
Not All Applications Have Boring Communication
Patterns: Profiling Message Matching with BMM

Taylor Groves∗, Naveen Ravichandrasekaran†, Brandon Cook∗, Brian Friesen∗,
Noel Keen∗, David Trebotich∗, Nicholas J. Wright∗, Bob Alverson†, Duncan Roweth†, Keith Underwood†

∗ Lawrence Berkeley National Lab
† Cray, an HPE Company

Abstract—Message matching within MPI is an important
performance consideration for applications that utilize two-
sided semantics. In this work we present an instrumentation
of the CrayMPI library that allows the collection of detailed
message-matching statistics as well as an implementation of
hashed matching in software. We use this functionality to profile
key DOE applications with complex communication patterns to
determine under what circumstances an application might benefit
from hardware offload capabilities within the NIC to accelerate
message matching. We find that there are several applications
and libraries that exhibit significantly long match list lengths
which motivates a Binned Message Matching approach.

Index Terms—MPI, Message Matching, Tag Matching, Offload
NIC

I. INTRODUCTION

Two-sided MPI operations are the well used form of send
and receive operations, such that both sending and receiving
processes are engaged in message processing and forwarding
(in contrast to one-sided operations such as put and get). More
than 90% of HPC applications rely on two-sided (i.e. point-
to-point) communication, according to recent survey [1]. Two-
sided MPI provides deterministic in-order processing of mes-
sages between sender and receiver through a procedure called
tag matching. In tag matching, there are two lists which are
searched to establish this criteria. When a message arrives, a
queue of expected messages (posted receive queue) is searched
for a match of metadata (source, MPI communicator, and tag).
Otherwise the metadata is appended to a second queue called
the Unexpected Message Queue (UMQ). The speed of these
operations can have a significant impact on communication
performance [2]. Typically these queues are implemented as
singly linked lists, which performs well for small message
counts, but for complex and irregular applications that may
have a larger number of messages, alternative designs have
been proposed [3]–[6].

HPE has been investigating techniques that allow users
to analyze MPI Message matching queue usage for DOE
applications. By default, most MPI implementations maintain

Correspondence: Taylor Groves, tgroves@lbl.gov.
This manuscript has been authored by an author at Lawrence Berkeley

National Laboratory under Contract No. DE-AC02-05CH11231 with the U.S.
Department of Energy. The U.S. Government retains, and the publisher, by
accepting the article for publication, acknowledges, that the U.S. Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
U.S. Government purposes.

message queues as a single linked list. HPE MPI also offers an
alternate “Binning Message Matching” (BMM) algorithm to
implement message matching. This feature is exposed within
a non-default Cray MPI implementation on current generation
HPE hardware. By breaking a single list into several bins it is
possible to have more efficient operation by reducing search
lengths.

MPI queue usage is an important consideration in the design
and development of future NIC hardware. Usage is thought
to vary widely between applications and their communication
characteristics. In this work we examine a range of mini
applications and full applications that are important to the
DOE community. This study is meant to motivate the need
for maintaining multiple bins for message queues. These
workloads span a range of idioms in MPI usage and expose
interesting behavior that informs hardware and software de-
sign.

II. BACKGROUND

A. MPI Message Matching

MPI supports two classes of communication known as one-
sided and two-sided communications. In this work we are
focused on two-sided (e.g. MPI Send, MPI Recv), which is
the most common form of communication within MPI, and
was the first style of communication specified within the MPI
standard.

Within an MPI communicator two-sided messaging guar-
antees deterministic processing with respect to the order the
message is received. This guarantee is enabled through the
use of several match queues, that keep track of the order in
which messages arrive and store identifier fields to distinguish
between messages by source rank, communicator, and mes-
sage tag. Though the communicator field must be specified,
wildcards may be used for the source and tag fields by any
receiving process.

When any two-sided message request arrives at the target,
one of two scenarios unfolds. In the first scenario the target
process has already anticipated the arrival of the message and
has prepared an entry in a Posted Receive Queue (PRQ) that
allows it to determine where to deliver the message payload.
In the second scenario the target process has not yet prepared
for the source’s message and the message matching fields must
be pushed onto an Unexpected Message Queue (UMQ). To
elaborate, as a target process prepares for the receipt of a



Fig. 1: Flowchart highlighting key transitions in MPI message matching for source and target process. Original figure from
work by Ferreira et al. [7].

message, it must first make sure that the message has not
already been delivered. This is accomplished by searching the
UMQ.

Similarly, as the target process receives a message, it must
first search the PRQ to determine if the message was expected
or not. If it was expected, it has the necessary information to
deliver the message to the appropriate target buffer. Otherwise
the message is pushed into the UMQ.

The ability to match wildcard fields further complicates this
process, making it so that even if more complex data structures
are used for message matching (e.g. a hashmap based off of
source, tag and communicator), performance is still limited by
the number of outstanding messages with wildcard fields.

Thus, every two-sided communication is limited by the time
to search the UMQ and the PRQ. This abstract process of
message matching is illustrated in Figure 1.

B. Accelerated Message Matching

In determining the requirements for future hardware it is
important to understand the characteristics of posted receive
lists and unexpected message lists. Is their use sufficiently
widespread to justify acceleration via dedicated matching logic
or would hardware design time be better used elsewhere?
Would it have a significant impact on the cost of NIC
parts? If use of long receive/message lists is widespread, then
parameters of interest are the number of bins that can be
used efficiently and the prevalence of wildcard matching. The
statistics collected in this study have been designed to help
answer these questions.

Message matching performance is such an important aspect
of MPI performance that it is now common for NICS to
offload some of the cost associated with matching from the
host CPU (such as Mellanox ConnectX-5 [8] and the Bull-
Atos’s BXI [9]). This offload enables asynchronous progress
that can improve application performance. However one of the
challenges of designing such hardware is designing it with the
necessary capabilities to process and store a certain number
of messages per second. This number varies by application
communication pattern and workload. Though there are ex-
isting studies for a selection of HPC workloads, evaluations
of a wide variety of workloads continue to provide valuable
information to the MPI community.

C. Workload Selection

Many existing workloads of HPC centers exhibit predictable
and well structured communication patterns with a fixed num-
ber of neighbors. This includes things like a nearest neighbor
or halo exchange, where the number of neighbors corresponds
with a geometry found in the three dimensional world being
simulated.

In this work we expand the set of applications that have been
analyzed previously by selecting representative workloads that
exhibit complex communication and I/O patterns, such as an
adaptive mesh refinement. The set of applications are:

AMReX [10]: AMReX is designed to support parallel,
block-structured adaptive mesh refinement (AMR) applica-
tions. AMReX creates a hierarchy of MPI Comm objects that
can be used to split work.



Chombo [11]: Chombo provides tools for high resolu-
tion applied PDE simulators in arbitrarily complex geometry.
Chombo provides adaptive mesh refinement with embedded
boundaries to represent heterogeneous materials (e.g. shale).

E3SM [12]: E3SM is a fully coupled model of the Earth’s
climate including biogeochemical and cryospheric processes.
Because of the complexity of the processes being modeled
there are a wide variety of ways E3SM may be configured and
utilized. Our runs are atmosphere-only (F case) simulating 5
days and include the writing of a large IO file.

MILC [13]: 4D mesh simulates quantum chromodynam-
ics (QCD), the theory of the strong interactions of sub-
atomic physics. Communication is characterized by non-
blocking point to point operations followed by small message
MPI Allreduce.

III. METHODOLOGY AND EVALUATION

For our experiments we take advantage of the Binned
Message Matching (BMM) implementation that we can en-
able/disable within Cray MPICH.

a) Singly linked list vs Binned Message Matching:
By default, the Cray MPICH uses a singly linked list
for maintaining the message queues. To use the BMM
algorithm, the following environment variable needs to
be set to 1: MPICH USE BINNING MSG MATCH.
Similarly, the following environment variables control
the number of bins in receive and unexpected queues,
respectively: MPICH NUM POST RECV BINS and
MPICH NUM UNEXPECTED BINS. By default, the
BMM implementation in Cray MPI uses four bins for
receive queue and one bin for unexpected queue. To enable
instrumentation of the BMM implementation, users need to
set the MPICH GET BMM INFO environment variable
to 1. An instrumentation report can be generated in user-
defined file using the MPICH GET BMM INFO FILE
environment variable.

b) Data generated: The following statistics are collected
for each rank in the user-defined file in CSV format. (1) High-
water mark length of each bin for receive and unexpected
queues, (2) Average number of match attempts for each bin,
(3) Maximum number of match attempts for each bin, (4)
Total number of messages matched for each bin, (5) Number
of transitions from wild-card to non-wild card bins performed
in the receive queues (though these transitions are not explored
in this study).

A. AMReX
a) Run environment: Runs of AMReX were done on the

NERSC Cori KNL supercomputer across 2176 processes. Two
levels of adaptive mesh refinement were used.

b) PRQ: The data for the PRQ shows a split in the
message matching behavior as shown in Figure 2. Typical
match lengths searched were seven while a single rank (rank
0) had an average search length of over 200 with a maxi-
mum approaching 500. This shows significant load imbalance
with regards to the number of messages received by rank 0
compared to other ranks.

Fig. 2: Histogram of average match attempts per message for
the Posted Receive Queue while running AMReX.

Fig. 3: Histogram of average match attempts per message for
the Unexpected Message Queue while running AMReX.

c) UMQ: The data for the UMQ (Figure 3) shows a
wider spread distribution compared to the PRQ, however rank
0 is still an outlier with around 80 comparisons per match on
average and a peak of nearly 500 (not shown) for the UMQ.
The average comparisons per match was 7 across all ranks.

d) Wildcard Usage: There was no reported wildcard
usage within AMReX.

B. Chombo

a) Run environment: Chombo was run on the NERSC
Cori KNL partition, weak scaling from 8 to 16,384 ranks. For
brevity we examine runs between 512 ranks 1,024 ranks and
16,384 ranks.

b) PRQ: Irrespective of whether the run was across
512, 4,096 or 16,384 ranks we see the same split in the
histogram of PRQ, where a subset of processes have less than
20 comparisons per match and the remaining processes see
between 40 and 140 average comparisons per match. Even
going as far out as 16,384 processes, we only see a mild
increase in average comparisons per match.

c) UMQ: For Chombo the UMQ sees a smaller number
of average comparisons for each match with most ranks having



(a) (b) (c)
Fig. 4: Three histograms showing average comparisons made per match for the PRQ for Chombo weak-scaled at 512, 4096
and 16384 processes. The average comparisons ranges between 20 and 140.

(a) (b) (c)
Fig. 5: Three histograms showing average comparisons made per match for the UMQ for Chombo weak-scaled at 512, 4096
and 16384 processes. The average comparisons ranges between 20 and 50.

less than 20 comparisons per match but a minority enduring
more than 50 comparisons per match on average.

d) Wildcard usage: When we received results from
Chombo we were surprised to see wildcard usage that the
developers had not previously expected, with a high watermark
of up to 25 for the wild card bin.

1) Chombo, Take-Two: The message matching behavior
observed for Chombo was surprising to the authors and the
developers, who initially thought it would be similar to the
other AMR code evaluated (AMReX). To investigate further
we evaluated Chombo again, but this time swapped out math
libraries. A simple change of math libraries resulted in dramat-
ically different communication patterns and message matching
behavior, which closely matched the results of AMReX. A
detailed comparison showing statistics collected for each rank
is shown in Figures 6 and 7.

Furthermore, swapping the libraries resulted in a shift to
zero wildcard usage. This highlights the importance of running
a wide variety of applications but also, studying different
inputs, libraries and parameters.

C. E3SM

a) Run environment: Our runs of E3SM were done on
Cori KNL with strong scaling of 169, 323 and 1,350 nodes
with up to 86,400 MPI ranks for the largest runs. A significant

amount of communication takes place as part of I/O. There is
no standard way that I/O is done within E3SM, and methods
depend on what variables are requested for a given simulation
and how frequent the data is written (i.e. once per hour, once
per day, once per month). One common scenario is that the
most expensive file is written at the end of every month.
However for the purposes of our analysis we run 5 days at
quarter degree resolution before writing the large output file.
We utilize PIO version 2.

b) PRQ: The average number of comparisons done per
match was 17, 15 and 20 for runs of 169, 323 and 1,350 nodes,
respectively. For each run, there was a small number of ranks
(approximately 16 to 32 processes) that incurred substantially
higher maximum match lengths (peaking at approximately 120
comparisons). For brevity, we only show the results for the
largest run in Figure 8.

c) UMQ: The UMQ had the same average comparisons
per match as the PRQ at the respective scales. Again, for each
run, there was a small number of ranks (approximately 16
to 32 processes) that incurred substantially higher maximum
match lengths. Because the UMQ data is so similar to the PRQ
we omit the figure.

d) Wildcard usage: At each scale evaluated we observed
wildcard usage only by MPI rank 0. No other ranks utilized
the wildcard matching bin.



Fig. 6: Average number of comparisons per message match (Y-axis) for the PRQ, with 512 process runs of Chombo before
swapping out math libraries. X-axis is the MPI rank identifier.

Fig. 7: Average number of comparisons per message match (Y-axis) for the PRQ, with 512 process runs of Chombo after
swapping out math libraries. X-axis is the MPI rank identifier.

D. MILC

MILC exhibits a regular communication pattern with non-
blocking point to point communication in four dimensions.
These exchanges are followed by small MPI Allreduce oper-
ations. This type of communication is common to many appli-
cations performing simulations on large scale HPC systems.

a) Run environment: We ran MILC at scales of 32 to
256 processes on the NERSC Cori KNL partition.

b) PRQ: As we scaled from 32 to 256 processes we
saw the average number of comparisons vary from 9 to 12
per match, respectively, with peaks of 14 comparisons. The
difference between MILC’s regular communication pattern and
the other workloads examined (AMReX, Chombo and E3SM)
is notable as MILC has an order of magnitude smaller match
list lengths and substantially less variation between ranks.

c) UMQ: Average UMQ comparisons per match were
similar to the PRQ statistics, and are displayed in Figure 9.

d) Wildcard Usage: MILC utilizes wildcards and the
average match attempts per message in the wild-bin ranged
between 9 and 14.

IV. CONCLUSIONS

As we compare results across the four evaluated workloads
we see drastically different realities and implications for
message matching acceleration. While not all applications
leverage MPI’s wildcards for point to point communication,
many important applications do. Furthermore, libraries these
applications depend on may leverage these features in ways
that are unknown to users without additional profiling with
infrastructure such as BMM.

In the example of AMReX and Chombo we saw two differ-
ent behaviors dependent on the underlying libraries included



Fig. 8: Average match attempts per message across all ranks (x-axis) for the Posted Receive Queue while running E3SM.

Fig. 9: Histogram of average attempts per message match for
the UQM while running MILC on 256 nodes

in the application. In one instance large message matching list
lengths were observed across multiple ranks. However, using
a different math library was able to isolate the behavior to a
single MPI process (rank 0).

As we ran climate simulations in E3SM we observed how
complex I/O behavior resulted in large list lengths for a fixed
set of processes.

Lastly, we saw how adaptive communication patterns com-
pared with more static communication patterns as observed in
MILC. We noted that many interesting workloads have match
lengths an order of magnitude larger than those of traditional
stencil applications.

These results inform future hardware design and lay the
groundwork for ensuring appropriate resources are dedicated
to process messages efficiently without having to fall back
to traditional CPU processing of MPI message matching. In
many cases we observe large message matching requirements
that necessitate the need for multiple bins to enable efficient
matching. As a result, applications will run faster and HPC
systems can produce more science.

REFERENCES

[1] I. Laguna, R. Marshall, K. Mohror, M. Ruefenacht, A. Skjellum, and
N. Sultana, “A large-scale study of mpi usage in open-source hpc
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2019, pp.
1–14.

[2] K. D. Underwood and R. Brightwell, “The impact of MPI queue usage
on message latency,” International Conference on Parallel Processing
(ICPP), pp. 152–160, 2004.

[3] K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and
R. Brightwell, “A hardware acceleration unit for mpi queue processing,”
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 10–pp, 2005.

[4] M. Flajslik, J. Dinan, and K. D. Underwood, “Mitigating MPI mes-
sage matching misery,” International Conference on High Performance
Computing, pp. 281–299, 2016.

[5] J. A. Zounmevo and A. Afsahi, “A fast and resource-conscious mpi
message queue mechanism for large-scale jobs,” Future Generation
Computer Systems, vol. 30, pp. 265–290, 2014.

[6] K. S. Hemmert, K. D. Underwood, and A. Rodrigues, “An architecture
to perform NIC based MPI matching,” pp. 211–221, 2007.

[7] K. Ferreira, R. E. Grant, M. J. Levenhagen, S. Levy, and T. Groves,
“Hardware mpi message matching: Insights into mpi matching behavior
to inform design,” Concurrency and Computation: Practice and Expe-
rience, vol. 32, no. 3, p. e5150, 2020.

[8] “Understanding mpi tag matching and rendezvous offloads (connectx-
5),” https://conununity.mellanox.com/docs/DOC-2583, 2020.

[9] S. Derradji, T. Palfer-Sollier, J.-P. Panziera, A. Poudes, and F. W.
Atos, “The bxi interconnect architecture,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects. IEEE, 2015, pp. 18–
25.

[10] W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan,
M. Day, B. Friesen, K. Gott, D. Graves et al., “Amrex: a framework
for block-structured adaptive mesh refinement,” Journal of Open Source
Software, vol. 4, no. 37, pp. 1370–1370, 2019.

[11] P. Colella, D. T. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini,
and B. Van Straalen, “Chombo software package for amr applications
design document,” Available at the Chombo website: http://seesar. lbl.
gov/ANAG/chombo/(September 2008), 2009.

[12] “E3sm,” https://github.com/E3SM-Project/E3SM, 2020.
[13] “Milc,” https://github.com/milc-qcd, 2020.


