Enabling Power Measurement and Control on Astra:
The First Petascale Arm Supercomputer

Ryan E. Grant, Simon D. Hammond, James H. Laros III, Michael Levenhagen,
Stephen L. Olivier, Kevin Pedretti, H. Lee Ward, Andrew J. Younge
Center for Computing Research
Sandia National Laboratories
Albuquerque, New Mexico, USA
{regrant, sdhammo, jhlaros, mjleven, slolivi, ktpedre, lee, ajyoung} @sandia.gov

Abstract—Astra, deployed in 2018, was the first petascale
supercomputer to utilize processors based on Arm’s instruction
set. The system was also the first under Sandia’s Vanguard
program which seeks to provide an evaluation vehicle for novel
technologies that with refinement could be utilized in demanding,
large-scale HPC environments. While the adoption of Arm-
based processors was the flagship novel technology, several
other important first-of-a-kind developments were used in the
machine, including new approaches to cooling the data-center
and machine, as well as several important innovations in the
system imaging and development of a robust programming
environment.

This paper documents our experiences in building a measure-
ment and control infrastructure for power consumption on the
Astra machine. While this is often beyond the control of many
users today, the accurate measurement, cataloging and evaluation
of power, as our experiences show, is critical to the successful
deployment of a large-scale platform. While such systems exist in
part for other architectures, Astra required new development to
support the novel Marvel ThunderX2 processor used in compute
nodes. In addition to documenting the measurement of power
during system bring up and for subsequent on-going routine use,
we present results associated with controlling the power usage
of the processor, an area which is becoming of progressively
greater interest as data centers and supercomputing sites look
to improve compute/energy efficiency and find additional sources
for full system optimization.

I. INTRODUCTION

After many years of ecosystem development, server-class
Arm processors are now readily available from multiple ven-
dors as traditional commercial products and as infrastructure
available for rent in the cloud. Platform enablement and stan-
dardization efforts [1], [2] have enabled a diverse set of system
vendors and OEMs to field compatible Arm servers, and this
in turn has enabled the development of a comprehensive and
vibrant Arm software ecosystem. The results of this effort are
demonstrated by Arm-based systems such as Astra [3] and
Fugaku [4] appearing on the Top500 list of the world’s fastest
supercomputers for the first time, with Fugaku holding the top
spot as of June 2020 [5].

Still, there are some areas such as power management
that are not yet well understood or standardized for Arm
servers. Even within a single vendor ecosystem, different
processor models and product generations provide differing

power management capabilities. This is amplified in a multi-
vendor ecosystem such as Arm, where different vendors may

employ completely different approaches. With the relatively
recent entrance of Arm into the HPC space, it is important
to examine the power management capabilities of existing
platforms so that both common functionality and gaps can
be identified. This is needed to drive platform standardization
efforts in productive directions and to improve the power
management capabilities of future Arm-based supercomputers.

This paper describes the power management capabilities
of the Astra supercomputer based on the HPE Apollo 70
server product and Marvell ThunderX2 processor, detailing
how these capabilities have been enabled and improved over
the system’s life. This has required close collaboration and
co-design between Sandia, HPE, and Marvell, and a will-
ingness to experiment with these settings to discover the
various performance, power usage, and thermal tradeoffs. In
particular, when problems have been identified, solutions have
been implemented via firmware updates and other methods
to improve the capabilities of the system in the field. Such
improvements will be demonstrated through current Astra
operational capabilities and the memory turbo mode evaluated
in our experiments.

The remainder of this paper is organized as follows: Sec-
tion II provides a brief overview of the Astra platform.
Section IIT describes the platform’s power measurement ca-
pabilities and is followed by Section IV, which describes the
available power control mechanisms. Section V provides an
empirical evaluation of several workloads operating under dif-
ferent power control configurations. Section VI covers related
work. Final conclusions are presented in Section VII.

II. ASTRA OVERVIEW

This section provides a brief overview of the Astra super-
computer and its overall project goals. Astra was originally
installed at Sandia National Laboratories in October 2018.
Since then, it has undergone significant co-development and
stabilization efforts and reached near-production status in
October 2019. Astra is currently in use by the NNSA Tri-
labs (Sandia, Los Alamos, and Lawrence Livermore national
laboratories) to run important modeling and simulation work-
loads, with jobs running regularly at thousand node scales. A
more detailed description of Astra can be found in previous
work [3].



A. Hardware Platform

The Astra supercomputer system architecture is an amalga-
mation of industry standard parts including: the HPE Apollo
70 chassis and node design; Marvell ThunderX2 processors;
Mellanox MLX5 EDR InfiniBand network; HPE Lustre stor-
age servers; Red Hat Linux; standard 19-inch racks; power
distribution units, and water to air cooling infrastructure. The
overall system includes 2,592 compute nodes split into thirty-
six racks of eighteen Apollo 70 chassis each, for a total of 72
nodes per rack. The compute nodes are connected by a fat-tree
topology InfiniBand network with a 2:1 taper at the rack level.
Each 36-port rack-level leaf switch connects 24 downlinks to
compute nodes and 12 uplinks to director class core switches.

The Astra node architecture is comprised of two Marvell
ThunderX2 28-core ARMV8 processors running at a base
frequency of 2.0 GHz and maximum turbo frequency of
2.5 GHz. Each processor socket connects directly to eight
DDR4-2666 DIMMs and to an EDR InfiniBand network
interface via a dedicated 8x PCle link. Additionally, each
node includes its own Baseboard Management Controller
(BMC) that implements the Intelligent Platform Management
Interface (IPMI) protocol for out-of-band node management.
The overall system is managed by a top-level management
node running the HPE Performance Cluster Manager (HPCM)
software, which interfaces with each node’s BMC.

B. Project Goals

As a large-scale prototype platform, Astra was never in-
tended to be a truly production system. Rather its primary
goal was to prove out the viability of Arm for supporting
real-world NNSA Tri-lab production applications and input
problems. This meant gaining experience and confidence in the
Arm ecosystem, both in terms of hardware and software, and
demonstrating that it was ready to be used in future produc-
tion supercomputer deployments. That goal has largely been
accomplished, although further maturation efforts continue as
they do for any new technology. In particular, improving Arm
compiler toolchains and math libraries to better support NNSA
workloads are continuing areas of focus.

A secondary goal was to leverage the Astra platform’s
prototype nature to conduct R&D activities. Areas of ex-
ploration have included in-platform container build support,
new /O filesystems, resilience studies, network congestion
analysis, machine learning, and, the topic of this paper, power
management. Little was known about how power measurement
and control worked on Astra’s Apollo 70 servers going into
the project, and in practice this knowledge became critical for
bringing up the system, as will be outlined in the following
sections.

III. POWER MEASUREMENT

When Astra was initially deployed, it was configured for
maximum performance with features such as turbo boost and
symmetric multithreading (SMT) enabled. Small scale testing

appeared to work well, but large scale runs would quickly

experience degraded performance after a few minutes. After
investigation, the root cause was determined to be thermal

throttling. Diagnosing this problem was not straightforward
as there was not yet an infrastructure in place to collect and
analyze power and temperature measurements throughout the
system.

The remainder of this section describes power measure-
ment sources available on Astra, the in-band and out-of-
band interfaces for accessing them, and the system monitoring
infrastructure that was developed to help diagnose system-
wide power and thermal anomalies.

A. Power Measurement Points

1) Processor-level: The Marvell ThunderX2 processor pro-
vides extensive on-die voltage, power, and temperature infor-
mation. Per-core readings are provided for temperature and
frequency, and package-level power usage is provided for
Core, SRAM, Memory, and SOC (System On Chip) power do-
mains. The total package power for the ThunderX2 processors
used in Astra (28-core, 2.0 GHz, 150 W TDP) can be derived
by summing the four power domains and adding 12 W. This
additional 12W is an approximation of the unreported power
used by other components in the package (Marvell, personal
communication, January 23, 2019).

2) Chassis & Node-level: The HPE Apollo 70 architecture
is comprised of a 4U chassis design which houses four dual-
socket Arm server sleds/blades, an array of eight cooling fans,
and two shared power supplies that power all of the com-
ponents in the chassis. The chassis provides physical power
measurement of the input AC power to each power supply
and the total DC power output supplied to the components in
the chassis. Each Arm server sled further provides a physical
power measurement of its input DC power, enabling each Arm
server to be measured individually.

3) Rack-level: At the rack-level, a single Raritan power
distribution unit (PDU) converts three-phase 480VAC facility
power to 270VAC power used by the Apollo 70 chassis. The
PDU provides physical measurement of total power (active and
apparent) and individual rms current readings for each of the
PDU’s 18 breakers. Additionally, the PDU provides an active
energy counter that tracks the total energy consumed by the
rack in joules.

4) System-level: Finally, at the full system level, the fa-
cility provides 480VAC power via two Starline Busway T5
1200Amp overhead bus bars, one dedicated to each row of
Apollo 70 racks. Additionally, Liebert PDUs are used to
supply 208 VAC to the system’s three network switch cabinets,
two service node racks, and twelve cooling cabinets. Taken
together, the utility grade power meters in these bus bars and
PDUs capture the total power consumed by Astra. Notably, the
full-system level 3 (highest quality level) power measurements
supplied in the June 2019 Top500 submission for Astra were
gathered using these measurement points [5].



B. In-band Interfaces

Marvell provides the tx2mon Linux utility for accessing
the ThunderX2’s internal power measurements. The tool con-
sists of a Linux device driver, which must be rebuilt and/or
ported for the specific Linux kernel version being used, and
a userspace utility for accessing information exported by the
device driver. The t x2mon utility was originally developed as
an internal engineering tool by Marvell, however at the urging
of Sandia and other customers, it was made available as open
source tool [6].

Figure 1 shows an example of tx2mon output for an idle
Apollo 70 compute node. Power usage information for each
of the two ThunderX2 processors in the server is displayed
(Node 0 and Node 1) via a curses-based interface similar to
top. Output can also be written to a CSV-formatted text file.
In addition to displaying real-time power usage, t x2mon also
provides historical information on the count and duration of
throttling events that have occurred since the server booted.
This feature was added via a firmware update after Astra’s
initial deployment, and was helpful for investigating node
performance issues.

A PowerAPI [7] plugin for tx2mon was developed and
deployed on Astra in order to provide a portable in-band
interface to access its information [8].

C. Out-of-band Interfaces

The IPMI protocol is the primary out-of-band interface
provided for gathering power and environmental information.
IPMI requests are serviced by the Apollo 70 chassis and
server BMC and do not require any host involvement or other
activity that would slow down application performance. [IPMI
traffic flows over an Ethernet management network to further
avoid interfering with applications, which primarily utilize the
system’s high-speed InfiniBand network.

Figure 2 shows example output of the ‘ipmitool sdr”
command used to gather a remote Apollo 70 server’s sensor
information. The server’s current whole-node power usage
is displayed near the end of the output as NodeDCPower.
Notably, the Apollo 70 BMC does not expose an energy
accumulation counter, instead requiring explicit polling to
estimate a server’s energy use. It would be a desirable feature
to add to future Apollo systems, similar to the energy counter
provided on Cray XC systems [9].

The SNMP protocol can be used to gather out-of-band
power measurements from Astra’s rack PDUs and cooling
cabinets. This traffic flows over the same Ethernet management
network used for IPMI.

A PowerAPI [7] plugin for accessing Apollo 70’s out-
of-band power information was developed. However, it has
not been widely deployed because it requires administrator
privilege. The Apollo 70 BMC does provide multiple role-
based privilege levels, but unfortunately the power information
is mapped to the administrator role rather than a user role.

D. System Monitoring

As previously mentioned, Astra faced significant challenges
with thermal throttling early in its deployment. The Apollo 70

platform was new, resulting in little experience in debugging
such systems. Furthermore, HPCM did not yet have effective
support for monitoring the health of the system. These chal-
lenges were overcome by disabling turbo boost, SMT, and any
other feature that increased server power usage. Additionally,
Astra’s cooling system was improved by adjusting water flow
rates, fan speeds, and sealing air gaps. These changes enabled
large-scale runs to complete successfully.

Still, there were lingering thermal issues and system behav-
ior often changed as a result of firmware and configuration
updates. To address this gap, HPE and Sandia collaborated to
develop a system monitoring solution to periodically gather
power and temperature information, store it in a time series
database, and visually analyze it using Grafana, a web-based
tool for constructing real-time monitoring dashboards. The
system was effective in enabling the team to quickly identify
and resolve overheating nodes and other thermal anomalies.

As an example, Figure 3 shows a Grafana heat map visual-
ization of the inlet water temperatures over time to Astra’s
cooling racks, with each row representing a different rack
and color representing temperature. This ad hoc plot was
quickly generated as part of an investigation of why nodes
were overheating and shutting off. The plot clearly shows the
unexpected behavior: during mid-day water temperatures were
rising considerably, as represented by the red areas in the plot.
The problem was root caused as a faulty valve in the data
center that wasn’t properly alarming, and once fixed the system
began operating normally again after five days of issues.

Another example is shown in Figure 4. In this case three
clusters of compute nodes can be seen: 1) cool nodes that
were not running a job, 2) normal nodes operating at expected
levels, and 3) very hot nodes (red points) consuming upwards
of 600 W, far beyond the expected maximum of 450 W.
This phenomenon was eventually traced to a bug in a recent
firmware update that left CPU operating voltages too high
on a subset of nodes. Once the error was corrected, the
overheating nodes operated normally. Issues like this would
have likely been much harder to understand and resolve
without the lightweight monitoring and analysis solution that
was developed for Astra.

IV. POWER CONTROL

This section describes the two main power control mech-
anisms available on Astra: 1) turbo modes and 2) OS CPU
frequency control. This section describes their operation and
the evaluation in Section V will present empirical results
for several workloads running under different power control
configurations.

A. Turbo Modes

As originally designed, the ThunderX2 processor provided
three turbo modes:

o Disabled

e Autonomous

¢ Operating System Controlled (OSPM)



Node: 0O Snapshot: 182558986

Freq (Min/Max): 1000/2000 MHz Temp Thresh (Soft/Max): 92.39/110.25 C
|Core Temp Freq |Core Temp Freq |Core Temp Freq |Core Temp Freq
+-— - -+ - - + - —_— +- - -+
| 0: 58.89 2003 | 1: 58.34 2002 | 2: 58.34 2006 | 3: 57.78 2007
| 4: 56.66 2005 | 5: 58.89 2006 | 6: 56.66 2000 | 7: 57.78 2000
| 8: 58.34 2004 | 9: 57.78 2005 | 10: 58.89 2000 | 11: 56.66 2000
| 12: 54.99 2002 | 13: 58.34 2005 | 14: 60.01 2005 | 15: 58.89 2007
| 16: 56.10 2002 | 17: 58.89 2003 | 18: 57.22 2002 | 19: 57.78 2000
| 20: 57.78 2007 | 21: 58.34 2003 | 22: 56.66 2003 | 23: 57.78 2007
| 24 57.22 2004 | 25: 58.89 2003 | 26 56.66 2000 | 27: 57.78 2001
SOC Center Temp: 60.57 C

Voltage Core: 0.74 V, SRAM: 0.90 v, Mem: 0.93 VvV, SOC: 0.85V

Power Core: 18.97 W, SRAM: 0.27 W, Mem: 13.41 W, SOC: 15.30 W
Frequency Memnet: 2304 MHz

Throttling Active Events: None

Throttle Events Temp: 0, Power: 74, External: 0
Throttle Durations Temp: 0 ms, Power: 65547 ms, External: 0 ms
Node: 1 Snapshot: 181930636

Freq (Min/Max): 1000/2000 MHz Temp Thresh (Soft/Max): 92.39/110.25 C
|Core Temp Freq |Core Temp Freq |Core Temp Freq |Core Temp Freq
o o +-——= —— oo +
| 0: 51.08 2007 | 1: 51.08 2007 | 2: 49.41 2001 | 3: 49.41 2006
| 4: 52.20 2004 | 5: 51.08 2003 | 6: 50.52 2003 | 7: 50.52 2005
| 8: 51.08 2000 | 9: 52.20 2005 | 10: 51.64 2004 | 11: 48.85 2002
| 12: 51.08 2006 | 13: 50.52 2004 | 14: 52.75 2001 | 15: 48.29 2007
| 16: 51.64 2005 | 17: 53.31 2000 | 18: 51.08 2002 | 19: 53.87 2003
| 20: 51.64 2004 | 21: 51.64 2002 | 22: 48.85 2003 | 23: 49.96 2000
| 24 51.08 2001 | 25: 51.08 2004 | 26: 51.08 2006 | 27: 49.41 2002
SOC Center Temp: 52.20 C

Voltage Core: 0.74 V, SRAM: 0.90 v, Mem: 0.93 VvV, SOC: 0.85V

Power Core: 19.47 W, SRAM: 0.45 W, Mem: 14.14 W, SOC: 14.62 W
Frequency Memnet: 2304 MHz

Throttling Active Events: None

Throttle Events Temp: 0, Power: 99, External: 0
Throttle Durations Temp: 0 ms, Power: 76150 ms, External: 0 ms

["gq’ to quit,

any other key for refresh.]

Fig. 1. Example output from Marvell’s tx2mon tool for displaying real-time ThunderX2 processor frequency, power, and thermal information.

Inlet ambient | 24 degrees C | ok
CPU 1 | 59 degrees C | ok
CPU 2 | 54 degrees C | ok
P1 DIMM 1-4 | 44 degrees C | ok
P1 DIMM 5-8 | 42 degrees C | ok
P2 DIMM 1-4 | 38 degrees C | ok
P2 DIMM 5-8 | 35 degrees C | ok
System Board | 30 degrees C | ok
LOM | 68 degrees C | ok
LOM Zone | 54 degrees C | ok
Sys Exhaust | 53 degrees C | ok
I/0 | 92 degrees C | ok
I/0 Zone | 56 degrees C | ok
Fabric Bd Zn | 40 degrees C | ok
P/S 1 Inlet | 33 degrees C | ok
P/S 2 Inlet | 33 degrees C | ok
Fan 1 PWM | 35 percent | ok
Fan 2 PWM | 35 percent | ok
Fan 5 PWM | 35 percent | ok
Fan 6 PWM | 35 percent | ok
InputACpower | 800 Watts | ok
TotalDCpower | 752 Watts | ok
NodeDCpower | 184 Watts | ok

Fig. 2. Example ipmitool tool output showing an idle Apollo 70’s
environmental information. The output is abridged to show the most relevant
fields.

Fig. 3. Heat map visualization of inlet water temperatures over time. Each
Astra cooling rack is represented by a horizontal row with time progressing on
the X-axis and color indicating temperature (red=hot, yellow/orange=normal).
The plot shows 5 days where water temperatures were unexpectedly elevated.

The disabled mode is self explanatory and results in the
processor operating at its base CPU frequency of 2.0 GHz.
The autonomous turbo mode enables CPU frequency to dy-
namically scale up to 2.5 GHz based on available thermal
and power headroom. Finally the OSPM mode enables the
OS to determine the CPU frequency, with settings available
from 1.0 GHz to 2.5 GHz for Astra. If CPU frequency is set
above the processor’s base frequency, the CPU may operate
at a frequency less than or equal to the desired setting based
on thermal and power constraints.



Fig. 4. Power vs. Temperature visualization of Astra’s 2,592 compute
nodes. Each node is represented by a point with color indicating the node’s
temperature (red=hot, blue=cool).

B. Memory Turbo

The turbo modes are implemented by an embedded Arm
power control processor on the ThunderX2 package. This
enables them to be updated and extended through firmware
updates. In March of 2019, a new turbo algorithm called
memory turbo was co-developed and deployed on Astra in
order to boost memory bandwidth while still staying within the

system’s thermal constraints. Memory turbo is not a distinct
turbo mode, but rather an option that can be enabled for

Autonomous or OSPM turbo modes.

With memory turbo enabled, CPU frequency remains fixed
while memory frequency is allowed to increase to its maxi-
mum value (2.3 GHz for Astra) based on thermal and power
constraints. The 15% increase in memory frequency (2.0 GHz
to 2.3 GHz) resulted in Astra’s per-node memory bandwidth
improving by 13.6% (220 GB/s to 250 GB/s).

C. OS Frequency Control

Once memory turbo was deployed there was still a desired
power management feature missing—in-band operating sys-
tem control of CPU frequency. To enable this, the ThunderX2
must be configured for OSPM turbo mode with Collaborative
Processor Performance Control (CPPC) mode enabled. Initial
testing in 2018 with CPPC enabled had resulted in degraded
performance, which was due to an OS/firmware interaction
bug resulting in CPU frequency getting stuck at a low setting.
By mid 2019 that issue had been resolved and testing showed
that CPPC mode could be enabled without adverse effects.

Figure 5 shows the behavior of OS frequency control (i.e.,
OSPM Turbo / CPPC enabled) with and without memory
turbo enabled. For convenience, throughout this paper the
configuration with memory turbo enabled is called MEM-
TURBO and the mode with it disabled is called CPUTURBO.
In the CPUTURBO configuration, CPU frequency and memory
frequency increase in unison up to 2.3 GHz and then CPU
frequency can further increase to 2.5 GHz. In the MEMTURBO
configuration, memory frequency remains fixed at 2.3 GHz and
CPU frequency cannot increase beyond a cap of 2.0 GHz.

Stated differently, the CPUTURBO configuration allows the
OS to set a CPU frequency that may result in thermal
throttling for some workloads, particularly those that are CPU
or memory intensive and that run on a large number of nodes.
MEMTURBO has been carefully engineered to not allow this to
happen for any OS frequency control setting. Intelligent sys-
tem software could potentially take advantage of CPUTURBO
to improve performance for some workloads while proactively
managing thermals to avoid exceeding limits.

V. EVALUATION

This section presents empirical results of a study compar-
ing two turbo configurations of interest, MEMTURBO and
CPUTURBO. The goal of the study was to better characterize
the performance, power, and thermal implications of switching
from the baseline MEMTURBO configuration to CPUTURBO.
In particular, an important question was whether real ap-
plications such as Sandia’s SPARC CFD simulation code
could benefit from CPUTURBO without exceeding thermal
constraints.

A. Testing Procedure

The experiments were conducted on Stria, which is a small-
scale testbed system with hardware and software identical to

25
24
23
§ 227
G 21
= 20}
2 19+
2 181
o 17+t
w
s 16
2 15}
8 14t
m 13t
12 b
1.1 F 4
1ol CPUFREQ —— |
S MEMPREQ T
1.011121314151.61.71.81.9202122232425
OS Controlled CPU Frequency Setting (GHz)
(a) MEMTURBO
25
24
23
T 22t
I
G 21
> 20Ff
2 19+
3 18f
g7y
c 16
2 15}
8 14t
o 13}
12 b
1(1) i CPUFREQ —— |
: , MEMFREQ ~——

1.01112131415161.71819202122232425
OS Controlled CPU Frequency Setting (GHz)

(b) CPUTURBO
Fig. 5. Comparison of MEMTURBO vs. CPUTURBO for the ThunderX2

processors used in Astra. Effective frequencies above 2.0 GHz may be reduced
during operation by the turbo algorithm due to power and thermal constraints.



Astra. The single-node HPL, STREAM, and HPCG experi-
ments were run using the same physical node to eliminate
part-to-part variability and location differences. The four-node
SPARC experiments were run on the same set of nodes for
the same reasons.

The test nodes were rebooted into either MEMTURBO or
CPUTURBO configurations. Then for each configuration, each
workload was run at different OS CPU frequency control
settings, sweeping a range of settings from 1.0 GHz to 2.0 GHz
for MEMTURBO and 1.0 GHz to 2.5 GHz for CPUTURBO
(see Figure 5). Particular attention was paid to CPUTURBO
settings above the 2.0 GHz baseline, since those were the
settings which had potential for increased performance.

While each workload was running, the tx2mon tool was
used to collect in-band power and temperature information
at 1 Hz, writing results to a CSV file. Additionally, the
Astra system monitoring infrastructure collected out-of-band
information that could later be accessed via SQL queries and
Grafana visualizations. The collected in-band information was
useful for getting a fine grained picture of how ThunderX2
processor-level power and temperatures were changing over
time, while the out-of-band data provided a coarse-grained
view of node-level power usage and thermals.

A several minute cool down period was enforced between
each run in order to start out from a neutral thermal environ-
ment.

B. Workloads

The following workloads were used in the evaluation:

1) Idle Power: This test simply measured the power con-
sumption of an idle node that was not running a workload.
Out-of-band samples were taken for approximately 10 minutes
and the average power reported.

2) STREAM: The STREAM benchmark [10] is designed
to measure memory bandwidth of a computing system. It is
a suite of four simple kernels: Copy, Scale, Add and Triad.
The kernels are applied elementwise to arrays that are meant
to be the larger of 1M elements or at least 4X the size of the
last level cache for the machine under test. The performance
results for the STREAM benchmark reported in this paper are
for the Triad kernel. The figure of merit is sustained memory
bandwidth (GB/s).

The STREAM test was configured to use 105 GB of
memory and to run for approximately nine minutes in the
baseline MEMTURBO 2.0 GHz configuration. OpenMP was
used to parallelize across the node’s 56 cores.

3) HPL: High Performance Linpack (HPL) [11] is fre-
quently used for benchmarking of HPC systems, most notably
in the semi-annual “Top 500" supercomputer list. The problem
is to solve a dense linear system of double precision values
using LU factorization with partial pivoting. The figure of
merit is GFLOPS (billion floating operations per second), and
overall performance typically depends heavily on the floating-

point arithmetic capability of the system under test.
The input problem was setup to fill approximately 100 GB

of the node’s 128 GB main memory and all 56 cores were
utilized placing one MPI processes per core.

4) HPCG: High Performance Conjugate Gradient
(HPCG) [12], [13] is intended to complement HPL for
benchmarking of HPC systems by emphasizing sparse
rather than dense linear algebra. It performs a fixed
number of conjugate gradient (CG) iterations. Major
operations in the computation include sparse matrix-vector
multiplication, vector updates, global dot products, and
multigrid preconditioning of the matrix using a symmetric
Gauss-Seidel smoother. The figure of merit is GFLOPS
(billion floating operations per second), weighted to
amortize any performance-optimizing operations, and overall
performance typically depends heavily on the memory
bandwidth of the system under test.

HPE’s optimized version of HPCG was used for testing and
it was configured for a local problem size of 104x104x104.
The test was run in an MPI-only configuration with 56 MPI
processes running, one per physical core.

5) SPARC: Sandia’s Parallel Aerosciences Research Code
(SPARC) [14], [15] is a best-in-class computational fluid dy-
namics (CFD) simulation capability that has been written from
new to exploit next-generation high-performance computing
architectures. The latest code, developed over a period of
five years under the NNSA’s Advanced Technology Develop-
ment and Mitigation (ATDM) sub-program to explore future
application programming approaches, comprises hundreds of
thousands of lines in latest language standard C++, utilizing
Sandia’s Kokkos-based performance portable programming
model and Trilinos high-performance, scalable solver frame-
work. In recent studies, scaling to thousands of nodes on the
Los Alamos (Haswell/KNL) Trinity [16], Lawrence Livermore
Sierra (IBM POWER/NVIDIA Volta GPU) [17] and Sandia
Astra (Arm ThunderX?2) [18], [19] platforms has been demon-
strated with the numerically intensive routines optimized to
exploit wide-SIMD units, multi-core threading and GPU-based
acceleration [20], [21].

Execution of the code proceeds through a series of it-
erations, each of which progresses simulated time. During
each iteration a series of steps are executed which traverse
the mesh permitting values and computation on the mesh
elements, followed by a sequence of assembly (construction of
a non-linear/linear system) and solve (solution of the system)
phases. While the specifics will vary depending on the input
problem and configuration of study, profiling of these phases
shows the mesh traversal and assembly phases exhibit more
latency and cache-based activities leading to more intense use
of the processor core, while the solve phases will more often
present aggressive use of the memory subsystem and memory
bandwidth.

The HIFiRE-1 [22] input problem was used for testing.
This problem was too large to fit in a single node’s memory,
so four nodes were used. SPARC was configured for MPI-
only mode, with one MPI process running per physical core
(224 MPI processes total). It is worth noting that the SPARC
application is proprietary to Sandia and source code is not
available publicly. However, its relevance to Sandia’s mission



TABLE I
IDLE POWER MEASUREMENTS FOR AN ASTRA COMPUTE NODE

Per Socket / Whole Node
MemTurbo (W) CpuTurbo (W)

OS Controlled
CPU Frequency (GHz)

1.0 3717152 30/ 136
1.2 38 /152 31/ 136
2.0 (baseline) 48 /176 46 / 168
25 N/A 62 /208

capabilities as an important real-world application provided
the motivation for examining its power usage and control
characteristics.

C. Idle Power Measurements

Table I shows the measured idle power draw for the different
configurations. Surprisingly, CPU frequency control does have
an affect on idle power draw. The results suggest that the
ThunderX2 processor does not go into a common idle sleep
state when no workload is running. This behavior may be an
area for improvement in future processors. The MEMTURBO
configuration has slightly higher idle power (5-10%) at the
same OS frequency due to the memory clock running at a
fixed 2.3 GHz.

D. Performance

Table II shows the absolute performance obtained for the
STREAM TRIAD benchmark at each configuration tested.
There is a significant difference in behavior observed between
MEMTURBO and CPUTURBO for this workload. With MEM-
TURBO, memory bandwidth is mostly unaffected by CPU
frequency, while CPUTURBO is significantly impacted until
around 2.2 GHz. This behavior closely matches the expected
behavior shown in Figure 5, and suggests that memory band-
width sensitive applications should prefer MEMTURBO.

Tables III and IV give the absolute performance obtained for
the HPL and HPCG workloads, respectively. In this case, the
difference between the turbo configurations is less pronounced
but still noticeable. Unlike with STREAM, CPUTURBO does
lead to higher performance for these workloads at frequencies
above the 2.0 GHz baseline. For HPL, up to 11% higher
performance is observed, while for HPCG approximately 7%
higher performance is observed. These results suggest that,
depending on power and thermal results, enabling CPUTURBO
may be desirable for these workloads.

Finally, Table V shows the total runtime of the SPARC
application. At the baseline 2.0 GHz, MEMTURBO is approx-
imately 4% faster, likely due to the lower memory frequency
of CPUTURBO at this operating point. However, at higher
CPU frequencies, CPUTURBO provides up to 9% higher
performance. This result suggests that SPARC is sensitive to
both memory bandwidth and compute performance.

E. Power Usage

Figure 6 shows how power usage scales for each of the
workloads, normalized to the performance of MEMTURBO

2.0 GHz. Here again, the STREAM workload demonstrates the
biggest difference in behavior between the two turbo configu-
rations. The other workloads scale similarly to one another,
with the increase in performance provided by CPUTURBO
requiring additional power consumption. For the SPARC appli-
cation, achieving 9% higher performance at 2.5 GHz requires
an average power draw that is 25% higher. This tradeoff may
be considered acceptable as long as temperatures do not rise
significantly enough to result in thermal throttling for large-
scale runs.

F. Thermal Behavior

Finally, Figure 7 plots the package-level temperature mea-
surements gathered by tx2mon for each workloads run at each
configuration. It takes approximately three minutes for thermal
conditions to stabilize, and there appears to be some overshoot
while fans and water flows ramp up.

In general, the CPUTURBO configuration is observed to
result in significantly higher temperatures compared to MEM-
TUurBO. For the CPUTURBO 2.5 GHz configuration, the
workloads result in 9% to 12% higher average temperatures
compared to MEMTURBO 2.0 GHz. In absolute terms, this a
6° C to 9° C difference.

TABLE 11
STREAM PERFORMANCE UNDER OS CPU FREQUENCY CONTROL

OS Controlled STREAM TRIAD GB/s

CPU Frequency (GHz) MEMTURBO CPUTURBO
1.0 246 123
1.2 246 148
1.4 246 172
1.6 247 197
1.8 247 219
2.0 (baseline) 247 238
2.1 - 244
2.2 — 246
2.3 - 246
2.4 - 246
2.5 - 247
TABLE III

HPL PERFORMANCE UNDER OS CPU FREQUENCY CONTROL

OS Controlled HPL GFLOPS
CPU Frequency (GHz) MEMTURBO CPUTURBO

1.0 394 380
1.2 470 456
1.4 544 532
1.6 614 605
1.8 684 677

2.0 (baseline) 750 745
2.1 - 782
2.2 - 817
2.3 - 829
2.4 - 829
2.5 - 829




09 r

Speedup Relative to 2.0 GHz MEMTURBO
o
[e:]

0.7 1
HPL ——

0.6 1
HPCG —

05 | STREAM = -

SPARC ——
400

04 1 1 1 1
200 250 300 350

Measured Whole-Node Avg Power (Watts)
(a) MEMTURBO

450

09 r 1

Speedup Relative to 2.0 GHz MEMTURBO
o
oo

0.7 7 4
HPL ——

0.6 1
HPCG —

05 | STREAM = -

SPARC ——
400

04 1 1 1 1
200 250 300 350

Measured Whole-Node Avg Power (Watts)
(b) CPUTURBO

450

Fig. 6. Controlling CPU frequency to characterize Power vs. Performance. Each point represents a run of the specified workload at a different static CPU
frequency control setting. The right-most point on each curve represents the highest possible setting, 2.0 GHz for MEMTURBO and 2.5 GHz for CPUTURBO.

When Astra was initially deployed, the thermal margin was
measured to be approximately 1° C; however, this has since
been improved significantly, possibly to as high as 10° C.
A node-level temperature increase of 9° C may be sustain-
able, but it is borderline. These results suggest that further
experimentation will be needed to determine if the increased
temperatures observed for CPUTURBO can be sustained at full-
system scales.

VI. RELATED WORK

Yokoyama et al. provide a wide survey of early research
on Arm processors in HPC, including Systems on Chip (SoC)
and Scalable Vector Extensions (SVE) [23]. Puzovic et al.’s
early energy efficiency study of Arm for HPC used the first-
generation ThunderX processor [24]. Hammond et al. bench-
mark the second-generation (ThunderX2) processor’s memory
and compute performance against Intel Xeon processors [25].
Jackson et. al compare 32 nodes of ThunderX2 processors
to similarly-sized systems of other architectures on a diverse
set of application workloads [26]. MclIntosh-Smith et al.
describe a series of experiments with ThunderX2 in a Cray
early-access system [27] and later a production Cray XC50
system [28]. Calore et al. measure power using tx2mon for
computations running on a single ThunderX?2 node to calculate
energy efficiency of Lattice Boltzmann and Lattice Quantum
ChromoDynamics applications, but their experiments do not
vary the frequency of the processor [29]. Kodama et al.
evaluate the power control mechanisms of the Fujitsu A64FX
processor used in Fugaku for the DGEMM and STREAM
microbenchmarks [30]. A dynamic scheduler was developed
for non-HPC ARM CPUs for the Montblanc project [31].
Similarly, application performance with a power and energy
study was done on a early prototype ARM system, also from
the Montblanc project [32].

VII. CONCLUSIONS

This paper has described the enablement of power measure-
ment and control on the Astra supercomputer. An overview of
the platform’s capabilities in these areas has been provided
along with a discussion of how they have evolved over time
and been critical to diagnosing and resolving system-wide
thermal issues. Results from an empirical investigation of As-
tra’s power control mechanisms were presented, characterizing
the performance, power usage, and thermal impacts on several
workloads including the Sandia SPARC application.

A key question of the evaluation was whether the Astra
system could be configured to operate in the CPUTURBO
configuration without causing thermal limits to be exceeded.
Results were mixed. For SPARC, an observed 9% performance
improvement was accompanied by 25% higher node-level
power usage and 8° C higher processor package tempera-
ture. While the performance improvement is attractive, the
temperature increase is close to the system’s thermal margin

TABLE IV
HPCG PERFORMANCE UNDER OS CPU FREQUENCY CONTROL

OS Controlled HPCG GFLOPS

CPU Frequency (GHz) MEMTURBO CPUTURBO
1.0 253 20.4
1.2 29.0 24.4
14 323 28.3
1.6 35.0 32.0
1.8 375 35.3
2.0 (baseline) 39.4 38.3
2.1 - 39.6
22 - 40.6
2.3 - 415
24 - 42.0
2.5 - 42.1




80 80|

<
=)
~
=)

Temperature (Celsius)
S
3
Temperature (Celsius)
Py
3

w
S

40 10 eee 14  ees 18 zu[ 40 .o 12 .. :g . ;;
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (Seconds) Time (Seconds)
(a) STREAM MEMTURBO (b) STREAM CPUTURBO
80

Temperature (Celsius)
Temperature (Celsius)

T io o ie e ad %
40 I T0 ees 14 ees 18 zu]’ 40 wee 12 ees 1B ees 22 ese 25
eee 12 e*s 16 eee 1.4 2.0 eve 2.3
200 400 600 800 1000 1200 1400 [ 200 400 600 800 1000 1200 1400
Time (Seconds) Time (Seconds)
(c) HPL MEMTURBO (d) HPL CPUTURBO
80! 80

Temperature (Celsius)
Temperature (Celsius)

40 “ee 10 eee 14 ee. 18 2.0
eee 12 e 16
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (Seconds) Time (Seconds)
(e) HPCG MEMTURBO (f) HPCG CPUTURBO
80! 1
@ o
® ®°
2 g
€ £
5 £
= 50 1 " 50 1
40 1 40 e*e 16 2.0 wee 22 2.4
e 16 s 18 2.0 ese 1.8 ese 2.1 eee 23 ess 25
5(‘]0 10‘00 15‘00 20‘00 2500 3000 3501 560 1600 15‘00 2000 2500 3000 3501
Time (Seconds) Time (Seconds)
(g) SPARC MEMTURBO (h) SPARC CPUTURBO

Fig. 7. Time vs. Temperature plots for workloads running on Astra configured for MEMTURBO (left column) or CPUTURBO (right column). Each plot shows
multiple runs of the same workload, with each run represented as a unique color run with the OS CPU frequency control setting given in the key, in GHz.
This allows visual analysis of both the total execution of the run, shown on the X-axis, and the time-varying thermal behavior, shown on the Y-axis.



TABLE V
SPARC PERFORMANCE UNDER OS CPU FREQUENCY CONTROL

OS Controlled SPARC Runtime (s)

CPU Frequency (GHz) MEMTURBO CPUTURBO
1.6 3255 3530
1.8 3039 3226
2.0 (baseline) 2849 2965
2.1 - 2813
2.2 - 2738
2.3 - 2665
2.4 — 2592
2.5 - 2583

and may not be sustainable. Future work will entail large-
scale experiments on Astra to further characterize the optimal
operating settings and determine the viability of using the
CPUTURBO configuration for sustained production usage.
While the findings described herein may be specific to Astra
and similar architectures, we believe they outline a new basis
for the analysis and optimization of thermal-limited HPC
systems, which may become commonplace in the exascale
computing era.

ACKNOWLEDGEMENTS

Vanguard is intentionally a program rooted in collaboration
between the NNSA and selected technology providers. We
are grateful for all of the support and collaboration we have
received in the deployment of Astra from HPE, Marvell, Arm
and Mellanox.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

REFERENCES

[1] “Arm Server Base System Architecture (SBSA), Version 6.0,” Arm
Limited, Platform Design Document DEN0029D, 2020.

[2] “Arm Server Base Boot Requirements (SBBR), Version 1.2, Arm
Limited, Platform Design Document DENOO44E, 2020.

[3] K. Pedretti, A. J. Younge, S. D. Hammond, J. H. Laros, M. L. Curry,
M. J. Aguilar, R. J. Hoekstra, and R. Brightwell, “Chronicles of Astra:
Challenges and Lessons from the First Petascale Arm Supercomputer,”
in SC20: Proc. Int. Conference for High Performance Computing,
Networking, Storage and Analysis, November 2020.

[4] M. Sato et al., “Co-Design for A64FX Manycore Processor and Fugaku,”
in SC20: Proc. Int. Conference for High Performance Computing,
Networking, Storage and Analysis, November 2020.

[5] J. Dongarra, H. Meuer, and E. Strohmaier, “Top 500 Supercomputers,”
Website, November 2019. [Online]. Available: https://www.top500.org/

[6] “tx2mon,” https://github.com/jchandra-cavm/tx2mon.git.

[7]1 R. E. Grant, M. Levenhagen, S. L. Olivier, D. DeBonis, K. T. Pedretti,
and J. H. Laros III, “Standardizing power monitoring and control at
exascale,” Computer, vol. 49, no. 10, pp. 38-46, 2016.

[8] “PowerAPI Reference Implementation,” https://github.com/pwrapi/
pwrapi-ref.

[91 Monitoring and Managing Power Consumption on the Cray XC
System, https://pubs.cray.com/bundle/Monitoring_and_Managing_
Power_Consumption_on_the_Cray_XC_System_S-0043/page/User_
Access_to_Power_Management_Data.html, Cray Inc., September 2015.

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current
High Performance Computers,” in I[EEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, December
1995.

J. J. Dongarra, “The LINPACK Benchmark: An Explanation,” in Proc.
Int. Conference on Supercomputing (ICS), 1987.

M. A. Heroux and J. Dongarra, “Toward a New Metric for Ranking
High Performance Computing Systems,” Sandia National Laboratories,
Tech. Rep. SAND2013-4744, 2013.

J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” Int. Journal of High Performance
Computing Applications, vol. 30, no. 1, pp. 3-10, 2016.

M. Howard, A. Bradley, S. W. Bova, J. Overfelt, R. Wagnild, D. Dinzl,
M. Hoemmen, and A. Klinvex, “Towards Performance Portability in
a Compressible CFD Code,” in Proc. 23rd AIAA Computational Fluid
Dynamics Conference, 2017.

J. Smith, D. W. Kuntz, S. J. Beresh, and K. M. Casper, “Aerosciences
Research at Sandia National Labs,” May 2016.

D. W. Doerfler, “Trinity: Next-Generation Supercomputer for the ASC
Program,” in HPC User Forum, April 2014.

S. S. Vazhkudai et al., “The Design, Deployment, and Evaluation of the
CORAL Pre-Exascale Systems,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SCIS8),
2018, pp. 661-672.

J. H. Laros, III, “Vanguard: Sandia’s Advanced Architecture Technology
Prototype Program,” NNSA/ASC Seminar Series 2019, January 2019.

J. Laros, K. Pedretti, S. Hammond, M. Aguilar, M. Curry, R. Grant,
R. Hoekstra, R. Klundt, S. Monk, J. Ogden, S. Olivier, R. Scott, H. Ward,
and A. Younge, “FY18 L2 Milestone 8759 Report: Vanguard Astra and
ATSE — an ARM-based Advanced Architecture Prototype System and
Software Environment,” Sandia National Laboratories, NM., Tech. Rep.
SAND2018-9999, September 2018.

M. Howard and T. C. Fisher, “SPARC Deep Dive,” Presentation to the
JOWOG-34 Applied Computer Sciences Meeting (2019), January 2019.
R. M. Wagnild, N. Bitter, J. A. Fike, and M. Howard, “Direct Numer-
ical Simulation of Hypersonic Turbulent Boundary Layer Flow using
SPARC: Initial Evaluation,” Sandia National Laboratories, NM., Tech.
Rep. SAND2019-11158, September 2019.

M. MacLean, T. Wadhams, M. Holden, and H. Johnson, “Ground Test
Studies of the HIFiRE-1 Transition Experiment Part 2: Computational
Analysis,” Journal of Spacecraft and Rockets, vol. 45, no. 6, pp. 1149—
1164, 2008.

D. Yokoyama, B. Schulze, F. Borges, and G. Mc Evoy, “The Survey
on ARM Processors for HPC,” The Journal of Supercomputing, vol. 75,
no. 10, pp. 7003-7036, 2019.

M. Puzovié, S. Manne, S. GalOn, and M. Ono, “Quantifying energy use
in dense shared memory hpc node,” in 2016 4th International Workshop
on Energy Efficient Supercomputing (E2SC), Nov 2016, pp. 16-23.

S. D. Hammond, C. Hughes, M. J. Levenhagen, C. T. Vaughan, A. J.
Younge, B. Schwaller, M. J. Aguilar, K. Pedretti, and J. H. Laros, “Eval-
uating the Marvell ThunderX2 Server Processor for HPC Workloads,” in
The 6th Special Session on High-Performance Computing Benchmarking
and Optimization (HPBench’19), July 2019.

A. Jackson, A. Turner, M. Weiland, N. Johnson, O. Perks, and
M. Parsons, “Evaluating the arm ecosystem for high performance
computing,” in Proceedings of the Platform for Advanced Scientific
Computing Conference, ser. PASC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3324989.3325722

S. McIntosh-Smith, J. Price, T. Deakin, and A. Poenaru, “Comparative
benchmarking of the first generation of hpc-optimised arm processors
on isambard,” in Cray User Group, 5 2018.

S. MclIntosh-Smith, J. Price, A. Poenaru, and T. Deakin, “Scaling Results
From the First Generation of Arm-based Supercomputers,” in CUG 2019
proceedings, 5 2019.

E. Calore, A. Gabbana, S. F. Schifano, and R. Tripiccione, “ThunderX2
Performance and Energy-Efficiency for HPC Workloads,” Computation,
vol. 8, no. 1, 2020.

Y. Kodama, T. Odajima, E. Arima, and M. Sato, “Evaluation of Power
Management Control on the Supercomputer Fugaku,” in Energy Efficient
HPC State of the Practice Workshop (EE HPC SOP 2020), September
2020.



[31] D. Rajagopal, D. Tafani, Y. Georgiou, D. Glesser, and M. Ott, “A novel Navaux, and J.-F. Méhaut, “On the Energy Efficiency and Performance

approach for job scheduling optimizations under power cap for arm and of Irregular Application Executions on Multicore, NUMA and Manycore
intel hpc systems,” in 2017 IEEE 24th International Conference on High Platforms,” Journal of Parallel and Distributed Computing, vol. 76, pp.
Performance Computing (HiPC). 1EEE, 2017, pp. 142-151. 3248, 2015.

[32] E. Francesquini, M. Castro, P. H. Penna, F. Dupros, H. C. Freitas, P. O.



