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Abstract—The fast Fourier transform (FFT) has applications
in almost every frequency related studies, e.g. in image and signal
processing, and radio astronomy. It is also used to solve partial
differential equations used in fluid flows, density functional
theory, many-body theory, and others. Three-dimensional N3

FFT has large time complexity O(N3 log2 N). Hence, parallel
algorithms are made to compute such FFTs. Popular libraries
perform slab division or pencil decomposition of N3 data. None
of the existing libraries have achieved perfect inverse scaling
of time with (T−1 ≈ n) cores because FFT requires all-to-all
communication and clusters hitherto do not have physical all-
to-all connections. With advances in switches and topologies, we
now have Dragonfly topology, which physically connects various
units in an all-to-all fashion. Thus, we show that if we align the
all-to-all communication of FFT with the physical connections of
Dragonfly topology we will achieve a better scaling and reduce
communication time.

Index Terms—Parallel FFT, Communication time, Efficient job
scheduling

I. INTRODUCTION

The fast Fourier transform (FFT) is a key building block for
algorithms in computational science and engineering. It has
an operational complexity that grows only slightly faster than
linear growth with the input data size; but due to its heavy
dependency on communication through network, it deviates
from linear scaling. It is used in signal processing to encode
audio and video data for efficient transmission, storage, and
analysis and also to obtain solutions for partial differential
equations. Moreover, other algorithms for applications in wave
propagation (such as seismic inversion), and diffusion (such
as hydrocarbon reservoirs), solid and fluid mechanics, and
electromagnetism can be implemented using the FFT. In
science and engineering domains, the FFT spectral methods
are often found to be the most accurate numerical methods
per unit memory; therefore, the scientific and engineering
community still rely heavily on the Fourier transform. Thus,
it is crucial to ensure the best possible algorithms for both
the serial and parallel FFT, which is often the bottleneck
of spectral codes. Current algorithmic implementations of
the parallel FFT (and similar algorithms) require extensive
long-range inter-processor communications, which results in
a parallelization bottleneck. Nevertheless, it appears that the
FFT will still be needed on exascale computers; therefore,
improving the practical performance of FFT software is of
interest.

A. FFT Algorithm

Forward Fourier transform is given by the following equa-
tion.

f̂(k) =
∑

kx,ky,kz

f(x, y, z)e(−ikxx)e(−ikyy)e(−ikzz) (1)

The beauty of this sum is that kx, ky, and kz can be summed
independent of each other. These sums are done at different

Fig. 1. Three stages of FFT

phases of the process summarized below.
• FFT along Z axis
• Communicate Z pencils to Y pencils.
• FFT along Y axis
• Communicate Y pencils to X pencils.
• FFT along X axis

If we take Figure 1(b), we can see that vertical process com-
municate to form 1(a) while horizontal process communicate
to form 1(c)

B. Background

A wide range of solutions have been proposed to op-
timize and speed-up parallel FFT algorithmic approaches.
The Extreme Computing Research Center (ECRC) at King
Abdullah University of Science and Technology (KAUST),
in collaboration with the University of Oslo, Norway, has
developed a new efficient implementation of the FFT that rides
on the back of the little-known features of the message passing
interface (MPI) used for communication in essentially all
parallel computers, see (1). This feature MPI ALLTOALLW



enables some of the work that is traditionally done in the
CPU, namely transposing data between successive stages of
the FFT in multiple dimensions, to be done by the network
hardware, thus improving FFT efficiency. Moreover, relatively
limited expert coding is required to employ this feature, as
vendors generally optimally tune the MPI library for their own
hardware.

As part of a recent initiative by Samar Aseeri and Benson
Muite (2) to incite research topics addressing parallel FFT
optimization, a workshop on the parallel fast Fourier transform
(PFFT18) was held at HiPC in 2018 (3). The contributed
papers addressed the following topics:

• Exploiting high-speed half precision hardware in com-
puting FFT by developing a mixed precision method to
preserve accuracy (4).

• Impact of variations between FFTW2, FFTW3, and MKL
on modern multicore processors. The authors of this study
proposed three solution approaches for the optimization
of 2D FFT by removing performance variations (5).

• A new exascale framework FFTX was proposed (6) to
maximize performance and productivity when developing
FFT-based applications; it is based on SPIRAL which is
an FFT library generation autotuning framework (7).

Daisuke Takahashi, an invited speaker at PFFT18 has dis-
cussed his efforts on overlapping communication and compu-
tation in FFT implementation to obtain better performance (8).
He also discussed his recent porting of the parallel 1-D FFT
with automatic tuning on a cluster of Intel Xeon Phi processors
(9). In the keynote address of the workshop, Mahendra Verma
described an FFTK software library (10), which is tested in
this current work it was developed to scale efficiently for
the TARANG CFD software (11). TARANG is designed to
solve turbulence problems and has received Dr. A.P.J. Abdul
Kalam Cray HPC award in 2018. Anando Chatterjee, the final
invited speaker, discussed aspects of the current work in which
the Dragonfly network topology (12) of Shaheen II the Cray
XC40 at KAUST (13) were examined together with the FFTK
package in many ways to improve performance.

Here, among a number of experiments we mainly present
some results of a method by which we can improve the
communication time of FFT. We have run these tests on
Shaheen which is a Cray-XC40 supercomputer placed in King
Abdullah University of Science and Technology, Saudi Arabia.
The topological structure of Cray-XC40 is such that many
units of this system are connected in all-to-all fashion. We
can distribute the MPI processes to a specific such connected
nodes and see whether we get any improvement.

For a thorough description of the performance character-
istics of FFT (computation, communication and how it is
commonly made parallel, etc) and more refer to our authors
previous publications (1) and (10).

The Dragonfly network consists of groups of routers con-
nected together using all-to-all links, wherein each group has
at least one link directly connected to the other group. Drag-
onfly interconnection networks on a Cray XC40 was analyzed
in (14) to study the performance impact and interconnect

behavior for multi-job completion for a real-world application.
Another study (15) using Dragonfly on the Edison machine at
NERSC (16) explores the effects of job placement and network
configuration.

C. Related Work

The effects of task placement on Dragonfly networks has
been addressed in some studies but to the best of our knowl-
edge none has discussed its impact on the all-to-all FFT
algorithm specifically.

Prisacari et al. (17), (18) compares the impact of different
job placement policies and routing strategies.

Yang et al. (19) studies the effects of task placement on
Dragonfly network and further investigates the contiguous
versus non-contiguous allocation effects on applications.

Zhang et al.(20) introduces an allocation policy for dragon-
fly networks where jobs are spread within the smallest network
level such that a given job can fit in at the time of its allocation.

On the topic of rank-reordering, Esposito et al. (21) analyzes
the combination of grid topologies and rank reordering for
different matrix sizes and number of nodes of a Cray XC
system.

II. MOTIVATION

The aim of this paper is to implement some strategies to
reduce communication time of the extensively used FFT algo-
rithm. For instance we try to obtain an optimal performance
for the FFT by leveraging the all-to-all topology of Dragonfly
networks besides the implementation of other techniques.

III. METHOD

Baseline is to speed up FFTs on Cray XC40 machine by
using the full bandwidth offered by the cluster. For testing we
used the FFTK parallel library developed by collaborators of
this work. Several job placements and reordering cases and
other were examined. Before the display of experiments we
will define the system, network, library features and the tools
considered for this work.

A. Shaheen Supercomputer

Shaheen is a Cray XC40 machine it is the 45 fastest
supercomputer in the world it consists of 196,608 CPU cores
and 790 TB of memory each core running at a clock speed of
2.3 GHz. It manages a speed of about 7 Petaflops/s theoretical
peak and 5.5 Petaflops/s of Linpack performance. Its 6174
compute node are contained in 36 water-cooled XC40 cabinets
all are connected via the Aries High speed network so-called
Dragonfly. Cabinets are distributed into 18 groups of two
cabinets each cabinet consists of 3 chassis and each chassis
consists of 16 blades. A blade contain tightly integrated 4
nodes each is a dual-socket compute node each socket contains
two Intel Haswell processors with 16 cores. Physical structure
of Shaheen is schematically visualized in Fig. 2.
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Fig. 2. Schematic representation of Shaheen’s physical structure displaying it’s blades, chassis, racks and groups. Here, the red nodes are service
nodes, green are compute nodes, and violet nodes are used for an experiment described in Sec. IV-E

B. Dragonfly Networks
Dragonfly network is a hierarchical topology that mandates

all-to-all physical connection at the highest level. Cray-XC40
uses all-to-all at all three levels with blades as units. Topo-
logically, this results in a cube like structure with an all-to-all
connection along all three axes. This structure is shown in
Fig. 3, to illustrate further, there are 6 chassis of 16 blades
within a group, and there are 18 such groups. This makes a
6× 16× 18 blade cube that can be visualized in the figure. A
very interesting connection pattern exists in this cube. There
is all-to-all connection along all three axis shown by thin red,
green and blue lines. Point to be noted are

• each chassis contain 4 to 9 service nodes which makes
55 to 60 usable compute nodes per chassis,

• maximum number of directly connected blades as shown
in below figure is a slice which contains 16× 18 = 288
blades inclusively containing 288 × 4 = 1152 service
nodes.

Fig. 3. Schematic representation of Shaheen’s topology. Each cube represents
a blade.

C. FFTK Library

FFTK or FFT Kampur library was developed by Chatterjee,
Verma, and group members of IIT Kanpur. It is designed for
three dimensional N3 large grid FFTs. It scaled up to 196,608
cores on Shaheen II of KAUST for 30723 and 61443 grid
points (10). The pseudospectral fluid solver TARANG uses
it. The 2D pencil decomposition is typically used for large
core counts. It also works for 2D data by setting Ny=1. Slab
FFT can be performed by setting prow=1. Available basis are:
FFF, SFF, SSF, SSS, where ’F’ signifies exponential Fourier
transform along the axis which is used for periodic boundary
condition, and ’S’ stands for Sin/Cos Fourier transform along
the axis which is used for non-periodic boundary condition.

1) Scaling: We scaled FFTK up to all the 6144 nodes using
32 processor per node (ppn) and the data points is fitted with
model T = C · p−γ (10). This scaling is shown in Figure 4.

In this graph we find that when the communication is taking
place within a chassis where all blades are all-to-all connected
with each other (Region I, N ≤ 60) the scaling exponent is
γ = 0.84, whereas beyond the chassis boundary (N > 64
to N ≤ 6144), the scaling exponent is γ = 0.78 which is
less than that of Region I. Moreover we find that there is a
sharp change in total time when the communication pattern
changes. Thus if we allocate the nodes such that the all-to-all
communication takes place over directly connected nodes we
should get a better scaling.

2) Further aspects of Scaling and Efficiency: A comparison
of FFTK and P3DFFT was conducted on a Blue Gene/P
machine in (10) for 8192 nodes with 1ppn and 4ppn and
FFTK was equally efficient with P3DFFT. Also, (10) reports
scaling of FFTK on Cray XC40 for up to 196608 processors,
whereas, P3DFFT library has scaled up to 65536 cores on a
Cray XT5 in (22) and so far no other groups have reported
scaling studies for FFT on more cores than that of the FFTK.
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Fig. 4. Scaling of FFTK up to all 6144 nodes for 32ppn.

Moreover, (10) shows scaling results of fluid spectral solvers
using FFTK on both Blue Gene/P and Cray XC40. One of
the findings states that efficiency on Cray XC40 is lower than
that of Blue Gene/P even though Cray XC40 is a more modern
system but it appears that efficiency of interconnects has not
grown proportionally with that of the processors.

D. NID Marker Tool

To have control on nodes allocation a useful tool called
NID Marker (23) was designed for this work specifically for
Shaheen II to help us visualize node locations and find node
number. Part of the NID Marker is shown in Figure 5. First
cabinet of two racks within a group is shown here for brevity.
Refer to Figure 2 for a larger view of the tool showing all
racks of Shaheen. The Service nodes are colored in red and
Compute nodes are in green and the grey ones are vacant
space.

IV. EXPERIMENTAL RESULTS

Our concern here is to optimize communication, therefore,
we tested five approaches.

• Contiguous vs non-contiguous: In this approach we tested
whether the ’−−contiguous’ flag, which allocates job on
contiguous nodes, has any effect on total time. We found
that for certain grid sizes we get better strong scaling
with this flag.

• Bandwidth test: Here we find what is bandwidth per wire,
we are actually getting, compared to the documented
bandwidth.

• Morton Order: This is a job-placement scheme which
is a compromise between row-major and column-major
placement.

• MPI Vectors vs Local rearrangement: Passing 3D data
to Alltoall required some tricks. Either we can use

Fig. 5. NID Marker: First cabinet of two racks within a group is shown here.
Each rack contains three chassis, and there are 18 groups of two racks.

MPI Vectors or rearrange the data ourselves. We com-
pared time for both cases.

• Job Placement: In this approach we place the job on spe-
cific nodes that have physical all-to-all connection. Using
this approach we were able to reduce the communication
time by 10% compared to regular scheduling.

A. Contiguous vs non-contiguous

SLURM scheduler (24) has a flag that allocated contiguous
nodes. This is enabled by ’#SBATCH −−contiguous’ in the
jobscript file.

We tested it for two grid sizes 20483 and 15363 and up
to 2048 and 1536 cores respectively. The scaling of the code
is modelled by the following equation from (10). In the ideal
case, when the number of processors is doubled, the time must
come to half, which makes γ = 1.

T = p−γ (2)

where T is the time taken to perform the pair transforms, p
is the the number of processors used. For the performed grid
sizes, we see that for 20483, non contiguous gives γ = 0.9
and contiguous gives γ = 1. But for 15363, we get γ = 1
for contiguous as well as non-contiguous cases. The scaling
is shown in Fig. 6

B. Bandwidth test

It is documented that network wires of Shaheen II have a
bandwidth of 14 GB/s and ideally per-node-bandwidth should
match this value. We used mpiBench (25) to find the sustained
bandwidth reached in Alltoall and found that for 1 ppn we are
getting around 2GB/s per processor and for 32 ppn, we get
bandwidth per processor from 300MB/s at 256 nodes down to
40MB/s at 16384 nodes. By comparing node bandwidth, for
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Fig. 6. Scaling of FFTK on grid 15363 and 20483 respectively showing total
time with −−contiguous flag and without it. Here ppn means processor per
node and ’contig’ refers to contiguous.

1ppn we get 2GB/s and for 32ppn we get 9GB/s at 8 nodes
to 1GB/s at 512 nodes. The benchmark is shown in Fig. 7

Fig. 7. Benchmarking results using mpiBench. We see that per core bandwidth
goes maximum up to 2GB/s for 1ppn and per node bandwidth goes up to
9GB/s for 32ppn.

C. Morton Order

FFT when done in pencil decomposition, the 3D grid looks
like a 2D array of pencils from the top, these pencils interact
either row-wise or column-wise during different phases of

communication. In row-major MPI ranking, the row process
reside on nearby nodes whereas column process are well
separated in the cluster. From Experiment A, we have seen
that communication in nearby nodes is faster compared to
discontinuous nodes. So we decided to use Morton order (26),
which is a compromise between row-major and column-major
ordering. MPI rank ordering is shown for both cases in the
following tables.
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Fig. 8. 2D process grid (pencils) for a 3D data grid

TABLE I
ROW-MAJOR ORDERING

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

TABLE II
MORTON ORDERING

0 1 4 5
2 3 6 7
8 9 12 13

10 11 14 15

TABLE III
PERCENTAGE IMPROVEMENT

p Row-major Morton Percentage
512 1326 1530 -15.4%
1024 1023 1367 -33.6%
2048 982 1228 -25.1%
4096 110 108 1.8%

16384 72 76 -5.6%
65536 83 82 1.2%

In Fig. 9 the X-axis represents number of nodes used. We
performed this test with 32ppn. We found that for lower cores,
Row-major takes up to 33% less time compared to Morton
ordering. The reason is that in row-major ordering, many
row-process reside in same node whereas in Morton ordering,
neither row-processes nor the column-process reside in the
same nodes. Also we found that there is a sudden change in
graph pattern beyond the chassis boundary.

D. MPI Vectors vs Local rearrangement

MPI Alltoall is a crucial component of FFT. When we pass
data to this function, it assumes that the data is 1D. It divides
the 1D data evenly among all processors and distributes it.
Passing a multidimensional data into MPI Alltoall is a bit
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Fig. 9. Scaling of FFTK with Morton-order MPI ranking. Here x-axis
represents the number of nodes used with 32ppn.

tricky. Either we can use MPI Vector or rearrange the array
ourselves. We have tried both cases up to 65535 processors
and found that both of them take the same time.

E. Job Placement

Upon analysis of the topology we see that there is a nice
pattern of connection between nodes. Topologically Shaheen
looks like a cube , see Fig. 3, where

• each cube represents a blade,
• all blades in a chassis are connected directly by all-to-all

connection,
• nth blade of all chassis in a group are connected directly

by all-to-all connection,
• nth blade of mth chassis of all groups are connected

directly by all-to-all connection.
where, n goes from 1 to 16 and m goes from 1 to 6.

Due to many levels of physical all-to-all connections we de-
cided to explore whether we can use such physical connections
to improve MPI Alltoall performance. To do this experiment
we needed to produce a map between sequential node numbers
and it’s location in the cluster. For this we created a web
based Nid-marker (23), described in (Sec. III-D). This takes
the node-id list and visualises its location in the cluster.

We studied performance on directly connected nodes, vi-
sualized in Fig. 2, across 18 groups. Here, in the resulted
plot, Fig. 10, the blue line represents communication time
when placed on directly connected nodes and the orange
line represents communication time when placed on default
allocated nodes. Here we save around 100 milliseconds (ms)
per transform at 36 nodes and around 10ms at 216 nodes
saving around 10% of the total communication time. Also, we
get a better scaling when jobs are placed on directly connected
nodes as shown in Fig. 10. The numbers of percentage
improvement are given in Table. IV. The present study was
performed with 1ppn and used only one node of connected
blades. We will study the same with 32ppn with all 4 nodes
in the respective blades. Then we can go up to 27,648 cores.
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with optimization: a * n 0.97

default placement: a * n 0.92

Fig. 10. Scaling of FFTK in 1) directly connected blades, and 2) default
allocation by SLURM.

TABLE IV
PERCENTAGE IMPROVEMENT

p Optimized (ms) Default (ms) Percentage improvement
12 2100 2119 0.9%
24 1214 1253 3.1%
36 694 833 16.6%
48 535 572 6.6%
72 360 389 7.4%
108 221 239 7.6%
144 164 173 5.6%
216 112 123 9.0%

V. CONCLUSION AND FUTURE WORK

In this paper we have evaluated various factors that may
impact the communication time of parallel Fourier Trans-
form. We found that the impact of job placement improves
the performance of parallel Fourier Transform, tested on
FFTK library, on a Dragonfly network cluster, Shaheen II.
The evaluations, so far, demonstrate that when the jobs are
placed on directly connected blades, we get 10% reduction in
communication time (Sec. IV-E). We also found that scaling
exponent within a chassis is greater by 7% compared to
those beyond that (Sec. III-C). This study is also applicable
to other supercomputers based on this topology and almost
all other parallel FFT library as they use MPI Alltoall for
communication. Moreover, the Cray User Group (CUG 2019)
(27) has announced three Exascale Cray machines (Shasta)
(28) which will most likely use the dragonfly topology or
something similar. The present study on job placement was
done with 1ppn, we plan to do it with 32ppn using all nodes
in the respective connected blades.
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