
Towards Acceptance Testing at the Exascale Frontier

Verónica G. Vergara Larrea, Michael J. Brim, Arnold Tharrington,
Reuben Budiardja, and Wayne Joubert

National Center for Computational Sciences
Oak Ridge National Laboratory

Oak Ridge, TN, USA
Email: {vergaravg,brimmj,arnoldt,reubendb,joubert}@ornl.gov

Abstract—At the 2007 Cray User Group meeting, the Oak
Ridge Leadership Computing Facility (OLCF) introduced the
OLCF Test Harness (OTH), a framework[1] used for accep-
tance testing of the Jaguar supercomputer[2]. Since then, the
OTH framework has evolved to version 2.0 which adds new
features and streamlines usability. The OTH is the key piece of
software used to orchestrate acceptance testing for all OLCF
computational resources before they are deployed for pro-
duction use, including our leadership class high performance
computing (HPC) systems. The OTH framework is written in
Python and is publicly available[3].

In this paper, we first describe the requirements, design, and
structure of the OTH. Then, we present specific improvements
developed to support acceptance testing of the OLCF’s Summit
system[4]. We will also showcase new OTH features that
have been added to streamline the acceptance test process as
well as the motivation behind those changes. As part of this
work, we also evaluated different workflow tools in order to
determine whether these tools could complement the OTH in
two key areas: automation and reporting. The advantages and
disadvantages identified with each tool will be discussed. Lastly,
we summarize the challenges and lessons learned collected
from using the OTH for the acceptance of the last three
flagship systems at the OLCF. These may be useful for other
HPC centers developing their own testing frameworks or those
interested in using the OTH.

Keywords-automated testing framework, high performance
computing, workflows

I. INTRODUCTION

In 2007 at the Cray User Group meeting, the Oak
Ridge Leadership Computing Facility (OLCF) introduced
the framework used to complete acceptance testing of the
Jaguar supercomputer [2]. The framework, now known as
the OLCF Test Harness (OTH), was used for acceptance
testing of each Jaguar upgrade which brought the system
from 25 teraflops in 2005 to more than 1 petaflop in 2008.

Notice of copyright: This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The
Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

Due to the scale and complexity of the system, the OLCF
conducted a rigorous acceptance test with each upgrade.
The Jaguar acceptance test included two main stages: hard-
ware acceptance (HW) and final integration testing (FI).
Table I summarizes the stages and their elements. The
first stage consisted of hardware diagnostics performed by
Cray personnel to ensure that each individual component
(e.g., processors, memory, interconnect) met the required
specifications. The second stage included three elements:
functionality testing (FT), performance testing (PT), and
stability testing (ST) [1]. The FT element ensures that
individual system software components such as the sched-
uler, compilers, and libraries are working correctly. The
PT element ensures that applications can be successfully
executed at scale and are able to achieve the required
performance targets. The ST element ensures that the system
can support execution of a diverse workload continuously for
an extended period of time.

To successfully execute all acceptance test elements, the
OLCF needed a testing framework that enables staff to
simulate a realistic diverse workload to evaluate whether
a particular system was ready for production. Several key
features were identified as requirements for the framework:

1) Workloads should be launched and executed in the
same way a user would execute them.

2) Workloads should run continuously on the system
without requiring manual actions by staff.

3) Individual executions of an application must be
uniquely identified and tracked.

4) The level of effort to include a new application had to
be low.

5) In-house expertise is required in order to quickly
identify and fix potential issues during critical periods
of acceptance testing.

The OTH was designed with these requirements in mind
and was able to closely mimic the activities performed by
real users of HPC systems. These activities include building
a scientific application, generating a batch script, submitting
the batch script to the job scheduler, and verifying appli-
cation results after the job completes. The OTH was also
able simulate execution of realistic production workloads

Table I
JAGUAR ACCEPTANCE TEST STAGES

Acceptance Test Stage Description
Jaguar HW Hardware diagnostics of individual components

Jaguar FI
FT Functionality of system software (e.g. scheduler, compilers)
PT Performance and scalability of applications on the system
ST Stability of the system under a realistic workload

that fully occupy an HPC system for an extended period of
time using a diverse set of applications.

Since Jaguar’s acceptance testing, the OLCF has contin-
ued using this methodology to conduct acceptance testing
of its flagship systems including Titan and Summit. In
addition, the tests developed for acceptance of each system
are used during production to verify correct functionality and
performance after a software upgrade. As a result, the OTH
was modified to adapt to the expanded use cases, to provide
more flexibility, and to minimize effort required to add and
monitor tests. The new version of the testing framework,
which includes a significant restructuring of the original
framework as well as additional features, is known as version
2.0 of the OTH. The OTH leverages standard configuration
formats, provides logging capabilities, and simplifies the
steps required to add a new application over its predecessor.

In this paper, we first describe the original design of the
OTH followed by the modifications that resulted in the latest
version of the framework. Then, we discuss specific features
that were added to support acceptance testing of Summit and
those that are being added for acceptance testing of Frontier.
We then discuss our efforts towards automating the OTH
and the workflow tools we have evaluated to achieve that
goal. Finally, we present the lessons we have learned from
building and upgrading the OTH and briefly discuss future
development work that is planned for the framework.

II. OLCF TEST HARNESS DESIGN

In this section we describe the original OTH framework
design along with a description of how the framework runs
tests.

A. Overview of the OTH execution

The OTH has two independent components that are pre-
requisites to successfully launch a set of tests: (1) the OTH
driver (i.e., runtests.py) and (2) a repository of tests.

The OTH workflow shown in Figure 1 is kicked off by
the OTH driver.

The first step is to initialize the OTH runtime environment
(RTE). This is accomplished by loading a single Lmod [5]
modulefile. The initialization of the OTH RTE sets several
environment variables used by the harness, including:

• RGT_MACHINE_NAME: Used as a path name compo-
nent for many OTH environment variables.

• RGT_PATH_TO_SSPACE: Defines the working
scratch space directory to build applications and run
jobs.

• RGT_PATH_TO_REPO: Defines the URL of the up-
stream version control repository for software applica-
tion tests.

Secondly, the user creates an OTH input file (e.g.,
rgt.input) which informs the OTH which application
tests to run (i.e., Test keyword), the path to the applica-
tion tests staging area (i.e., Path_to_tests keyword),
and the harness tasks to perform (i.e., Harness_task
keyword). Upon launch of the OTH, it reads the input
file and performs the listed tasks for each application
test in sequence (see Figure 2). The OTH can perform
three tasks: check_out_tests, start_tests, and
stop_tests.

The task check_out_tests does a single initial svn
checkout of an application test to the staging area.

The task start_tests initiates a chained launch of
test instances of the checked out application test. Each test
instance across all application tests is assigned a unique
identification number (UID). It is important to note that
that for the start_tests task, the initial run process is
controlled by the login terminal, but subsequent instances of
the same application test are launched from other execution
hosts. For that reason, the series of tests cannot be killed by
a SIGHUP from the shell of the initial login terminal.

The task stop_tests stops the chained set of test
instances of a given application test by creating a hidden
file named .kill_test in the test’s Scripts directory
which informs the OTH to cease the repetition of this test.

B. Implementing Tests
As depicted in Figure 3, a software application test

(app1) logically contains a Source directory and a set
of test directories (test1, test2).

The Source directory contains the application’s source
and various helper scripts for performing the tests. For
example, one needs scripts that will build the application,
verify results, and set the tests’ runtime environments. There
are no restrictions on the internal layout of the Source
directory. The only requirement is that the helper scripts
and the application source be located within the Source
directory.

A test directory’s (e.g., test1) only requirement is that
it contains a directory named Scripts. The Scripts

Figure 1. OTH v1.0 workflow

Figure 2. Overview of OTH v1.0 execution.

directory at a minimum must contain three scripts:
build_executable.x, submit_executable.x,
and check_executable.x.

For each test instance, build_executable.x is the
first script called and is responsible for building the binaries
for a given application. Its API is:

build_executable.x -i <UID> -p <scratch space>

where the -p argument is the path to the working scratch
space defined by RGT_PATH_TO_SSPACE, and the -i
argument is the unique identification number (UID) given
to this test instance.

The next script called is submit_executable.x, and

app1 application with 2 tests
<PT>/app1/Source/

/test1/Scripts/
/Run_Archive/<UID>/
/Status/rgt_status.txt

/test2/Scripts/

Figure 3. OTH directory structure example (PT represents the directory
specified by Path_to_tests)

its intended purpose is to create a batch script and submit it
to the scheduler. Its API is:

submit_executable.x -i <UID> -p <scratch space>

The only requirement for the submission script is that the
last lines of the generated batch submission script be:

Resubmission section.
case $RGT_RESUBMIT in

0)
echo ’No resubmit’;;

1)
test_harness_driver.py -r;;

esac

in order to have the test restart itself.
The last script needed is check_executable.x and

its API is:

check_executable.x -i <UID> -p <scratch space>

where the -p argument is the path to directory containing
the data to verify and the -i argument is the UID. This call
is typically placed in the generated batch submission script
just before the resubmission section.

The OTH requires that all the scripts
build_executable.x, submit_executable.x,

and check_executable.x be called from the tests
Scripts directory.

C. Viewing Test Results

Once test instances have launched, the OTH automati-
cally creates per-test directories named Run_Archive and
Status (see Figure 3).

The OTH will create a file called rgt_status.txt
within the Status directory that contains a row per
each individual test instance launched (see Figure 4). The
row contains information for when the given instance was
launched (Start Time), the UID (Unique ID), the job
ID for the submitted job (Batch ID), and three columns
to display the status of the build, submit, and check scripts
(Build, Submit, Check). As a convention, the OTH will
use 0 to denote a step was successful. Any failures will
result in a non-zero status.

III. HARNESS EVOLUTION

In this section we describe OTH’s evolution to support
acceptance of larger, more complex systems. The features
that have been introduced since v1.0 simplify test creation
and provide a uniform standard that application developers
can follow.

A. Upgrading the OTH for Summit’s acceptance test

Starting with version 2.0, the OTH now relies on a ma-
chine-centric design by introducing the machine_types
abstraction to centralize various pieces of the OTH that
prior to this version existed only at the test level. The
base_machine definition includes information about the
scheduler it uses, the application launcher, and the physical
characteristics of the system. Each instance of a derived
machine_type must also specify both a scheduler
and a jobLauncher. As shown in Figure 5, this new
design has a base_machine at the top of the class
hierarchy which ensures that derived machine_types
implement the build, submit, and check steps that the OTH
must complete per test instance. By centralizing these steps,
we are able to reduce the level of effort an application
developer needs to commit in order to provide a test. At
the time of this writing, three types of machines have
been implemented based on systems available at the OLCF:
cray_xk7, rhel_x86, and ibm_power.

As shown in Table II, there were several additional key
changes that were introduced in OTH v2.0.

We moved away from providing support for Subversion
repositories in favor of Git repositories. Initially, a single
repository was being used to host all applications for a
given system. For that reason, in this version we also added
support for sparse-checkout. This allowed OTH users
to checkout only the applications listed in the OTH input
rather than the full list of applications available in the
repository. We also introduced the concept of a per test

configuration input file (i.e., rgt_test_input.txt) that
was used to determine whether a given application was using
OTH v1.0 or OTH v2.0. This input file used key-value pairs
to describe the configuration settings for a specific test (e.g.,
job name, number of nodes, wall time, etc.).

In order to support Summit’s acceptance, we also updated
the OTH to include:

• Support for IBM’s Load Sharing Facility (LSF) job
scheduler and Job Step Manager (JSM) application
launcher.

• A mechanism for application developers to leverage
built-in functionality for test builds, batch script gener-
ation and submission, and result checking. This version
still provided support for custom user-provided scripts
to maintain backwards compatibility with OTH v1.0
tests.

• Event logging to mark the start and end of each step
(e.g., build start, build end).

• A reporting module to collect test-specific metrics that
we would like to track.

B. Upgrading the OTH for Frontier’s acceptance test

In preparation for Frontier, we have completed a signif-
icant restructuring of the OTH code to improve readability
and maintainability. The code cleanup also involved removal
of unused functions and deprecating rarely used features. We
had two main objectives that motivated the code restructur-
ing: (1) improve the ease of developing new tests, and (2)
provide more flexible options for running selected test steps.

Earlier versions of the OTH required some harness-
specific commands to be executed within the test’s scripts for
correct operation of the harness. To ease test development,
our goal is that each test script should be self-contained
such that it is able to execute successfully independent of
the OTH. For example, a test’s build script is fully respon-
sible for setting up the build environment (e.g., by loading
necessary compiler and library modules) and executing the
necessary configuration and build commands. The OTH
can then cleanly wrap the execution of the test scripts to
capture output and log important information such as event
timestamps. There are cases, however, when a test script
could benefit from information flowing from the harness
to the script. In these cases, we modify the environment
used by the script to pass information such as harness
working directories. This makes the information available
to the scripts, but does not require its use.

Our second objective was to improve the flexibility of
running tests. Originally, there were only two modes of
operation a user could choose for running a test - run all
three test steps once, or run continuously. Often during
initial test development and debugging, we would encounter
a problem with one particular step (e.g., build) and desired a
method to execute just that step. Support for individual step
execution was added to test_harness_driver.py,

##

#Start Time Unique ID Batch ID Build Submit Check

##
2020-06-25T09:08:19.050588 1593090499.0219295 86987 0 0 0
2020-08-18T22:32:09.658387 1597804329.6306179 88864 0 0 1
2020-08-24T15:02:13.520704 1598295733.4882843 88979 0 0 0

Figure 4. OTH status file example (rgt_status.txt).

Table II
OTH MAJOR CHANGES PER VERSION

Target OTH Version Control Repository Test Test Input
System Version System Type Input Format

Jaguar, Titan 1.0 SVN Per-machine Not supported N/A
Summit 2.0 SVN, Git Per-machine Optional key-value
Frontier 2.1 (beta) Git Per-application Required INI

Figure 5. OTH v2.0 - Machine types abstraction

which is the driver program executed for each test in the
input file passed to runtests.py. The ability to execute
individual steps also paved the way for integration into
existing workflow software, as described later in IV-A.

In addition, we have added the following features to the
OTH that will be available in the next release:

• Support for SchedMD’s Slurm job scheduler and appli-
cation launcher.

• Error checking to prevent job submissions after a failed
build.

• Unit testing for the full OTH workflow to ensure func-
tionality of individual components of the framework.

• A new format for the test configuration input file that
uses the INI standard (i.e., rgt_test_input.ini).

• Support for per-application repositories instead of a
single monolithic per-machine repository (see Table II).

• A machine configuration file that uses the INI standard.

This file defines the values used to instantiate the
appropriate machine type as described above, further
reducing the information OTH users need to provide.

IV. HARNESS AUTOMATION

In this section we describe two related efforts that have
allowed us to automate execution of the OTH to meet two
separate but equally important goals. The first goal is to
automate harness execution in an easily trackable way. The
second is to automate execution in order to verify correct
functionality of the OTH itself.

A. FireWorks Integration

FireWorks [6] is a general purpose workflow framework
that is designed for use within HPC environments. Its
workflows are described using simple YAML specifications,
or programmatically using Python APIs. Workflow state is
maintained within a centralized MongoDB database called
the LaunchPad. Tasks called “fireworks” are fetched from
the database and executed by workflow agents called “Fire-
workers”. FireWorks has built-in support for interacting with
compute system resource managers such as PBS, LSF, and
SLURM to run workflow tasks within batch jobs. Addi-
tionally, FireWorks provides an interactive web-based GUI
interface, “webgui”, for monitoring and querying workflow
activity.

At its core, the OTH is also a simple workflow engine.
Each application test has a predefined workflow consisting of
three tasks: (1) build the application, (2) run the application
within a batch job, and (3) check the application results.
The workflow task commands are specified in the test input
configuration file. Workflow state is tracked using unique
files for each instance of an application test. The OTH
directly executes the build and check tasks, and interacts

Figure 6. OLCF Test Harness FireWorks Deployment Architecture

with resource managers to submit batch jobs that execute
the run tasks.

Given the similarity between the capabilities of FireWorks
and the OTH, we decided to investigate the benefits of
integrating the two systems. This integration proved to be
fairly straightforward due to the recent improvements in the
OTH that allow execution of individual task steps. In roughly
50 lines of Python code, we define the FireWorks workflow
for each application test and submit it to the LaunchPad.
The workflow consists of three fireworks, each containing a
single ScriptTask that executes our OTH driver in the
appropriate mode. Since FireWorks manages job submission,
we added a new run mode to the OTH driver that simply
executes the batch script generated by the OTH, rather than
submitting it to the resource manager. We use the existing
OTH Run_Archive directory created for each test instance
as the launch directory for all the fireworks so that we
capture the FireWorks temporary files. We use custom batch
job templates to ensure that OTH test configuration settings
are respected.

As shown in Figure 6, we place the centralized Fire-
Works LaunchPad database on a host accessible to all
compute systems. For each compute system, we configure
two Fireworkers, one for serial tasks (build and check),
and one for batch job tasks (run). The workflow assigns
categories to each firework (e.g., “<system>-batch” or

“<system>-build”) so that the appropriate Fireworker
is used for execution. The Fireworkers run continuously and
poll the LaunchPad for new tasks. Using this architecture, we
can use the FireWorks webgui to monitor OTH workflows
submitted from any compute system as shown in Figure 7.
The webgui also permits filtering to workflows from a
specific system by issuing a MongoDB query matching one
of our assigned categories.

In addition to the benefits of having a central database and
improved monitoring, the FireWorks command-line tools
have proven useful for dynamic resolution of problematic
workflows. LaunchPad queries simplify the task of identi-
fying failed tasks; previously this involved examining the
individual status files for each application test. Further, the
ability to relaunch specific fireworks has been useful for
situations where our batch systems have temporary glitches,
or for debugging scripting errors during test development.

B. GitLab Integration

The OTH code is currently hosted in an internal Git-
Lab [7] instance. Starting with v2.0, we have begun lever-
aging GitLab’s continuous integration/continuous delivery
(CI/CD) features to integrate automatic unit testing. A
GitLab runner [8] has been deployed in each target system
and each one is responsible to ensure that a simple OTH
workflow is successful upon merging a request into the main
development branch. Now that we support more systems,
manual verification on each one can be time consuming.
Adding automated unit testing to our development pipeline
has significantly reduced the likelihood of introducing a
bug during development that could prevent the OTH from
running on one of our supported systems.

V. LESSONS LEARNED

The OTH has evolved significantly since it was first intro-
duced for Jaguar’s acceptance testing. Executing acceptance
testing of each new system revealed potential gaps that could
be improved in the OTH.

For example, during Summit’s acceptance testing, the
OLCF executed a wide range of benchmarks, mini-
applications, and real codes [4] to ensure that individual
components as well as the system at scale could support the
workloads that OLCF users would bring to the facility. As a
result, the Git repository that held all Summit acceptance
testing applications became excessively large. Having a
single repository also introduced false dependencies between
updates to different applications. To address this issue, the
OTH can now point to individual application repositories
rather than a per-machine repository.

From v1.0 of the OTH, we learned that while having
the flexibility to create your own per-test submit, build,
and check scripts to interface with the OTH driver can be
advantageous, it also increases the maintenance overhead for
the OTH development team. Although the OTH development

Figure 7. Monitoring OLCF Test Harness Workflows on Two Systems - Peak and Lyra

team is not responsible for maintaining those interfaces,
during acceptance testing they are required to conduct “live”
troubleshooting. Having a consistent mechanism to build
applications, interact with the scheduler, and verify results
simplifies the debugging process and completely decouples
the application scripts from the OTH interfaces. Centralizing
those interfaces also allows the application developer to
focus only on providing scripts that they should already have
as part of their regular workflow.

A. Software Best Practices

Custom Code vs. Standard Libraries. Starting with Sum-
mit acceptance, we had added support for using a simple
key-value test input file to simplify keyword substitution in
batch job template scripts. However, this custom file format
required development and maintenance of a corresponding
parser and substitutions dictionary. For v2.1, we decided
to switch to a standardized format instead (i.e., INI). This
allowed us to leverage standard Python3 libraries (e.g.,
configparser) rather than custom code.

Code Modularity. A significant portion of the software
engineering for v2.1 targeted improved code modularity.
For instance, two common operations within the harness
were to determine the application and test names based
on the full path to the test’s Scripts directory and to
construct paths to other test-specific directories used by
the harness. Previously, these operations were implemented
in each place they were required, in a variety of mostly
equivalent ways. We now use a single Python class that
maintains the canonical file system layout for an application
test. This class defines constants for prescribed file and
directory names and provides utility methods for retrieving
the absolute paths to various test directories used by the
harness. When we wish to introduce a new file or reorganize
the file system layout, changes can be made in a single
module rather than the previous tedious process of search
and replace.

VI. RELATED WORK

While several open source testing frameworks exist, few
are designed specifically for HPC environments. At the time
of this writing, ReFrame [9] and Pavilion [10] are two of
the most popular open source HPC testing frameworks used
at HPC centers.

ReFrame is an open source Python regression testing
framework for HPC systems developed at the Swiss National
Supercomputer Center (CSCS). ReFrame is regularly used at
large-scale facilities such as CSCS, NERSC, and KAUST to
conduct regression testing. Tests in ReFrame are represented
by decorated Python classes. Each decorator tells ReFrame
about a specific characteristic of the test. Alongside the
framework, CSCS makes available their own list of tests [11]
available to ReFrame users. The list includes 15 scientific
applications and a large number of benchmarks and kernels
used to conduct regression testing on Piz Daint. Besides be-
ing widely used, ReFrame provides detailed documentation
and an archive of tutorials on how to use the framework.
While ReFrame is indeed a very powerful, the application
developer must be familiar with ReFrame in order to add a
class for new application. We consider this as a drawback
as it will increase the level of effort required from an
application developer which could decrease the number
of application and tests that we have available to us for
acceptance testing.

Pavilion [12] is a Python HPC testing framework de-
veloped at Los Alamos National Laboratory. Pavilion is
used by LLNL and LANL for acceptance and regression
testing. Similarly to the OTH, Pavilion has been significantly
rewritten and has been relaunched as Pavilion 2 [10]. The
latest version shares several design goals with the OTH
and also relies in a per-host configuration file. In addition,
Pavilion 2 provides a mechanism to add mode configuration
files and plug-in support. One main difference with OTH is
that Pavilion 2 uses YAML files for the various configuration
pieces. To write a new test, Pavilion 2 requires the source
for the application and a YAML file that defines how the test
should be built and executed. The test YAML file includes
sections to load environment modules, specify compilers,
and include run commands. Unlike its predecessor, Pavilion
2 uses the information in the test YAML to generate a
build script and a run script. In addition, Pavilion 2 also
supports automatic replacement of job launcher commands
which can be beneficial to reduce the burden on application
developers. Pavilion 2 is a powerful testing framework
and has significant overlap with the functionality already
provided by the OTH. We also have in-house expertise at the
OLCF on the internals of the OTH which is a requirement
of any framework used for acceptance testing. In addition,
after several successful acceptance tests for OLCF resources,
we have built a large collection of OTH tests which would
require a significant porting effort.

VII. FUTURE WORK

There are several features that are in the roadmap for
the OTH that we plan to add in the near future. Currently,
the application developer still needs to provide a batch
submission template with keywords that are replaced at
launch time. This could potentially also be abstracted to
further reduce the files that the application developer creates
when adding a test.

Automating the OTH with FireWorks will allow us to
have fine-grained control of which tests are launched. We
plan to continue improving the integration to leverage the
capabilities that the workflow tool provides.

We also would like to provide a robust and flexible
monitoring system for OTH results. Building on work done
in [13], we are working on deploying a new monitoring
system that will provide OLCF staff with an easy way to
store and view results instead of relying on the flat status
file.

While the OTH has been open sourced, we are in the
process of open sourcing the latest version that will provide
more flexibility to users external to OLCF. As part of that
effort, we are producing documentation that will be publicly
available on how to use the OTH and how to configure it
for another site.

VIII. CONCLUSION

The OLCF has a long history of deploying leadership-
class HPC systems. Having a testing framework that can
simulate realistic workloads on an HPC system has proven
to be a key resource not only for acceptance testing, but also
to identify potential at-scale issues during normal operations
and before a major upgrade [14]. As these systems have
become more complex and have grown in scale, so have
our acceptance and regression testing efforts. In order to
simplify and standardize internal testing procedures, in 2007,
the OLCF developed the OLCF Test Harness (OTH). Since
then, the OLCF has continued to refine and enhance the
OTH based on in-house expertise gained during use of the
framework for acceptance of Jaguar, Titan, and Summit.
This continuous evolution has allowed us to optimize the
framework for the OLCF ecosystem. Today, the OTH is a
Python3 testing framework that supports the most commonly
used schedulers (PBS, LSF, Slurm) and several job launchers
in use at the OLCF.

A major restructuring of the OTH was completed to sup-
port acceptance testing of the Summit supercomputer [15].
During that effort, we identified several opportunities to
further simplify the test creation process and new features
to address functionality gaps we encountered. The updates
described in this paper will become part of the OTH version
2.1, which will be used for the forthcoming acceptance
testing of the OLCF’s exaflop supercomputer Frontier. Our
hope is that the features we have added for v2.1 will simplify

the steps needed to support new systems, and will allow
other HPC centers to leverage the OTH in their own testing.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

REFERENCES

[1] A. Tharrington, “An overview of nccs xt3/4 acceptance test-
ing,” in Proceedings of the Cray User Group 2007 conference,
2007.

[2] A. S. Bland, W. Joubert, R. A. Kendall, D. B. Kothe, J. H.
Rogers, and G. M. Shipman, “Jaguar: The world’s most
powerful computer system–an update,” Cray Users Group,
2010.

[3] A. N. Tharrington, “Nccs regression test harness, version 00,”
9 2015. [Online]. Available: https://www.osti.gov//servlets/
purl/1232564

[4] “Summit: Scale new heights. discover new solutions.”
[Online]. Available: https://www.olcf.ornl.gov/summit/

[5] R. McLay, K. W. Schulz, W. L. Barth, and T. Minyard, “Best
practices for the deployment and management of production
hpc clusters,” in SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, 2011, pp. 1–11.

[6] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu,
M. Kocher, M. Brafman, G. Petretto, G.-M. Rignanese,
G. Hautier, D. Gunter, and K. A. Persson, “Fireworks:
a dynamic workflow system designed for high-throughput
applications,” Concurrency and Computation: Practice and
Experience, vol. 27, no. 17, pp. 5037–5059, 2015. [Online].
Available: http://dx.doi.org/10.1002/cpe.3505

[7] “GitLab,” https://docs.gitlab.com/, 2020.

[8] “GitLab Runners,” https://docs.gitlab.com/ee/ci/runners/
README.html, 2020.

[9] “ReFrame,” https://reframe-hpc.readthedocs.io/, 2020.

[10] “Pavilion 2.0,” https://pavilion2.readthedocs.io, 2020.

[11] “ReFrame: CSCS Checks,” https://github.com/eth-cscs/
reframe/tree/master/cscs-checks, 2020.

[12] “Pavilion,” https://github.com/lanl/Pavilion, 2017.

[13] C. Kuchta, R. Budiardja, and V. Melesse Vergara, “Harmony:
A harness monitoring system for the oak ridge leadership
computing facility,” PEARC 2019 Conference Proceedings, 7
2019.

[14] V. G. V. Larrea, H. S. Oral, D. B. Leverman, H. A. Nam,
F. Wang, and J. A. Simmons, “A more realistic way of
stressing the end-to-end i/o system,” in Proceedings of the
Cray User Group 2015 conference, 2015.

[15] V. Melesse Vergara, W. Joubert, M. J. Brim, R. Budiardja,
D. Maxwell, M. Ezell, C. Zimmer, S. Boehm, W. Elwasif,
H. Oral, C. Fuson, D. S. Pelfrey, O. Hernandez, D. B. Lever-
man, J. A. Hanley, M. Berrill, and A. Tharrington, “Scaling
the Summit: Deploying the World’s Fastest Supercomputer,”
6 2019.

