediction usually is not very harmful. For
example, based on the prediction result that I/O performance
will be in busy state, applications or I/O middleware might
adopt some unambitious I/O strategies (such as skipping the
current I/O step, writing less data, etc.). In that case, the I/O

bandwidth might not be fully utilized, but the applications’
execution efficiency will not be negatively affected.

To make it feasible for scientific applications to utilize the
prediction results to dynamically schedule their I/O operations
during runtime, the inference time of the trained classification
models needs to be short. For all the six classification models
we evaluated, the inference time can almost be ignored (less
than 0.01 seconds).

E. Robustness of Predictions

In practice, collecting a large amount of data from pro-
duction HPC systems for model training might be difficult
or even infeasible due to limited resources or rigid system
policies. Therefore, we need to evaluate the robustness of our
classification-based I/O prediction models when only limited
data is available for training.

The basic idea of our evaluation is we use different percent-
ages of the data to train our predictive model and see if the
prediction accuracy changes significantly. The data collected
from Titan is used for this evaluation. First, in Figure 11(a),
we show the prediction accuracy our model achieved when
data collected during the first 8 days is used for training and
that collected during the last 2 days is used for testing. Then in
Figure 11(b), only data collected during the first 6 days is used
for training. Finally, in Figure 11(c), only the data of the first
4 days is used to train our model. From these three figures,
we can see that when we reduce the size of the training data,
the prediction accuracy of 1GB writes’ performance does not
decrease significantly. Particularly, for SVM classifier, even
when we only use the data of the first 4 days to train it, it
can still achieve an average prediction accuracy around 75%
on data of the last 6 days.
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Fig. 11: Evaluating the robustness of our classification-based
I/O prediction model

However, as we can see in 11(b) and 11(c), the prediction
accuracy on performance of 64MB and 256MB writes reduce
if size of the training data decreases. There are two possible
causes of this accuracy degradation: 1) We adopt the default
parameter settings for most of the classification models which
might be sensitive to the size of the training data. 2) Some
features we selected for training the classifiers, especially
those collected from the job scheduler, might not have strong
correlation with the performance of small writes. We believe
further refinement of parameter settings and learning features
will improve the robustness of our model when it is used to
predict the performance of small I/O requests.

V. CASE STUDY: TUNING DATA PLACEMENT ON LUSTRE
BASED ON PREDICTION RESULTS

In this section, we present a case study to demonstrate how
to leverage the I/O performance prediction to tune the data
placement on Lustre file system to improve the aggregate I/O
throughput.

A. Data Placement by Proactive Performance Prediction

As we introduced in Section II, both Titan and Cori use
Lustre parallel file system as their storage subsystem. In order
to balance the I/O traffic among the OSSs and maximize

the bandwidth usage, Lustre splits the I/O requests from
applications and send them to multiple OSSs in parallel, which
is also called “striping”. However, in reality, such “striping”
strategy does not always guarantee good I/O performance,
since the parallel file system is shared by I/O traffic from
many running jobs and the I/O contention and interference
might happen anytime on any of those OSSs. If one of the
OSSs is congested due to the I/O contention, it can lead to
I/O performance degradation on a subset of MPI processes
launched by those large-scale scientific applications. As a
result, the aggregate I/O throughput of these applications will
decrease dramatically.

Our idea to improve the aggregate I/O throughput for these
large-scale applications on Lustre file system is straightfor-
ward: Based on the I/O performance prediction, we know
which OSSs will be in busy state or idle state. Then we
intentionally let the application shift some of its I/O traffic
to those idle OSSs. Here is the model we used to decide how
much data should be written to each OSS. Let us assume at
any given time, nidle of the OSSs are predicted as being in
idle state and nbusy of them are predicted as being in busy
state. If the total amount of data written by the application is
SGB, we need to calculate how much of the data should be
sent to those idle OSSs, and the rest will be sent to those busy
ones. Let us assume αS data will be sent to idle OSSs, where
0 < α ≤ 1. As shown in Figure 6, we have used a mixture of
two lognormal distributions to fit the time on 1GB writes and
estimated the parameters of these two lognormal distributions.
If the mean value of these two distributions are denoted as
Tidle and Tbusy , then on average, writing αS/nidleGB data to
an idle OSS takes TidleαS/nidle seconds. Similarly, writing
(1−α)S/nbusyGB to a busy OSS takes Tbusy(1−α)S/nbusy
seconds. Basically, we want the writes to idle and busy OSSs
to be finished at about the same time. Therefore, we have
TidleαS/nidle = Tbusy(1− α)S/nbusy , which gives us:

α =
nidleTbusy

nidleTbusy + nbusyTidle
(3)

B. Evaluation

We evaluate our I/O prediction-guided data placement tun-
ing through a trace-driven simulation. In our simulation,
we assume that there is an application on Titan which is
writing 288GB data to Lustre at every I/O step. First, we
randomly selected 100 data points (each data point includes
I/O performance of all 288 OSSs measured at a specific time)
from our testing dataset. Then for each data point, we apply
the prediction results of performance state of each OSS to
equation 3 to decide the amount of data that should be written
to idle and busy OSSs. Finally, we calculate the aggregate
I/O throughput using the actual write time to each OSS. We
also simulate the case when no data placement tuning is used,
meaning the application equally writes 1GB data to each OSS,
as the evaluation baseline.

The aggregate I/O throughput of these two evaluation cases
given by one run of the simulation are shown in Figure 12.
As we can see, most of the time, our prediction-based data
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placement tuning improves the aggregate I/O throughput. We
also run the simulation 100 times, the average improvement of
the aggregate I/O throughput by leveraging the I/O prediction-
guided data placement is more than 9%.

VI. RELATED WORK

In this section, we present a brief review of existing liter-
ature that focus on I/O performance analysis, modeling and
prediction in HPC environments.

First, many existing studies have conducted a variety of I/O
performance measurements and analysis on different HPC sys-
tems. Some of these studies concentrate on how hardwares or
system architectures affect the I/O performance, while they do
not take applications’ I/O behavior into account. For example,
the I/O performance of several DoE computing facilities, such
as Intrepid, Edison and Titan, have been extensively measured
and analyzed [21], [22], [23]. There are also some research
efforts that only study the I/O performance of one or a few
specific applications by analyzing the runtime traces collected
when these applications were running on the HPC systems. For
example, [24] presented an analysis of the application-level I/O
traces collected from Intrepid, during a two-month time period,
using Darshan I/O tracing tool [25]. Also, Darshan traces
collected from three different supercomputing facilities during
a much longer time period (6 years) were analyzed in [3].
Although these performance analysis provide some valuable
insight into the I/O performance on HPC systems, most of
them only focus on a specific system or application, which
makes it difficult to leverage their results in other scenarios.

Second, since the I/O subsystems in HPC environments
are often shared by hundreds of applications simultaneously
while the I/O bandwidth is usually limited, I/O congestion
and interference are highly likely to happen, which could lead
to significant I/O performance variability and uncertainty. In
order to have some predictability of runtime I/O performance,
some other existing work try to model and characterize the
I/O performance variability in production HPC systems. For
example, both [1] and [26] presented some detailed analysis
and discussed why I/O performance in HPC is highly variable.
A grammar-based appraoch is proposed in [27], which can
predict spatial and temporal I/O patterns. In [28], heavy-tailed
distributions are used to fit the system response time of parallel
I/O. Based on the observed properties of I/O traces collected
on Titan, [4] built a hidden Markov model to characterize the
end-to-end I/O performance on Titan. All these models are
usually simplified based on some assumptions which might

not be true in reality. For example, our approach is inspired
by the study presented in [4]. However, [4] makes a strong
assumption that the transition between I/O performance states
on Titan follows a Markov process, which might not always
be true. Our classification-based approach is more general and
can be used on different HPC systems.

Third, machine learning techniques have also been applied
to performance prediction and optimization in HPC environ-
ments. For example, in [29], a decision tree based model is
built to predict the I/O performance on HPC systems. Similar
work is done in [5], where the decision tree model is trained
using long-term I/O traces collected at Lawrence Livermore
National Laboratory. In [7], job scripts of 300,000 jobs from
a HPC machine is used to train a deep neural network model
to predict I/O performance. [6] leverages deep neural network
and reinforcement learning to find the best tuning option for
Lustre file system. Although these studies have shown some
promising results, few of them takes the bursty nature of HPC
I/O into account and can periodically update their predictive
models to adapt to the runtime I/O performance variabilities,
which is a norm rather than exception on production HPC
systems. Therefore, our work is an important complement to
existing work in this field.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Managing the I/O operations for large-scale scientific appli-
cations running on production HPC systems is challenging. As
presented by a few existing studies as well as this paper, I/O
bandwidth contention can make the runtime I/O performance
highly variable which significantly increases the uncertainty
of scientific applications’ execution time. In order to mitigate
the I/O contention and fully utilzie the available bandwidth,
scientific applications or I/O middleware need to accurately
characterize and predict the runtime I/O performance to sched-
ule their I/O operations more efficiently and intelligently.

In this paper, we have explored the possibilities of lever-
aging machine learning techniques to predict the runtime I/O
performance on production HPC systems. As demonstrated
by our evaluation results, even without well crafted parameter
tuning, a few commonly used machine learning models can
achieve acceptable prediction accuracy. Particularly, by using
SVM and random forest model, the runtime I/O performance
on both Titan and Cori can be predicted with an average
accuracy that is more than 70%. Moreover, we create a trace-
driven simulation to demonstrate how the I/O performance
prediction results can be leveraged to adaptively adjust the data
placement to improve the aggregate I/O throughput on Lustre
file system. The simulation results show that, on average the
improvement of the aggregate I/O throughput is more than
9%, if the machine learning-based I/O performance prediction
is used.

As part of our future work, we are going to study how to
navigate the hyperparameter space to quickly identify the op-
timal parameter settings for these machine learning models to
further improve the prediction accuracy. We are also going to
integrate the I/O prediction models into an open source parallel



I/O framework, coupled with an approach for capturing and
managing the system information that is required by model
training and updating.
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