
Early User Experience on and Lessons Learned from the NERSC Cori GPU Cluster

Kelly L. Rowland∗, Brian Friesen∗, Jack Deslippe∗, Brandon Cook∗, Ershaad Basheer∗, and Max Katz†
∗ National Energy Research Scientific Computing Center (NERSC)

Lawrence Berkeley National Laboratory (LBNL)
Berkeley, CA, USA

Email: kellyrowland@lbl.gov, bfriesen@lbl.gov, bgcook@lbl.gov, jrdeslippe@lbl.gov, ebasheer@lbl.gov
† NVIDIA Corporation
Santa Clara, CA, USA

Email: mkatz@nvidia.com

Abstract—The next-generation NERSC supercomputer
“Perlmutter” will feature a combination of nodes which are
CPU-only and nodes which contain both CPUs and GPUs. To
help users prepare for this system, NERSC has procured a
Cray CS-Storm 500NX system of 18 CPU-GPU nodes. Despite
having little in common architecturally to the current NERSC
production system “Cori”, this cluster has been fully integrated
into Cori and is available to users by access request. These
GPU-accelerated nodes are primarily for testing and develop-
ment work, with priority access given to users participating in
the NERSC Exascale Science Applications Program (NESAP).
In this paper, we discuss management and deployment of the
GPU-specific software provided by NERSC consultants for
use on the nodes, job scheduling policies, and efforts in user
communication.

We also detail the challenges encountered in flexible and
efficient software deployment, and the solutions we have found
most effective. Specifically, we have explored environment
modules, already used on the Cori XC system, as well as
programming environments built into Shifter images, which
address scalability and cross-compilation challenges. Addition-
ally, we discuss our approach for working with early-access
users to get their feedback and respond to it accordingly. We
conclude our paper with a summary.

Keywords-GPU; user environment; scheduling

I. INTRODUCTION

The National Energy Research Scientific Computing Cen-
ter (NERSC) is the primary scientific computing facility for
the Office of Science in the U.S. Department of Energy,
located at Lawrence Berkeley National Laboratory (LBNL).
NERSC is dedicated to providing computational resources
and expertise for basic scientific research, and a significant
part of this effort is ensuring that NERSC staff and users
alike are prepared to successfully use the large-scale NERSC
systems.

The incoming “Perlmutter” system will be an HPE Cray
system and will be composed of GPU-accelerated nodes as
well as CPU-only nodes. In preparation for the delivery of
this system, NERSC has integrated an 18-node Cray CS-
Storm cluster with 144 NVIDIA V100 GPUs into the current
“Cori” Cray XC40 system. In this paper, we describe the

experiences and lessons learned in supporting the users on
these GPU nodes.

II. MOTIVATION

To meet the mission of accelerating scientific discovery at
the DOE Office of Science through high performance com-
puting and data analysis, NERSC staff work with vendors
and users in the leadup to a new system delivery to ensure
application readiness and a successful deployment. This
preparation work is particularly important for the incoming
Perlmutter system since it will be the first full-scale NERSC
system to feature GPU-accelerated nodes.

To this end, the NERSC Exascale Science Applications
Program (NESAP) is a collaborative effort in which NERSC
partners with code teams, vendors, and library and tool
developers to prepare for advanced architectures and new
systems. The primary purpose of the Cori GPU nodes
includes facilitating R&D activities by NESAP teams and
other strategic partners to help ensure the success of key
workloads on the Perlmutter system. As is described in
more detail in the following sections, NESAP users have
been given priority access to the Cori GPU nodes to prepare
application codes for the incoming architectures.

III. SYSTEM ARCHITECTURE

The hardware configuration of the Cori GPU nodes was
guided by the design of the Perlmutter system, as it is
intended to be a platform used to prepare for larger-scale
use of Perlmutter. The system is a Cray CS-Storm 500NX
- 4U cluster, with 18 nodes, each with 8 NVIDIA Tesla
V100 (“Volta”) GPUs and two sockets of 20-core, 2.4 GHz
Intel Xeon Gold 6148 (“Skylake”) processors. Each node
has 384 GB DDR4 RAM, 930 GB on-node NVMe storage,
and 4 dual-port NVIDIA Networking MT27800 (ConnectX-
5) EDR InfiniBand network cards.

The node configuration is broadly similar to the NVIDIA
DGX-1 appliance [1]. The 8 GPUs on each node are
connected to each other in a ‘hybrid cube-mesh’ topology.
In this arrangement, each GPU contains a single NVLink
connection to each of two GPUs, and a doubly-bonded

Figure 1. Node topology (adapted from NVIDIA [1]).

NVLink connection to two more GPUs, with twice the
bandwidth of a single NVLink connection. So, each GPU is
connected directly to 4 others. All GPUs are connected to
the Skylake CPUs and the InfiniBand host channel adapters
(HCAs) via PCIe 3.0; there are 4 PCI switches per node
connecting the GPUs, NIC, and CPUs at a peak bandwidth
of 16 GB/s in each direction. A diagram of this topology is
provided in Figure 1.

The GPU nodes are accessed via the Cori login nodes but
are on a separate Slurm controller and run OpenSUSE rather
than a SLES-based Cray Linux Environment. The node
images are constructed from a Cray image recipe maintained
in Git using SMWFlow tools.

Two of the four HCAs on each node are connected to one
of six leaf switches, two of which in turn connect to one of
three root switches. A third HCA on each node is connected
to a Lustre InfiniBand switch such that the GPU nodes can
mount Cori’s high-performance Lustre file system. The final
HCA on each node is connected to the IBM Spectrum Scale
routers, such that the $HOME and “community” file systems
are also mounted on the GPU nodes. Making all of the
NERSC file systems available to the GPU cluster has vastly
increased productivity for NERSC users as they prepare their
applications for Perlmutter.

IV. SOFTWARE

Although the GPU cluster is tightly integrated into the
Cori system, most Cray software on Cori targets the XC
architecture, not the CS-Storm architecture, and thus does
not work on the GPU nodes. Cross-compilation for Cori
GPU nodes from Cori XC or eLogin nodes is difficult,
due to differences in software available to each type of
node. The chief examples are Mellanox OFED and CUDA
libraries on Cori GPU, and Cray PE and MPI libraries on
eLogin/XC nodes. Consequently, most software interactions
for Cori GPU must take place directly on Cori GPU nodes.
However, to present a consistent user-facing environment,
we provide software to users for the Cori GPU nodes
through environment modules as is done on the Cori XC
system. Additionally, the use of containerized environments
via NERSC’s Shifter software package [2] has been a boon
to staff and users alike.

A. Environment Modules

NERSC uses environment modules [3] to manage most
of the software that is provided for users on the Cori
XC system. Since users are accustomed to working with
software through the module interface, it was a logical next

step for us to provide software for the Cori GPU nodes via
environment modules as well.

Initially, the GPU-specific software modulefiles were lo-
cated in the same system directory as the modulefiles for
Cori XC software. However, this proved to be confusing
for users, as it was not immediately clear which software
modules were intended for use on which system. For ex-
ample, version 4.0.2 of OpenMPI was intended for use on
the Cori XC system, while version 4.0.3 of OpenMPI was
intended for use on the Cori GPU nodes, but there was no
clear indication to users that this was the case when the
modulefiles were first put in place.

To mitigate this issue, the modulefiles specific to the
software built for the Cori GPU nodes were moved to a
separate directory that is not in a user’s $MODULEPATH by
default. Users are now directed to load a cgpu module;
this module prepends the GPU-specific software modulefile
path to the user’s $MODULEPATH so that any Cori GPU
software versions are found before Cori XC software. With
this approach, users may also still load Cori XC software
modules for use on the Cori GPU nodes in the event that
they wish to do so, though this must be done with caution.

B. Shifter

Shifter is a software package that allows user-created
images to run at NERSC [2]. Since it runs on both the Cori
XC nodes as well as the GPU nodes, it is a natural solution
to the aforementioned issues surrounding cross-compilation.
Using Shifter provides a software development environment
which enables compilation for Cori GPU nodes from any
Cori node (another GPU node, eLogin nodes, XC nodes) and
provides a natural transition of the software to the incoming
Perlmutter system.

By default, when using Shifter on the Cori GPU
nodes, CUDA drivers are copied into the Shifter image
and the libraries are placed in the image environment’s
LD_LIBRARY_PATH. Additionally, a specific CUDA mod-
ule is provided for use in Shifter containers for users who
may wish to manually insert CUDA drivers into an image.
Users are instructed to load the cuda/shifter environ-
ment module in their job script; this module defines the
SHIFTER_CUDA_ROOT environment variable and points it
to the version of the CUDA SDK installation which works
in Shifter images.

To leverage existing vendor efforts, NERSC provides
TensorFlow and PyTorch Shifter images based on NVidia’s
GPU Cloud Containers (NGC) [4] for users. These images
are based on containers which are optimized for best per-
formance on GPUs, allowing us to provide an enhanced
user experience and ensure appropriate resource utilization
without expending excess staff effort. As discussed in further
detail in Section V, many users access the Cori GPU nodes
through the NERSC Jupyter interface. To facilitate use of
the optimized deep learning packages through this interface

in addition to directly through scripts, we provide Jupyter
kernels based on these images.

V. SCHEDULING AND RESOURCE ACCESS

As mentioned, the primary purposes of the Cori GPU
nodes include R&D activities by NESAP teams, NERSC
staff training, and hackathons and workshops. This style
of work necessitates a high-availability system ready for
interactive use. Secondary goals for the Cori GPU nodes
include providing opportunities for development and opti-
mization work done by teams outside of NESAP, evaluation
and testing of machine learning (ML) techniques in scien-
tific workloads, and offering a platform for GPU-enabled
software as system availability allows for. These secondary
goals tend to require jobs with longer walltime and multiple
nodes. So, we are faced with a unique challenge in providing
user access to the Cori GPU nodes: how can we prioritize
resource availability and additionally allow users to utilize
the system’s spare cycles?

To meet this challenge, we make use of various features
of the Slurm workload manager. Our job queues on the Cori
GPU nodes are structured such that:

1) Jobs running between 8:00 AM Pacific Time (3:00
PM UTC) and 8:00 PM Pacific Time (3:00 AM UTC)
from Monday through Friday are limited to 4 hours
of run time.

2) Jobs running before 8:00 AM Pacific Time (3:00 PM
UTC) or after 8:00 PM Pacific Time (3:00 AM UTC),
or on weekends, can run until 8:00 AM Pacific Time
on the next weekday.

3) Users affiliated with NESAP projects may add an addi-
tional flag -q special to their batch and interactive
jobs to be placed in a higher-priority queue.

4) Interactive jobs are limited to 2 GPUs. Jobs requiring
more than 2 GPUs can be submitted via the sbatch
command instead of salloc.

Points 1 and 2 in the above specifications are accom-
plished via a pair of floating reservations in Slurm, shown
in Figure 2.

The gpu_4hour_limit reservation is set to be in effect
4 hours in the future from job submission between 8:00
AM Pacific Time (3:00 PM UTC) and 8:00 PM Pacific
Time (3:00 AM UTC) from Monday through Friday and
prevents jobs with requested walltime greater than 4 hours
from starting during these times. The gpu_8am_barrier
reservation is in place to ensure system availability at the
start of each weekday (i.e., it is in place to prevent long-
running jobs from running overnight and into the business
day).

With these constraints in place on the system, the Cori
GPU nodes are made readily available for interactive use
during weekdays and then opened up for larger and longer
jobs to run overnight (in continental US time zones) and on
weekends. As noted in item 3 above, to ensure that users

ReservationName=gpu_4hour_limit
StartTime=2020-08-20T20:36:46 EndTime=2020-08-20T21:36:46 Duration=01:00:00
Nodes=cgpu[01-17] NodeCnt=17 CoreCnt=680 Features=(null) PartitionName=gpu
Flags=OVERLAP,IGNORE_JOBS,SPEC_NODES,TIME_FLOAT
TRES=cpu=1360
Users=root Accounts=(null) Licenses=(null) State=INACTIVE BurstBuffer=(null)
Watts=n/a MaxStartDelay=(null)

ReservationName=gpu_8am_barrier
StartTime=2020-08-21T08:00:00 EndTime=2020-08-21T08:01:00 Duration=00:01:00
Nodes=cgpu[01-17] NodeCnt=17 CoreCnt=680 Features=(null) PartitionName=gpu
Flags=OVERLAP,IGNORE_JOBS,WEEKDAY,SPEC_NODES
TRES=cpu=1360
Users=root Accounts=(null) Licenses=(null) State=INACTIVE BurstBuffer=(null)
Watts=n/a MaxStartDelay=(null)

Figure 2. Slurm reservations.

affiliated with the NESAP program are given priority access
to the Cori GPU nodes, jobs submitted by these users can
add the -q special flag to their Slurm job submissions.
This option routes the job to a high-priority queue which
supersedes other jobs submitted to the system. Lastly, as
noted in item 4 above, interactive jobs are limited to 2 GPUs
per job. So that the system queue is not blocked by any
single user running a plurality of short jobs simultaneously, a
given user is limited to having a maximum of 5 jobs running
simultaneously.

The queue configuration for the Cori GPU nodes contin-
ues to be an iterative process, with feedback from NERSC
staff and users informing the structure. For example, in a
previous instance of the configuration, larger batch jobs were
allowed to start during business hours but were routed to a
queue where they could be preempted by other jobs. This
turned out to be a source of frustration for users, as it was
often the case that a larger job would start readily but get
preempted before it could checkpoint or produce other useful
output. Additionally, the system was opened to users with a
default setting of exclusive access to nodes. This has since
been changed to a default resource allocation of sharing
nodes by default, with users encouraged to request only the
minimum resources needed for a given job.

One method of job submission that is popular with users
is GPU access through a Jupyter notebook. In this workflow,
users log into the NERSC JupyterHub instance1 with their
NERSC credentials and then choose to “start” a job on
a shared GPU node. This submits a batch job, requesting
access to one GPU for four hours. Figure 3 shows a
screenshot of the NERSC Jupyterhub interface, including
the user option to start a Cori GPU job.

Figure 4 plots the cumulative number of jobs started on
the Cori GPU nodes since the system came online. The jobs

1https://jupyter.nersc.gov/

Figure 3. Jupyter access interface.

Figure 4. Number of jobs started on the Cori GPU nodes over time, broken
down by job submission type.

are broken down by type of job submission: interactive jobs,
batch jobs, and jobs submitted via the Jupyter interface.

When users were initially let onto the system, batch
and interactive jobs were submitted at approximately the

https://jupyter.nersc.gov/

same frequency. Over time, however, the cumulative number
of batch jobs submitted continues to outpace the number
of interactive jobs submitted, potentially indicating greater
user readiness over time (e.g., a development pattern of
interactive jobs followed by greater numbers of batch jobs
once kernels have been made GPU-ready).

Even with the recent spike in batch job submissions, it is
useful to note that approximately 40% of jobs which have
started on the Cori GPU nodes were done so either inter-
actively or via the Jupyter interface. Since this significant
fraction of the workload on the Cori GPU nodes depends
on immediate access to GPU resources, it behooves us to
continue to ensure that nodes are readily available.

VI. USER COMMUNICATIONS

Access to the Cori GPU system is granted by request;
not all NERSC users are enabled for use of the nodes.
Any user affiliated with a NESAP project is given access
to the system with no further vetting beyond the initial
request; users affiliated with strategic partner facilities are
also prioritized for access to the Cori GPU nodes. NERSC
users whose work is not associated with any NESAP teams
may still be granted access to the Cori GPU nodes if their
use case is amenable to the constraints enumerated above.

All users enabled on the Cori GPU system are added to an
email list for communications; NERSC staff use the list to
announce major changes to system software, GPU-related
training events, and upcoming calls with users. NERSC
staff host video calls with users on a monthly basis to
discuss planned changes to the system software and get user
feedback. Users are encouraged to call in to ask questions or
report issues; the call is left open for discussions following
any news from NERSC staff.

Documentation for the Cori GPU system is provided
online2 and includes information about system hardware, job
submission, and available software. These pages are hosted
separately from the main NERSC user-facing documentation
to clearly delineate that the guidance is specific to the
Cori GPU nodes and not the Cori XC system. Examples
of software usage and expected output are provided for
users who are new to software such as the CUDA platform;
the website material is updated by NERSC staff as more
packages are made available on the system.

VII. SUMMARY

Early experiences with the Cori GPU nodes have been a
valuable learning opportunity for NERSC staff and users to
prepare for the incoming Perlmutter system. Although there
are minor architectural differences between the two systems,
we anticipate facing challenges on Perlmutter which are
similar to those that we have encountered with the Cori GPU
nodes.

2https://docs-dev.nersc.gov/cgpu/

A primary challenge in managing the system has been
maximizing node availability for interactive and Jupyter jobs
while also achieving high cluster utilization. To achieve
both of those goals, we continue to update the nodes’
queue structure, incorporating job accounting data as well
as feedback from NERSC staff and users. This challenge of
managing and scheduling a relatively small number of high-
density nodes will extend into our future production work;
Perlmutter will have a much smaller number of nodes than
Cori does, while the number of NERSC users has increased
to over 7000 and continues to grow.

Finally, the challenges associated with cross-compilation
as a first-class workflow have become readily apparent. This
has been less of an issue on previous systems where the
eLogin and compute nodes look fairly similar, but the Cori
GPU nodes are distinct from the Cori eLogin nodes. The
apparent distinction will also be the case on Perlmutter, and
we are using the Cori GPU nodes in preparation for meeting
this challenge at scale.

REFERENCES

[1] NVIDIA Corporation, “NVIDIA DGX-1 With Tesla V100
System Architecture,” https://images.nvidia.com/content/pdf/
dgx1-v100-system-architecture-whitepaper.pdf.

[2] Shifter: Containers for HPC. Cray User Group, 2016.
[Online]. Available: https://cug.org/proceedings/cug2016
proceedings/includes/files/pap103s2-file1.pdf

[3] X. Delaruelle, “Environment Modules,” http://modules.
sourceforge.net/.

[4] NVIDIA Corporation, “NVIDIA GPU Cloud Documentation,”
https://docs.nvidia.com/ngc/.

https://docs-dev.nersc.gov/cgpu/
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap103s2-file1.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap103s2-file1.pdf
http://modules.sourceforge.net/
http://modules.sourceforge.net/
https://docs.nvidia.com/ngc/

	Introduction
	Motivation
	System Architecture
	Software
	Environment Modules
	Shifter

	Scheduling and Resource Access
	User Communications
	Summary
	References

