
Advanced Topics in Configuration Management

Ryan Bak and Randy Kleinman
Hewlett Packard Enterprise

Bloomington, MN USA
ryan.bak@hpe.com, randy.kleinman@hpe.com

Abstract - For the configuration of the latest generation of
Cray supercomputers, the Configuration Framework
Service (CFS) is a flexible framework used to prepare both
images and booted nodes to meet their functional
requirements. To help users get the most out of CFS, this
paper will explore many advanced topics, such as the
different modes of operation for CFS, configuration of both
compute and non-compute nodes, how to configure CFS for
best performance, and how to write the Ansible code for
fast and efficient deployment of your configuration, as well
as the differences between CFS and the previous generation
Cray XC series system configuration management.

I. MANAGING CFS IN V1.3

At the core of the Configuration Framework Service

is Ansible, which CFS uses to apply configurations to its
targets. Ansible provides users a familiar, open-source
solution in which to write their configuration. CFS builds
on top of Ansible’s strengths, adding additional features
to both add simplicity and power to the use-case of
deploying configurations to large scale systems. This
paper discusses the new CFS-Batcher feature which
improves overall post-boot configuration time, why you
would choose to have configuration applied as pre-boot
image customization versus post-boot node
personalization, how to manage different groupings of
nodes, compares CFS to configuration solutions from
previous Cray supercomputers, and describes some future
areas of configuration improvement.

II. CFS-BATCHER

As of the 1.3 release, the most recent addition to

CFS’s features is the CFS-Batcher. This is a new service
running in Kubernetes that serves two purposes: It breaks
up configuration sessions into smaller Ansible runs, and
also supports a partially declarative model, adding the
ability to automatically configure components when they
start, and retrying failures on a component level so that
individual components don’t prevent the rest from
configuring. While users can still create individual CFS
sessions, which are still useful when targeting small
numbers of components in a one-off case such as
configuring images, the preferred method of using CFS
is now to use the new /components endpoint. Here users
will find information on all nodes in their systems, along
with information about what configuration has been
applied to them and what the desired configuration state
is. By setting the desired configuration state for a
component, users will not only apply that configuration

to the component now, but also anytime in the future that
the component reboots.

The normal workflow starts by creating a session
through the Boot Orchestration Service (BOS). If CFS
is enabled in the BOS session template, BOS will set the
desired configuration state for all targeted components.
In the case of a reboot or boot operation, the state is set
prior to issuing the power command, and the
configuration is set along with a flag in CFS that
temporary disables automatic configuration so that CFS
doesn’t attempt to configure the nodes before they are
powered up. When the node comes up, the CFS-State-
Reporter, a package installed in Cray-provided boot
images (e.g. Compute and User Access Nodes), checks
in with CFS and alerts it that the component is both
available for configuration, and has no configuration
currently applied. CFS-Batcher monitors the
configuration state of all nodes, and when it detects
nodes in a state where the desired and current
configurations do not match, it starts the process of
reconfiguring it. The node is put into a batch, which then
becomes a CFS session once the batch is full, or a
maximum wait time has expired. Because the
configuration on each component has already been set
prior to any power commands, there is no need for all
components to be up prior to starting configuration. As
components come up and report in, CFS-Batcher will
immediately start the configuration process for these
nodes, reducing overall wait time. The “thundering
herd” problem is also avoided because all CFS sessions
do not start at exactly the same time. At the end of the
CFS run, an Ansible callback module then reports back
the success or failure of the configuration for each
component and retries are started if necessary.

The CFS-Batcher is configurable. Everything from
the batch size to the number of retries can be set by the
user via the /options endpoint. By default, these
parameters have been tuned to best balance Ansible
performance and overall performance for our default
playbook. The graphs below show how Ansible
performs better when you are targeting fewer nodes at a
time. Across every playbook tested, the time it takes to
complete an Ansible run scales linearly with the number
of nodes being configured. We set the default at 25
nodes per batch, because although it is possible to get
better performance in the Ansible phase of the CFS
session by using smaller batch size, the overall time is
increased. Testing showed that a batch size of 25 nodes
was the fastest overall once the competing calls to HSM
for inventory, competing calls to our Version Control
Service (VCS) to clone the Ansible content, and the extra

amount of time needed for the operator when scheduling
more CFS jobs at the same time are accounted for.

Two tests are shown here. The first is running a
simple playbook with only a debug task, the second is the
site.yml playbook provided with v1.3. Both tests were
run with varying batch sizes (x-axis) on a 1024 node
system running Shasta v1.3 software and show the time
for each phase in seconds (y-axis). Blue is average, and
the shaded red area shows minimum and maximum range
for the results. The phases shown are:

1. operator_delay – The time from the creation of
the CFS session until the CFS session job starts.

2. clone_time – The time taken for the git-clone
container to clone the Ansible content.

3. inventory_time – The time taken for the
inventory container to build the Ansible
inventory

4. ansible_time – The time for the Ansible
container to run once the Ansible content and
inventory are in place.

5. total_time – The total time from BOS session
creation to CFS session completion.

The combination of two phases define the overall
time CFS will take: the operator_delay and ansible_time.
The operator_delay, which is the time is takes for the
CFS-Operator to schedule jobs for all batches, can be
high with large numbers of batches, such as when using
small batch sizes. On the other hand, the ansible_time,
the time it takes Ansible to run, increases with batch size.
The result is a total_time graph with a minimum at some
batch size. The ideal batch size occurs at this location,
where both the overhead of scheduling more sessions and
the time it takes Ansible to run are minimized.

III. ADDING CUSTOM CONTENT TO CFS

The Ansible content that CFS runs is managed in the
Version Control Service (VCS), which uses the open
source self-hosted Git service Gitea (https://gitea.io).
This makes it easy for users to add or modify content and
track any changes made. However, although adding and
modifying content is easy, it’s much more difficult to
write Ansible code that is efficient at scale. This is

especially true if there is confusion about how and when
the Ansible code is run.

Perhaps the biggest factor in writing fast Ansible
plays is choosing whether to put a given task in the image
customization or node personalization phase of
configuration. Image customization is when changes are
made to an image pre-boot, and is good for installing
packages, adding files, or other tasks that would apply
the same configuration to a large group of nodes.
Running tasks at this stage prevents them from needing
to be run on every node individually, which not only
saves time in the short run by reducing the number of
targets the task is run against, but also in the long run by
ensuring the task never needs to be run again so long as
the image that was customized is reused.

On the other hand, node personalization runs after a
node boots and is generally less efficient. It should be
reserved for tasks that have different results on every
node, or for tasks that require running services. Some
tasks can only be executed post-boot, but in order to keep
configuration time low, it’s important to move tasks to
image customization whenever possible. Tasks can
distinguish which mode is being run by using the
cray_cfs_image variable as documented in the admin
guide. This value evaluates to true when Ansible plays
are run in a CFS session that targets one or more images
hosted by the Image Management Service (IMS). See the
“Managing Hardware” section for more information
about this mode. It is also important that all tasks check
this variable, either at the task level or role level, for the
situation when a playbook will be run for both image
customization and node personalization. Cray-authored
plays and roles are grouped by functionality and
therefore will contain checks for cray_cfs_image within
a single playbook and within individual Ansible roles.

Beyond the choice of image customization and node
personalization, users should also aim to write as
efficient as possible Ansible code. There are many
guides that include tips for writing effective, reusable,
and efficient Ansible code. These are readily available
online or in our documentation. As a result, this paper
will not cover them, but the principles are important to
incorporate, and users are encouraged to take the time to
find this information.

It is important to take into consideration the CFS
framework that Ansible is running in when writing
configuration content for the Shasta system. CFS has
several features that separate it from using stand-alone
Ansible. One important consideration is that when run
through BOS or when setting components desired state,
components are automatically split into batches which
are independent Ansible runs. When batching, there’s no
coordination between Ansible running in the separate
batcher jobs. So, if components rely on a certain strict
order of tasks across all nodes, you may have to build
coordination into the plays. This could mean adding a
task to wait on system state or coordination via a flag,
although both approaches would sacrifice some of the
performance benefits of batching.

Likewise, due to batching, any tasks that specify
run_once will run once per batch. If it’s important that
the task run only once for an entire host group (and not
just a subset within a single batch), a better solution

would be to specify the host for the task, so that only the
batch that contains the task ends up running the role.

In both these cases, because CFS-Batcher also
enforces state, any solution will have to take into account
that a single node could reboot and have the
configuration reapplied at any time, and there is no
guarantee the all nodes will configure at the same time.

Finally, tasks should ideally only make changes once,
even if the playbook is run multiple times. It is common
to apply a new version of a playbook on top of an already
applied playbook, and it will save time in subsequent
runs if not every task runs the second time. This is
usually accomplished using the “when” keyword, but can
be done other ways, such as building the logic into the
module if custom modules are used.

IV. MANAGING HARDWARE

When it comes to managing the components that
Ansible is running against, CFS provides several options.
The special case of the four options is “image” which is
used for image customization, and lets you specify the
image and any of the hardware groups it will belongs to
when booted. The remaining three are all used in post-
boot scenarios on live nodes. First is “spec” or command
line inventory. This is similar in usage to “image”, and
lets you specify the component(s) to run against on the
command line, as well as the hardware groups that the
components belong to. While “spec” is useful for one-
off configuration runs, “repo” is a more long-term
solution, and simply refers to a standard Ansible
inventory file that is stored in the VCS repo along with
the Ansible content.

The most common inventory method is “dynamic”
inventory. This is generated from information stored in
the system’s Hardware State Manager (HSM) and as a
result requires no additional management by the user.
All components in HSM are automatically included in
the inventory and assigned to Ansible groups based on
their hardware roles. These are automatically
determined so that dynamic inventory works out of the
box, but Ansible groups are also generated for the
inventory based on HSM partitions and groups/labels,
giving users more control over the inventory, while not
having to maintain a separate inventory in a git
repository. One important thing to note is that while
HSM distinguishes between hardware roles, partitions,
and groups, Ansible does not support this distinction, and
everything is compressed into a single set of groups. This
means that using a group name that is the same as a
hardware role name, such as Compute, will create a
conflict and this should be avoided. In this instance the
priority is given to the hardware role first, and then
partitions, and lastly to groups, and the lowest priority
will simply be ignored if there is a naming conflict.

Most of the hardware roles currently available are
managed by default. Configuration for both Compute
and Application nodes (which includes nodes
functioning as the User Access Nodes or UANs) are
included in the site.yml playbook. This is used both for
image customization, which is called via CFS directly,

and later as part of a BOS session to personalize the node
components.

Management nodes also have a default configuration
provided, although this is handled by a different
mechanism. Rather than being triggered by the system
installation commands or through BOS, each of the
Management non-compute nodes (NCNs) is managed by
a Kubernetes daemonset. When the daemonset starts up
on each node, it calls CFS to run the ncn-customization
playbook against itself, and when the daemonset is
deleted, CFS is called again with an ncn-customization-
unload playbook to tear down changes that were made
by the initial customization. The NCN daemonset is not
a permanent solution and will be removed in future
versions of the NCN software, but it does demonstrate
another interesting way in which CFS can be
appropriately used.

V. COMPARISON WITH PREVIOUS CONFIGURATION
SOLUTIONS

CFS on Shasta systems introduces several major

differences with the previous configuration management
solution on Cray XC series systems. Many of these
changes were the result of direct user feedback. The most
notable change is the shift from building unconfigured
images on the system and applying configuration solely
during node boot as was done on XC series systems. In
Shasta, CFS enables the user to customize a pre-built
image prior to booting it. The intention of this change
was to reduce the time required to fully configure and
customize nodes, as well as provide users with a more
realistic view of an image prior to boot. Through the
usage of the cray_cfs_image variable, users can provide
Ansible tasks that can differentiate between pre-boot
image customization and post-boot node personalization
to give the flexibility of running the proper configuration
tasks when desired.

Another significant change is moving from directory-
based config sets managed by the configurator tool on
XC series systems to Git-based configuration content
management in Shasta. Config sets contained mostly
configuration data (playbooks could be added ad hoc),
with the majority of Ansible plays being embedded in the
boot images and the site playbook generated dynamically
during boot time. By bringing all the Ansible plays and
roles together with inventory into a single location in Git,
the user can see a more complete picture of the
configuration that will be applied.

CFS only runs Ansible plays that are available in Git
repositories. This enables modern change management
and familiar development workflows for configuration
content as well as the simplicity of branching for
applying test configurations to nodes. The inclusion of
Gitea as the provided git service on the Shasta system
also provides a Github-like user interface for managing
changes through pull requests, branch permissions, etc.

Finally, the cray-ansible tooling on XC series
systems ran Ansible locally against the node as it was
booting. CFS instead runs in batches of nodes in the
familiar and common Ansible “push” mode with a full-
fledged inventory, including the batteries-included

dynamic inventory provided by the HSM. This allows for
fine-grained configuration host targeting without
requiring a boot image to be rebuilt. Leveraging standard
data targeting like Ansible’s inventory also allows for
fine-grained configuration data differentiation at global,
group, and host levels that was available before through
Cray’s simple sync functionality only.

VI. UPCOMING IMPROVEMENTS

There are many improvements coming for CFS as
well, both new features, and performance improvements
as we work to bring down the time it takes to configure
a system. One of the big new features planned for the
v1.4 release is support for multi-layer configurations.
Rather than creating a CFS session for each playbook
that needs to run to configure a system, it will be possible
to request a single session that runs multiple playbooks
from different git repositories. This will make it easier
to track and manage changes to different parts of the
configuration, by making it possible to keep each part in
its own playbook and even in its own branch or
repository. This feature is applicable when setting
desired configuration states for components, so that users
can not only apply multiple playbooks, but also ensure
that the same set of playbooks will be reapplied if the
component is restarted.

Performance improvements are also in development
for the CFS-Operator in particular. As seen in the graphs
above, this is currently a bottleneck in CFS. When
creating large numbers of CFS sessions, such as when
setting the batch size to 1, the CFS-Operator can take a
long time to create all the necessary Kubernetes jobs. By
reducing the time, CFS will be able to support not just
larger scale systems without as much overhead, but also
make using smaller batch sizes more practical and
improve the time it takes for Ansible to run.

VII. SUMMARY

CFS is a powerful tool for configuring large groups
of components, but it is important to understand how it
operates in order to use if effectively. This is especially
true when it comes to achieving desired performance out
of the recently added batching capabilities. The optimal
CFS configuration and Ansible code will depend on the
specifics of the system being configured, and the
configuration being applied. However, by learning about
both CFS and Ansible, and by following best practices,
it is possible to efficiently apply configuration to a
system of considerable scale.

