
Deriving Workload Expectations - Monitoring and
Analysis Using HPC Job Profiles
Joseph ’Joshi’ Fullop IV

HPC-ENV
Los Alamos National Laboratory

Los Alamos, USA
fullop@lanl.gov

Brett L. Layman
HPC-ENV

Los Alamos National Laboratory
Los Alamos, USA
blayman@lanl.gov

Abstract—With the growing availability of time series metric
data from High Performance Computing (HPC) machines, there
is significant potential for using this data to improve the moni-
toring and analysis of HPC workloads and the systems on which
they run. In this paper, we detail the statistical methods for
dynamically generating job profiles and workload expectations
from this data. This establishes a basis for live job monitoring and
enables various methods for detecting aberrant job performance.
When a deviation is detected, it can be visualized by displaying
the job’s metric series plotted on top of its expectation, which
is represented as a cloud path. We also demonstrate how to
identify system-wide anomalies by monitoring the entire set of
jobs on a machine for acute, synchronized deviations. These tools
can be applied to a variety of use cases such as shared resource
scheduling, benchmark trending, system utilization and planning,
and log analytics.

In the case where jobs are not explicitly grouped by workload
type, machine learning techniques can be employed to infer
job types based on the shape of the time series data. Jobs are
automatically classified, and when a user’s workload classifica-
tion changes, this indicates that something on the system (for
benchmark jobs) or in the user’s workload has changed.

Index Terms—anomaly detection, classification, expectation,
HPC, job profile, machine learning, recurrent neural networks,
time series analysis, visualization, monitoring

I. INTRODUCTION

A. Disambiguation and Basis

Before we begin, it is important to differentiate between
job profiling in terms of embedded libraries that measure how
much time is spent in a certain section of the code and job
profiling that measures the use of machine resources by the ap-
plication. We will be discussing the latter. The supercomputers
on which this work was done are linux-based and therefore this
work may contain terminology specific to that. For example,
the term load is the common linux OS metric that can be
garnered from /proc or seen in tools such as top. Our data
consists of metrics collected from compute nodes regarding
their health such as: load, memory utilization, bandwidth
in, and bandwidth out. There are hundreds of metrics that
can be considered, but for simplicity of demonstration we
will consider these primary metrics. We used Lightweight
Distributed Metric Service (LDMS) from Sandia National
Laboratories to gather performance metrics from the compute

LA-UR-20-27580

nodes. The workload organizational data is sourced from the
Slurm scheduler. Also in this paper, the term ‘cluster’ will
be used to reference the product of a clustering algorithm
(unsupervised learning algorithm), while ‘supercomputer’ will
be used to refer to the machines on which high performance
computing is done.

B. Job Profiles

Since time series and organizational data are generally
collected and stored separately, joining this data becomes a
layered mining process that can put certain types of real-
time analysis out of reach for many systems at scale. So to
facilitate the type of analytics we had in mind, we created a
JSON structure where we could store the entire job profile
including basics like job name, start time, end time, node
count, etc. as well as time series data (Fig. 1). The metric
series are serialized by metric so that rendering them can be
done with the least amount of data traversal. Each node’s
individual metric series is stored under the specific metric
branch. Since the data is naturally collected in snapshots, we
calculate statistical series per metric for the entirety of the
compute nodes as data arrives. These statistics are mean, min,
max, count and standard deviation. Using the pre-summarized
data enables many things that would otherwise be limited by
processing power and bandwidth.

One area where performance may seem trivial is in render-
ing a graph. Being able to render a job’s metric series instantly
versus waiting a few seconds for each graph makes a world of
difference while exploring the data. Our investigation followed
the method of collect, visualize, understand and then automate.
That method helped us select the most appropriate techniques
and processes in later sections. Instant recall and visualization
is also a significant factor when building production-level
tools.

II. JOB EXPECTATIONS

A. Motivation

The initial motivation for this investigation was being able to
identify and cancel unproductive workloads well before wall-
clock termination, and as a result save significant node-hours.
The task was to create job profiles, and then determine an
expected performance profile (expectation) based upon those



profiles. We based these expectations on recent successful
runs of the workload in question. This of course will change
over time and need to be recalculated with some frequency.
We discuss methods for classifying jobs into expectation sets
later in the paper. Regardless, significant deviation is a valid
selection criteria for identifying jobs that are unlikely to
produce reliable results. For example, admins and users are
able to determine if a job has died well before the end of its
wall-clock time or is behaving in a way that is known to fail.
More on identifying known failures in later sections.

Fig. 1. Examples of Profiles and Expectation in JSON format.

B. Generating Expectations

Expectations are fairly straight-forward statistical summa-
rizations of past workloads’ time series data on a metric-
by-metric basis. They consist of a mean, min, max and
standard deviation series for each metric. The calculation of
expectations is facilitated by our use of arrays for storing
time series data in our job profile JSON. The elements of
the array are aligned by time, so we can calculate summary
statistics on an index by index basis. This process can easily
be parrallelized.

Expectation series are calculated using each job’s summary
of node data (average), and not the individual node series.
This allows us to build off of the calculations that have already
been performed. For example, we use each job’s average node
metric value at a point in time to calculate the expectation
average. Standard deviation is the only expectation statistic to
use more than the node averages in its calculation. We decided
to use the standard deviation of all nodes at a particular time
to accurately represent the variability in the data at that time,

and not just the average of each job’s standard deviation, or
the standard deviation of the averages. To calculate the total
standard deviation across all nodes we used both the average
of the nodes and the standard deviation of the nodes across
jobs.

Note that we did not need to use individual node metric
series for this calculation. For visualization purposes, we
decided to also store the average series for each job in our
expectation file. This allows the user to readily display all of
the jobs that make up an expectation, and makes it possible
to check each job for anomalous behavior without having to
load all of the individual job profiles. Optionally, for reasons of
scale, the individual job series can be left out of the expectation
JSON. See (Fig. 1) for examples of the JSON structures.

One special case that is not uncommon is the unique
handling of the head node for certain types of applications.
These nodes can behave significantly differently than the
remainder of the compute nodes. This can also sometimes be
seen by the last node and is highly dependent on application
architecture.

C. Job Consistency

One notable observation was the consistency of the time
series data across multiple runs for certain workloads (Fig. 2).
Much of this investigation hinged on there being at least some
similarity across runs. It turns out that a significant percent
of workloads are highly consistent. Consistency was more
common in jobs with smaller node counts, as larger jobs are
more susceptible to interference.

Fig. 2. This plot shows multiple job runs from a particular workload, with
each job represented as a horizontal bar. The color of the bar represents the
load of the job at different points in time. As you can see, each job run is
nearly identical to the next, but not exactly the same. This plot was created
with actual single-node jobs.

LA-UR-20-27580 Page 2



Fig. 3. This figure shows how data from various metrics can be plotted side-by-side to give the user a comprehensive visualization of that job’s profile. It
also shows the expectation cloud being rendered behind every node’s series (far left graph) or a summary of the nodes (remaining three plots). Note that
when the average of the summary deviates from the expectation bounds, it can be given a different color to alert the user (second plot from left). These plots
were created with mock data for concept demonstration purposes.

D. Web API

After determining what information should constitute a job
profile and expectation, we designed a system for managing
that data and making it accessible to a user or website. We
decided to primarily store job profile and expectation data as
JSON files. We chose individual files over a database to avoid
lengthy database queries and to simplify data management.
For example, if a user wants a particular job, one can simply
return them the JSON file. Additionally, using files comes
with all of the benefits of data management that the OS
provides: permissions, copy, move, pipe, etc. Of course, there
are many situations where a database is preferable to files, but
encapsulating job data into individual JSON objects enabled
us to take advantage of files.

In order to logically maintain our data, we designed a REST
API. This API allows the user to create, update, and retrieve
job profiles. It also has endpoints for retrieving expectations
and anomalies. Using an API makes it easy for the data source
to push new job data and for the user to retrieve data. Pushed
information is initially stored in a database, and then written to
JSON files via double buffering. This allows for multiple pro-
cesses to write data to files in parallel without bogging down
the server. Generating expectations and detecting anomalies
also use separate processes. These processes can be triggered
by an event, or simply run periodically (i.e. as a cron job).

III. VISUALIZATION AND COMPARISON

A. Visualizations

Visualizing time series data with a line graph is a natural
thing. We chose to represent the expectation as a cloud path
analogous to electron clouds in particle physics. The cloud
path is centered around the mean series with the alpha channel
decaying as a function of the standard deviation. A Gaussian
blur was applied to smooth the appearance of the transitions.

Overlaying an observed job’s series on top of it’s expec-
tation cloud provides an intuitive way to understand where
problems may exist (Fig. 3). Humans can easily identify
various anomalies and peculiarities when the data is presented
in this fashion.

In addition to visualizing an individual job and it’s expec-
tation cloud, a set of related jobs can be displayed as a color
map where each job run is represented as a horizontal bar, and
the color of the bar represents the value of a metric across time
(Fig. 4). This visualization is helpful for identifying trends in
job performance, or subsets of a workload type that follow a
particular pattern.

IV. IDENTIFYING DEVIATIONS

A. Aberrant Jobs

There are situations where it simply isn’t practical for a
human to visually inspect all relevant job profiles and their
corresponding expectation clouds. For those situations, we
have explored various methods for detecting when deviation
from the expectation reaches an anomalous level.

One technique is to measure the average deviation across
the entire course of the job. This technique is likely to pick
up on major anomalies, such as when the load drops to zero
for a quarter of the job time, but smaller point anomalies
will likely be missed. On the other end of the spectrum, one
could simply look at the deviation for the latest point to detect
recent anomalies. This technique is likely to have many false
positives, due to the high number of comparisons, but it could
be used for immediate notifications about live jobs. Weighting
data by recency can be a nice compromise between these two
methods.

A technique that we found to be particularly useful is
maximum window deviation. This measurement is taken by
choosing a specific interval length, let’s say 20 minutes, and
then checking each 20 minute segment of the job to see
where deviation is the highest, and saving the highest deviation
as our maximum window deviation for that job. We have
anecdotally observed that requiring a job to fail multiple
maximum window deviation tests with different window sizes
has been a fairly reliable way of detecting outliers.

Once deviation has been measured for a collection of jobs,
we can statistically compare each job to the distribution of
other jobs in that set. In our case, we chose to use a Z-score
and its corresponding p-value, although there may be other

LA-UR-20-27580 Page 3



Fig. 4. The plot on the left shows all of the jobs of a particular workload type, with each job represented as a horizontal bar. The color of the bar represents
the load of the job at different points in time. As you can see, five of the jobs either failed or dropped to a load of zero. The plot on the right shows the load
curve plotted over the expectation cloud for one of those failed jobs (marked with the red arrow). These plots use actual load data taken from jobs run on a
supercomputer.

statistics that work better for particular sample sizes. When
measuring deviation for multivariate data (multiple metrics),
we used Fisher’s method to combine p-values. This creates
a new p-value, which can be smaller than the p-values of
each metric, showing a kind of “sum is greater than its parts”
significance. Formal experiments will be needed to determine
which statistical techniques are best suited for a particular
purpose. Here we are simply presenting some basic techniques
that have provided us with some promising preliminary results.

One issue that we have encountered is that of false positives.
Accordingly, we have had to adjust our alpha threshold value
to be fairly low (e.g. p ¡ .0001). This could be partially due
to the nature of time series data. Often there are many data
points to compare in the series, and if enough comparisons
are run, then some of those comparisons are bound to be
significant. In addition to lowering our alpha value, we have
also mitigated these false positives by requiring that jobs reach
significance on multiple deviation metrics before being marked
as anomalous.

B. Single Node Anomalies

At this point it should be apparent that there are a number of
ways to determine when a job is currently out of expectation.
Consider the case where a job matches its expectation profile
with a minor exception period. This anomaly has a high like-
lihood of being due to some event external to the application.
This means that job profiles and expectations can be used to
aid in the monitoring of the supercomputer. Additionally, the
anomaly can be pinpointed to the exact time and node on
which something occurred that impacted the job. This can aid
heavily in guiding root cause analysis when examining system
logs.

C. System-Wide Events

In the course of monitoring live jobs for deviations, we
traverse all of the currently running jobs and compare them
to their expectations. Those found to fail the aforementioned
deviance tests are flagged for human examination, or when
confidence is sufficiently built, acted upon automatically.
When a large percent of jobs deviate at the same time, this
can be indicative of a significant system-wide event.

We made a compelling observation while examining sets of
runs for a particular workload. We noticed that job runs from
this workload were extremely consistent in their load metric,
except that they all had a similar-looking dip at some point in
their series. Some of the runs had this dip at one point in the
course of the job, while others had the dip at another point, or
yet another point. This brought up the question of why the dip
was aligned across some of the jobs and not others. Initially
this was curious, but then we realized that these jobs did not
all start at the same time. When the graphs were time shifted
based on their start times, all of the load dips aligned perfectly
(Fig. 5). This lead us to find that an external event may be
larger than something impacting a single node.

Picking up on system-wide events can be incredibly impor-
tant for helping users with workload issues. If these events
aren’t identified, then a user might waste a significant amount
of time trying to fix the application, when in reality the issue
was caused by some system event.

In addition to visualizing a time-shifted set of jobs from
one user’s workload, we’ve also developed tools for displaying
jobs from multiple users (Fig. 6), and even visualizations of
every job on a system for a particular time interval (Fig.
7). These visualizations not only make system wide events

LA-UR-20-27580 Page 4



more apparent, but also provide an intuitive holistic view
of the system. Additionally, pan and zoom controls make it
easy to focus in on particular events or scan across time.
If job expectations are available, it’s also possible to display
deviation rather than raw metric data in this visualization, and
look for bands of high deviation (Fig. 7).

When exploring this data, we found a large amount missing
data. This brings up another important use for these tools:
assessing the reliability of data obtained from monitoring
systems. If large segments of this data are missing, then other
tools that rely on the data could be ineffective for that time.

With these system-wide observations in mind, we devised
a more direct computational method of identifying impactful
system-wide events. If we accumulate the number of standard
deviations that a metric is currently out of expectation and
then normalize it to the number of nodes currently running
jobs, we can use a threshold to discern system-wide events.

Fig. 5. These plots show multiple job runs with each run represented as a
horizontal bar, and where the color of the bar indicates load values for the
job across time. The graph on the left shows the bars aligned relative to when
each job started, whereas the graph on the right shifts jobs according to their
actual start time. These plots were generated with actual data from single-node
jobs.

V. JOB CLASSIFICATION

A. The Need to Classify

Up to this point, we have assumed that jobs are explicitly
grouped into different workload types, allowing for expecta-
tions to be generated from jobs of that type. However, it isn’t
always the case that jobs will be labeled in this way, or they
may be labeled incorrectly. For example, a user might keep
the same name for a job after making fundamental changes to
how it runs, and subsequent runs of the job will be marked
as anomalous relative to the expectation. In this section of
the paper, we will explore a machine learning technique for
inferring job type based on a job’s time series data.

Machine learning techniques have several advantages over
other techniques in addressing this problem. A simple ap-
proach to this problem would be to match or cluster (if
numerical) top-level job attributes. While this technique has
utility in narrowing the scope of which jobs need to be
differentiated from each other (i.e. jobs from the same user
with the same node count and requested machine time), it isn’t
ideal for making finer distinctions. Another approach would be
similar to what we outlined above for anomaly detection: using
average deviation to group jobs. With average deviation as a

distance metric, a clustering algorithm could be used to place
jobs into groups. Although this technique uses more detailed
data about a job, it still has major pitfalls. For example, if the
time series is offset by even a small amount, it could result in
a significant increase in deviation, despite the sequences being
nearly the same. A similar situation occurs with stretching or
compressing the series by a small amount. In other words,
the algorithm isn’t comparing based on sequence, but rather
based on individual time points. There are ways to remedy
these issues, but an algorithm that is able to encode sequential
information avoids the issues altogether.

B. Machine Learning Approach

Recurrent neural networks (RNNs) are capable of encoding
sequential information by maintaining a state that retains past
information and combines it with new information. In fact,
research has shown that RNNs can be successful at a variety of
sequential modeling tasks, and have key advantages over other
sequential models such as Markov models [2]. More specific to
our purposes, RNNs have been used to effectively model time
series data [3]. In this respect, RNNs are a promising candidate
for encoding job metric data and using it to distinguish
workloads from one another. Encoding jobs based on how their
metrics change over time helps to avoid grouping jobs that
appear similar but are fundamentally different on a functional
level. Given training data with stretched or offset sequences,
a RNN is capable of recognizing that all of those sequences
fall under the same category of job, represented by nearly
identical encodings, except for a few numbers to adjust the
offset or scale.

The specific type of RNN that we chose to test is a
Long Short Term Memory Auto-encoder (LSTM-AE) net-
work. LSTM networks are known to have several advantages
over simple RNNs, particularly in how they address the
vanishing/exploding gradient problem [4]. It was necessary
to use an auto-encoder because of the absence of labeled
data (unsupervised learning task). This algorithm works by
converting variable-length time series data into a fixed-length
vector (via the first recurrent layers), then using that vector
to recreate the original input (via the last recurrent layers). In
other words, it learns a fixed-length encoding for the variable-
length input data. For example, it could learn to produce the
same output given a job that has completed or is only half way
through, because it has learned to infer what the full output
should look like given the initial sequence. After learning
the encodings for various jobs, those encodings can be used
for data analytics techniques such as: clustering, visualization,
Principal Component Analysis (PCA), and more.

We propose using learned clusters of encodings to classify
jobs into expectation groups. One advantage of compressing
job data into encodings is that the encodings only retain the
most essential information necessary to approximate that job’s
time series. For example, if there are essentially two job types,
then the encoding only needs to indicate which type the job
belongs to in order to produce a reasonably accurate time
series. Technically, only 3 bits would be required to distinguish

LA-UR-20-27580 Page 5



Fig. 6. This color map shows jobs, which are represented as horizontal bars. Each bar is shifted horizontally according to the job’s start time. The load values
for a job are mapped to unique colors and displayed across time. Note how there are a number of jobs which start at different times, but all seem to end at
the same time. The load for the jobs shows some modest variability up until the end, where there is a period of high load mixed with missing data (shown in
black). The simultaneous occurrence of this segment of seemingly disruptive activity makes one wonder if there was a system-wide event that caused most
of these jobs to terminate prematurely.

Fig. 7. This plot shows all of the jobs run on a system over the course of a day. Each job is represented as a horizontal bar, where the bar is shifted
according to the job’s start time. The color of the bar represents the deviation of that job from it’s expectation in standard deviations. The sign of the standard
deviations is not used in this mapping, just the distance from the mean (absolute value). Values are capped at 2 standard deviations. Missing data is displayed
as completely transparent. Note the vertical bands of high deviation (yellow) across multiple jobs. These bands suggest a system wide event in that they effect
most of the jobs on the system simultaneously. The black arrow points to one of these events that involved missing data followed by low load (which is now
displayed as high deviation).

LA-UR-20-27580 Page 6



between 8 job types, although using the smallest possible
encodings may not be the most efficient way to distinguish
job types in practice.

C. Investigative Process

To demonstrate the utility of the LSTM-AE for job classifi-
cation, we set up an exploratory experiment where we trained
the LSTM-AE on three known but unlabeled job types. We
then clustered the encodings for the training and test jobs
to see if three distinct clusters emerged, and if the test jobs
fell into the correct clusters. We trained on 5-7 jobs of each
type, and tested on 2-5 jobs from each type. Jobs of the same
type had similar but not identical time series. We used a 13
layer LSTM auto-encoder to learn job encodings. The network
was trained for 2,000 iterations with a batch size of 10,000.
Note that each training example in the batch was derived from
the original 5-7 training examples by randomly selecting an
example, then cropping the time-series to be between one
quarter and the full length of the job (as determined by uniform
random number). This teaches the network to recognize jobs
that haven’t finished yet. The ADAM optimizer was used
to adjust network weights. We chose the ADAM optimizer
because it often converges faster than other commonly used
optimizers [1]. Test jobs were not used in the training process.
After training, we used PCA to reduce the dimensionality of
the encodings to 2 dimensions, accounting for approximately
99.98% of the variability. We then used DBScan to group the
job encodings into clusters. We found that the jobs clustered
neatly into 3 distinct clusters, where all training and test data
was clustered correctly according to its job type (Fig. 8).
We also found that feeding cluster centers into the decoder
portion of the network resulted in time series that resembled
a job in that cluster (Fig. 9). Although these initial results are
encouraging, they do not represent a formal experiment, and
further investigation will be necessary to explore the utility

Fig. 8. After reducing the dimensionality of job encodings to two dimensions,
we plotted the encodings for both training and test data. As you can see, three
distinct clusters emerged: one for each job type. All test jobs fell into the
correct clusters.

of this algorithm in various contexts and compared to other
algorithms.

One might make the connection between an expectation and
a series generated from a cluster center. These are similar
to the extent that we can use the expectation to validate the
generated series. However, we cannot use the generated series
in the same way we use the expectation because the generated
series does not contain standard deviation information.

D. Limitations

Like all inference techniques, the use of an LSTM-AE to
classify jobs is not without its limitations and draw-backs. Our
neural network and deep recurrent networks in general can be
computationally expensive and require long periods of training
to learn new sequences. Training these networks on a single
CPU can be impractical. However, parallelizing the algorithm
to run on a GPU (straightforward with Tensorflow) or on a
supercomputer, can speed up the algorithm by several orders
of magnitude. The general process of classifying jobs could
also be sped up by first partitioning jobs based on top-level
attributes and then running a LSTM-AE on those subsets to
make finer distinctions.

Another notable limitation relates to how the algorithm han-
dles series that it has not seen before in the training process.
The algorithm will often make a “best guess” about which
encoding cluster the job belongs to, rather than encoding the
job as an anomaly, or placing it in a new cluster. In some
situations, this could be helpful, such as when you want to
place a job that failed in the same cluster as jobs of that type
that succeeded. However, this could be misleading if you don’t
implement an additional anomaly detection step (such as the
deviation-based technique described above) after classification.
This issue is resolved by simply training the algorithm on the
new job, so that it learns an appropriate encoding for that job.
Given enough training examples, the algorithm will learn to
classify specific types of job failures in addition to job types.

One final limitation relates to how the algorithm learns when
within-type differences outweigh between-type differences.
The encodings learned during the training process represent
the most important information needed to recreate a job’s
series, and if there is high variability within a type, a signifi-
cant portion of the encoding may be devoted to distinguishing
within-type differences, which could in turn lead to poor
between-type clustering. That said, what constitutes within-
type vs between-type could be an arbitrary distinction when no
predetermined types exist. If a user’s jobs start to fall out of the
original cluster, that could represent a meaningful change to
either the system or the job itself. In fact, one area in which this
algorithm could be particularly effective is with benchmark
jobs. These jobs should be fairly consistent and cluster nicely.
When an anomalous run occurs and is adequately trained on,
a new cluster will emerge indicating that something on the
system has changed.

LA-UR-20-27580 Page 7



Fig. 9. The top three images depict the generated series (blue) overlaid with the actual time series that they were generated from. The bottom three images
show series that were generated from the center (average) of each encoding cluster and were not generated from a specific job.

VI. OTHER USES AND AREAS OF IMPACT

A. System Benchmarking

Job profiles can provide more utility that just depicting how
an application utilizes the resources allocated to it. When a
benchmark application is run with regularity, an administrator
can see when something had changed on the supercomputer
that has affected the performance of the workload. This is
particularly useful after system or programming environments
updates. This can also be useful for measuring long term
performance degradation (Fig. 10).

B. Resource Scheduling

Expectations have a number of uses outside the scope of
deviance detection. A scheduler can consider a job’s expected
resource demand when determining if it has the budget
available to add that particular job starting at that time. For
example, a job may not be allowed to start if its power draw
would cause the budgeted peak to be exceeded at any point in
its life when added to the other workload’s expected draw. It
can also be used to regulate shared resource loads like parallel
file system writes in the same way.

C. System Utilization and Planning

It should be obvious that profiles can be used to verify
that applications are using available resources to the fullest
extent. Users can identify a potential limiting factor and tune
their application accordingly. From a managerial perspective,
profiles can be used in aggregate to determine how a super-
computer is being utilized. Then based on some weighted
analysis, determine what attributes (memory, CPU speed, etc.)
would better serve the user community when planning the
next supercomputer. It could also be used in the acceptance

process and to compare an application’s performance across
supercomputers.

D. Log Analytics

One of the most difficult problems in the area of log
analytics is the validation of detected anomalies. Even after an
anomaly is discovered in the logs, there needs to be a determi-
nation of how it impacts the workload. So frequently identified
anomalies are meaningless. Log analysts often request a list
of faults to use in this endeavour [5], [6]. But oftentimes, a
list of failed jobs is the only data available, and this is usually
not sufficient or precise enough for their purposes. Using our
proposed system-wide event detection technique, we can add
the impactful events back into the log stream and simplify
the validation process. Or we could use it further to drive
a log analytic system as described in A Diagnostic Utility
For Analyzing Periods Of Degraded Job Performance. [8] that
would surface anomalous log message types during the periods
of mass workload deviation.

VII. SUMMARY

Cray has invested significant time and effort into creating
an infrastructure to provide customers with monitoring data.
This has come at the community’s request, which also includes
questions like What is normal? and What thresholds should we
be alerting on? With the complexity of such systems those are
very difficult questions and require ample system experience
to even begin to address. With this expertise requiring time to
acquire, answers to many of these types of questions will not
be available upon the delivery of the Shasta era machines. The
same would hold true for any future system employing novel
hardware, software or architecture. With domain expertise also

LA-UR-20-27580 Page 8



Fig. 10. Using mock data, these plots show multiple benchmark jobs overlaid with an offset (left) and as bars in a color-map (right). You can see that there
was a substantial shift in the load values for a portion of the job, indicating that something may have changed on the system.

being difficult to convey, maybe we should forego reliance on
it in favor of more system agnostic tools.

Ultimately, the importance or significance of events can
be gauged by how they impact the workload. Being able to
identify and measure this impact and then quickly associate
relevant log messages greatly reduces the reliance on domain
expertise to understand and expeditiously address problems.
This method can be considered an early version of automated
root cause analysis.

Over the course of this paper, we have discussed a set
of data management and analytics techniques to facilitate
the study of workloads on supercomputers. We started with
only job records and time series data from compute nodes.
From there we created a job profile, and then an expectation
using only those profiles. We then used those expectations
to monitor live jobs and implemented various methods for
determining deviations. Machine learning was employed to
classify workload automatically in lieu of relying on user-
based tagging. We further considered the cumulative deviation
across all workloads to identify system-wide events.

Using these mechanisms, we are able to better identify and
understand when things change on a large-scale system. Triag-
ing application issues into application error or system error is a
fundamental part of running and maintaining supercomputers.
Early identification of failed or expected-to-fail jobs provides
us with valuable, actionable information that allows us to
notably improve our workload throughput. Also, identifying
if a job was impacted by a system-wide event can save our
staff countless hours of investigation.

There are many future areas to explore and many tools to be
built from the basis we have established here. We look forward
to discovering new techniques and creating applications using
these job profiles and expectations.

REFERENCES

[1] D. P. Kingma, J. L. Ba, “ADAM: a method for stochastic optimization,”
ICLR Conference, 2015.

[2] Z. C. Lipton, J. Berkowitz, “A critical review of recurrent neural net-
works for sequence learning,” arXiv preprint arXiv:1506.00019, 2015a.

[3] G. Petneházi, “Recurrent neural networks for time series forecasting,”
arXiv preprint arXiv:1901.00069, 2019.

[4] A. Sherstinsky, “Fundimentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network,” in Physica D: Nonlinear
Phenomena, vol. 404, March 2020: Special Issue on Machine Learning
and Dynamical Systems.

[5] Catello Di Martino, Zbigniew Kalbarczyk, Ravishankar K Iyer, Fabio
Baccanico, Joseph Fullop, and William Kramer. “Lessons learned from
the analysis of system failures at petascale: The case of Blue Waters.” In
Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP
International Conference on, pages 610–621. IEEE, 2014.

[6] A. Gainaru, F. Cappello, M. Snir, and W. Kramer. “Fault prediction
under the microscope: A closer look into hpc systems.” In SC ’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–11, Nov 2012.

[7] Ana Gainaru, Franck Cappello, Marc Snir, and William Kramer. “Failure
prediction for hpc systems and applications: Current situation and open
issues.” Int. J. High Perform. Comput. Appl., 27(3):273–282, August
2013.

[8] Joshi Fullop and Robert Sisneros. “A Diagnostic Utility For Analyzing
Periods Of Degraded Job Performance.” Cray Users Group, 2014.

LA-UR-20-27580 Page 9


