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Abstract—Recent generations of supercomputers have
adopted different strategies in their attempts to remain com-
petitive in the race to Exascale. In most cases, they rely
on accelerators such as GPUs to deliver high arithmetic
performance and memory bandwidth. But accelerators come
with their own challenges due to their programming models,
which can be hard for applications to exploit.

The current leader in the TOP500 list, the Fugaku system
in Japan, has chosen a different route: instead of offloading
to accelerators, this system relies on a new generation of
general-purpose CPUs to deliver GPU-class performance while
maintaining the ease of use of a traditional CPU. This is the
Fujitsu A64FX, a design purpose-built for high-performance
computing (HPC) based on the Arm AArch64 architecture.
It is able to deliver up to 1 TB/s of memory bandwidth by
using the same HBM2 technology found in top-end GPUs,
and it offers 512-bit-wide vectors through the Scalable Vector
Extension (SVE). It is the first CPU to integrate either HBM2
or SVE.

In this paper we evaluated the performance of the A64FX
processor on a range of common scientific workloads. We used
compute-bound and memory-bandwidth-bound mini-apps, and
widely utilised full-scale scientific applications. These bench-
marks have been successfully used in the past to quantify
performance characteristics in other emerging HPC processors,
such as the Arm-based Marvell ThunderX2 and the many-core
Intel Xeon Phi. As part of this evaluation, we looked not only
at raw application performance, but also at the maturity of the
tools available for the A64FX. We uniquely compared all four
major HPC compilers that can target the A64FX, including
Cray, GNU, Arm and Fujitsu’s own compiler.

We found the A64FX to be a strong competitor to main-
stream HPC processors. In memory-bandwidth-bound bench-
marks, it exceeded 800 GB/s and delivered more than twice
the performance of a top-end Xeon or ThunderX2 dual-socket
node. We observed particularly good vectorisation performance
from the Fujitsu compiler, which was also able to further tune
the code for this microarchitecture through techniques such as
software pipelining.
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I. INTRODUCTION

Arm-based processors have been investigated for use in
HPC systems since the early 2010s [1]. Initially based on
mobile designs, dedicated high-performance cores have been
used in recent years to provide performance similar to high-
end Intel and AMD x86-based processors. Likewise, the

tools ecosystem is mature, stable, production-ready, making
Arm a first-class citizen in HPC [2]. Due to their flexibility,
an increasing number of vendors are integrating Arm-based
cores into their upcoming exascale-era products [3].

Since 2017, a number of systems have deployed Arm in
production HPC using the Marvell ThunderX2 (TX2), one
of the first Arm-based processors designed specifically for
HPC [4], [5]. Studies on these systems have helped identify
the types of workloads that are suited for these processors, as
well as what their weakness are: TX2 offered a large number
of cores and high memory bandwidth, but its short 128-
bit-wide vectors make it less suited for compute-intensive
applications.

In 2020, the Fugaku system in Japan deployed a new
Arm-based design: the A64FX built by Fujitsu [6]. The
A64FX improved on both aspects compared to the TX2,
implementing for the first time in a CPU HBM2 memory
that offers a peak of 1 TB/s of bandwidth and 512-bit vectors
based on the Arm Scalable Vector Extension (SVE) [7]. This
system was ranked #1 in the TOP500 list in June 2020, and
since then several other HPC centres have been adopting the
A64FX processors for their own deployments.

In this paper, we evaluate the performance of the Fujitsu
A64FX processor on a range of scientific mini-apps and
full applications. We compare the A64FX with the other
mainstream HPC processors at the time of writing, and we
devote special attention to its other Arm-based competitors.

II. BACKGROUND

The A64FX is the new HPC-first processor designed
for the Japanese supercomputer Fugaku. Its core design is
custom-made by Fujitsu based on the ARMv8.2 architecture
with extensions. The chips contain 48 cores running at up to
2.2 GHz, without simultaneous multithreading (SMT). They
are used in single-socket configurations, connected to either
TofuD or 100 Gbps InfiniBand networking [8].

An A64FX chips houses four stacks of HBM2 memory.
It is the first CPU to utilise HBM2 memory, which had
only been used on GPUs before. Each stack is directly
attached to a subset of 12 cores, known as a Core Memory
Group (CMG). Each core has a private Level 1 cache, but
Level 2 (the Last-Level Cache) is shared between cores



in a CMG. To the operating system, each CMG appears
as a separate NUMA node, and in order to achieve high
performance the latency between these nodes needs to be
carefully considered.

The A64FX is also the first hardware implementation of
SVE. SVE is a vector-length-agnostic (VLA) instruction
architecture, allowing each implementation to choose its
desired vector length, while ensuring that the same code
remains compatible with all implementations. In the A64FX,
the native vector width is 512 bits, chosen after experiments
in simulation have suggested it is efficient for a range of
applications important for the Fugaku supercomputer [9]. As
a successor to the NEON ASIMD vector instruction set used
in previous Arm-based processors, it offers a wider range
of instructions, including gather loads and scatter stores,
and per-lane predication for all operations. These features
are important for the tuning of low-level optimised math
libraries [10].

III. PERFORMANCE EVALUATION METHODOLOGY

To evaluate the performance of the A64FX for HPC work-
loads, we used mini-apps representative of common classes
of HPC applications, as well as full-scale codes that are
widely used in supercomputing centres around the world. We
chose these benchmarks because their performance profiles
closely resemble real workloads, and hence should provide
a good indication of the real-world performance achievable
by these processors. We split them according to the type of
resource they depend on most heavily: memory bandwidth
or raw compute performance.

Using these benchmarks, we compared the performance
achieved by the A64FX with that of other common HPC
processors. The platforms we compare against are the
Arm-based Marvell ThunderX2, AWS Graviton 2 (in an
M6g.metal EC2 instance), and Ampere Altra, and the x86-
based Intel Cascade Lake (CLX) and AMD EPYC Rome.
At the time of writing, these represent the top offerings from
the most widely utilised vendors in HPC. The specifications
of these processors are given in Table I. Note that the
A64FX and Graviton 2 can only be used in single-socket
configurations, but the other processors were used in dual-
socket nodes.

On all platforms, we used the latest versions of the com-
mon HPC compilers: GCC 11.1 supports all the platforms
in this study, Arm Compiler for Linux (ACfL) 21.0 supports
all the Arm-based targets, Intel Compiler 19.1 (part of
the 2020.4 package) supports all the x86-based processors,
Cray Compilation Environment (CCE) 11.0 supports all the
platforms except the Graviton 2 and the Altra, and Fujitsu
Compiler 4.3 supports the A64FX only. There were two
exceptions to the above:

• The latest version of CCE available for the A64FX is a
pre-release version based on 10.0. This uses the legacy

Cray-proprietary frontend instead of the Clang-based
frontend used in CCE 11.0;

• There was a regression in the performance of the
TeaLeaf benchmark with CCE 11.0, so 10.0 was used
to obtain the fastest results for this application.

A. Bandwidth-Bound Benchmarks

To evaluate the best-case achievable memory bandwidth,
we used BabelStream [11], a C++ implementation of the
de facto memory bandwidth benchmark, STREAM [12]. Ba-
belStream contains implementations in many programming
models, and for this work we used the baseline OpenMP
version.

We used the mini-apps TeaLeaf [13] and CloverLeaf [14]
as representative bandwidth-bound workloads. These are
both written in Fortran, using hybrid MPI and OpenMP, and
they solve equations for heat diffusion and hydrodynam-
ics, respectively. We have studied these extensively in the
past and found that their performance correlates well with
STREAM performance. Of the two, CloverLeaf is slightly
more computationally intensive, as it includes divisions and
trigonometry functions.

Finally, we evaluated the performance of Open-
FOAM [15], a well-known computational fluid dynamics
(CFD) application and one of the top 10 most heavily used
applications on ARHCER, the UK’s national supercomputer.
We used version 2006 of the code, the DrivAer open-
source test-case [16], and the standard simpleFoam solver,
applied for 50 time steps. Because the time reported for the
first step includes some initialisation overhead, we excluded
it from the final benchmark times.

B. Compute-Bound Benchmarks

We used miniBUDE for a compute-bound mini-app.
This is a molecular docking benchmark developed at the
University of Bristol which has previously been shown to
achieve close to 60% of peak arithmetic performance on
contemporary HPC hardware [17]. The code is implemented
in several programming models, of which we used the
standard OpenMP implementation here. The performance
reported for miniBUDE is in the number of poses computed
per unit time.

Another benchmark studied is SPARTA, a Direct Sim-
ulation Monte Carlo (DSMC) mini-app from Sandia Na-
tional Laboratories designed for large systems [18]. It is
implemented in C++ and MPI, with optional support for
threading through the Kokkos library [19]. As a Monte Carlo
application, this code is challenging to vectorise and its
memory access patterns are irregular.

We took MiniFMM [20] to represent applications that
use task-based parallelism instead of traditional loop-based
parallelism. For this benchmark, we used the provided input
set based on a Plummer distribution and recorded the total
time taken.



Table I: Hardware specifications of the processors benchmarked.

CPU Cores Clock Speed (GHz) Compute Peak
(DP TFLOP/s)

Bandwidth Peak
(GB/s)

Base Boost

AMD Rome 7742 2× 64 2.25 3.4 6.9 410
Ampere Altra Q80-30 2× 80 3.0 — 3.8 410
AWS Graviton 2 M6g.metal 64 2.5 — 1.3 205
Fujitsu A64FX 48 1.8 — 2.8 1,024
Intel Cascade Lake 6230 2× 20 2.1 3.9 2.0 375
Marvell ThunderX2 2× 64 2.2 2.5 1.3 320

A good example of a widely used compute-bound ap-
plication is GROMACS. We used GROMACS 2021.1 and
two different benchmarks to evaluate the performance of the
systems tested under different conditions:

• The integrated nonbonded-benchmark, which runs
in flat OpenMP mode and is heavily compute bound.
This does not require any input files and runs a Particle
Mesh Ewald (PME) simulation; the size parameter for
this benchmark was set to 64;

• The ion_channel_vsites benchmark, which sim-
ulates a membrane protein system comprising around
145,000 atoms. It uses FFTs and represents a realistic
use-case for GROMACS in modelling drug molecules.
Compared to nonbonded-benchmark, PME calcu-
lations in ion_channel_vsites only take about 1⁄3
of the total time. We ran this benchmark for 5000 steps
of 5 fs.

The 2021.1 release includes initial support for SVE through
the GROMACS SIMD abstraction layer [21], although at
the time of writing this can only be used with the GNU
compiler.

IV. RESULTS AND PERFORMANCE ANALYSIS

A. Benchmark Results

BabelStream
We were able to achieve 824 GB/s in the Triad run on

BabelStream on the A64FX, which represents more than
80% of the platform’s peak memory bandwidth. This result
is more than double that of the next best platform for
memory bandwidth. High memory bandwidth is of course
expected due to the use of HBM2 on A64FX compared to
traditional DDR-DRAM used by the other platforms.

We achieved this result using the Fujitsu compiler, which
utilises zero-fill (zfill) instructions to zero cache lines
before writing to them. This prevents the hardware from
first loading the data from memory, because it will be
overwritten anyway; it essentially emulates streaming stores
even though the architecture doesn’t support it explicitly.
The other compilers do not use this procedure, and so
observed memory bandwidth there was lower at around
600 GB/s.

It was also important for this benchmark to set the
XOS_MMM_L_PAGING_POLICY environment variable to
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Figure 1: Achieved bandwidth in BabelStream Triad. Higher
numbers show better results.

demand:demand:demand. This controls how memory
pages are allocated between the four NUMA domains in the
A64FX, ensuring they are placed in the same CMG where
they are needed, as opposed to that of the core that first
started running the program.

The Ampere Altra obtained the second-highest result with
its two sockets of 8-channel DDR4-3200. Even though the
TX2 also has 8 channels of DDR4 and in dual-socket
configuration, its slower DDR4-2400 memory put its result
closer to that of a single-socket Graviton 2 with DDR-3200.
The TX2 achieved a lower fraction of peak bandwidth in the
BabelStream benchmark, and we observed a regression with
CCE 11.0: reverting to version 10.0 produces a result higher
by about 15%. The fastest results obtained on each platform
are shown in Figure 1. Where a result for a compiler is
not shown this is due to that compiler not supporting the
platform.
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Figure 2: CloverLeaf bm16 benchmark time. Lower num-
bers show better results.
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Figure 3: TeaLeaf bm5 benchmark time. Lower numbers
show better results.

CloverLeaf and TeaLeaf

Due to their memory-bandwidth-bound nature, we ex-
pected the CloverLeaf and TeaLeaf results to follow similar
distributions between platforms as we saw for BabelStream.
We largely observed this behaviour, but there were some
important differences.

These two applications can be run in hybrid MPI–
OpenMP mode, and we tested all viable combinations. On
most platforms, we have previously found that running in
flat MPI mode, i. e. setting the number of OpenMP threads
to 1 and filling all the cores with MPI ranks, generally
provides the best performance in single-node configura-
tions [22]. Where there was a difference between flat MPI,
flat OpenMP, and hybrid MPI–OpenMP, it was below 10%.
On the A64FX, however, we have found larger differences
between these run configurations. This section discusses the
fastest results obtained, regardless of the run configuration,
but Section IV-B goes into more details about the differ-
ences.

TeaLeaf contains relatively fewer arithmetic operations
compared to CloverLeaf, so memory bandwidth is even
more important. In descending order, starting with the fastest
result, first was the A64FX, then the Altra at just under twice
the run time, then TX2, closely followed by the Graviton
2. Where available, the Cray compiler produced the fastest
results. On A64FX, the Fujitsu compiler was a close second,
and the Arm and GNU compilers performed similarly on all
the platforms.

CloverLeaf includes division operations, which on the
A64FX have high execution latency. To work around this,
some compilers can replace division with an iterative re-
ciprocal approximation, which is much faster at a slight
cost of accuracy. The Arm, Cray, and Fujitsu compilers are
all able to apply this optimisation — Cray and Fujitsu do it
automatically when targetting the A64FX, and with Arm the
user can specify the -fiterative-reciprocal flag.
The GNU compiler does not apply this optimisation, which
results in almost 10× slower performance compared to
Fujitsu. Fujitsu is further able to optimise this benchmark by
using software pipelining of instructions, a technique which
carefully schedules operations such that the processor’s out-
of-order resources are utilised as efficiently as possible.

Due to all the optimisations it applied, the Fujitsu com-
piler on A64FX produced the fastest time in this benchmark.
However, the Ampere Altra and AMD Rome benefited from
their large number of cores and obtained results faster than
when using the A64FX with other compilers. The Graviton
2 and the TX2 performed almost identically, suggesting
that the newer out-of-order architecture in the Graviton 2
was able to make up for the slightly lower overall memory
bandwidth.

The results obtained for CloverLeaf and TeaLeaf are
shown in Figures 2 and 3, respectively. These figures show
run time, so lower numbers correspond to better perfor-
mance.
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Figure 4: OpenFOAM DrivAer solve time after 50 time
steps. The time taken for the first step is excluded. Lower
numbers show better results.

OpenFOAM
When run on a single-node, OpenFOAM is generally

bound by memory bandwidth and does not benefit greatly
from vectorisation [4]. These two effects work for and
against the A64FX, respectively: it should see good perfor-
mance from the HBM2 memory, but the 512-bit SVE may
not bring a significant improvement over NEON. The results
showed that the fastest processor in this benchmark was the
AMD Rome, followed by the Ampere Altra, suggesting that
the large amount of total L2 cache — 1 MB/core in both the
these processors — helped more than HBM2 did on A64FX.
The Fujitsu compiler was again the fastest choice on the
A64FX, but this time the differences to the other compilers
were smaller; Arm and GNU produced similar results on
A64FX and Graviton 2. Figure 4 shows the results on all
platforms.

miniBUDE
miniBUDE scales very well to many-core architectures —

the full BUDE application is routinely run on GPUs. As
expected, the results for this benchmark followed the peak
compute performance of the processors: TX2 and Graviton
2 achieved similar results, Cascade Lake was more than
twice as fast, and the Altra obtained the highest result of
the Arm processors, only surpassed by the AMD Rome.
On the A64FX, the Fujitsu compiler was able produce
better optimised code compared to other compilers, reaching
almost 3× the performance obtained with ACfL and GCC,
and more than 1.5× the performance of the CCE-compiled
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Figure 5: Achieved performance in miniBUDE. Higher
numbers show better results.

binary. However, the performance achieved by the Altra was
over twice that of the A64FX, despite their difference in peak
performance being lower than a factor of 2, showing that its
high core count can rival higher vector width as long as the
application parallelises well. The results for miniBUDE are
presented in Figure 5.

SPARTA
The performance of SPARTA scaled very well with the

number of cores available. There was virtually no vectorised
code on any of the platforms, and the choice of compiler
made little difference towards the final run time on this
benchmark. The data access patterns of this application were
not cache-friendly, with only 58.5% of the requests hitting
L2 cache, so a lot of time was spent fetching data from main
memory.

In general, GCC offered the highest performance on
most platforms, being only slightly slower than the Intel
compiler on Cascade Lake and Rome. The TX2, Graviton
2, and Cascade Lake achieved similar results, despite the
narrower vectors available on the Arm-based platforms.
On the A64FX, the Fujitsu compiler failed to link the
benchmark, in either Trad or Clang mode, and without
its aggressive optimisations the platform’s low out-of-order
resources led to a slower benchmark time. Figure 6 shows
the results on all platforms.

MiniFMM
We found the vectorisation efficiency of the MiniFMM

benchmark to be low on all the Arm-based platforms. With
NEON, a lot of the code was not vectorised, and although
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Figure 6: SPARTA benchmark time using the collisional flow
input, 10M cells, and 5000 iterations. Lower numbers show
better results.

SVE was able to address that to an extent, many operations
were masked and utilised only a fraction of the available
vector width [23]. In addition, it did not scale well to
high core counts: beyond 60 cores, the run time stopped
decreasing, and above 80 it started increasing. For the Altra,
this meant that fewer than half of the available cores were
utilised. On the x86-based platforms, there was more benefit
from vectorisation, but the high core count of Rome again
did not show a tangible benefit in this benchmark.

The best result was similar on all the Arm platforms, with
a slight advantage to Altra due to its high clock speed. We
found that the Cray and Arm compilers were less efficient
at exploiting parallelism in this task-based benchmark com-
pared to GCC, which was the best compiler choice even on
the A64FX. The Intel compiler performed well on Cascade
Lake, but it was significantly slower compared to Cray and
GNU on Rome. The results are presented in Figure 7.

GROMACS
With nonbonded-benchmark, there were significant

performance differences between the x86 platforms, where
AVX2 and AVX-512 could be used, compared to the Arm
platforms. This workload is heavily compute-bound, so the
wider vector length constituted a significant advantage. This
benchmark cannot be used with MPI and the maximum
number of OpenMP threads allowed in GROMACS is 64,
which limited the performance achieved by the Altra and
the Rome platforms, and resulted in similar performance on
Altra and Graviton 2, since both use the same Neoverse
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Figure 7: MiniFMM benchmark time using a Plummer and
the OpenMP tasks implementation. Lower numbers show
better results.

N1 cores. Even though the early SVE implementation for
A64FX — which was only usable with the GNU compiler —
achieved almost twice the performance of the NEON im-
plementation on the Fujitsu platform, it still only produced
results similar to a ThunderX2 running NEON; with more
optimised code, it should be possible for the A64FX to
produce results several times faster than this. On the other
platforms, there were virtually no differences between the
compilers, because the performance-critical PME kernels in
GROMACS are written in hand-tuned intrinsics.

However, the more realistic ion_channel_vsites
test case revealed different behaviour. On the one hand,
the change in performance profile to place more emphasis
on the memory system brought the results of a 64-core
TX2 node very close to that of a 40-core Cascade Lake
node, despite the difference in native vector length between
the two processors. On the other hand, the benefit from
the early SVE implementation on the A64FX was lower
and closed the performance gap to the other compilers,
which still used the NEON implementation. With core usage
no longer limited to 64, the Altra’s performance increased
relative to the other platforms with lower core counts. We
observed that the optimised FFT implementations in the
Arm Performance Libraries performed significantly better on
the Neoverse N1, granting as 1.43× speed-up over FFTW;
on the other platforms, FFTW built from source, Cray’s
Optimised FFTW and ArmPL (on TX2) performed similarly.
For OpenMP parallelism, the best choice of number of
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Figure 8: Achieved performance in two GROMACS benchmarks. The open-source FFTW library was used with GCC and
Fujitsu, ArmPL was used with the ACfL, MKL with the Intel compiler, and Cray’s optimised build of FFTW was used with
CCE. Higher numbers show better results.

threads was 2 or 4 on all the platforms, with enough MPI
rank run to fill all the available hardware threads, i. e.
utilising SMT where available.

The results for the two GROMACS benchmarks on all the
platforms are shown in Figure 8.

B. Thread Placement on the A64FX
Due to the four NUMA node configuration, placement and

binding of MPI ranks and OpenMP threads are particularly
important on the A64FX. Three of the benchmarks in
this study combine MPI with OpenMP and allow the user
to divide parallelism between the two levels: CloverLeaf,
TeaLeaf, and SPARTA.

CloverLeaf and TeaLeaf behaved similarly, in that the
fastest configuration differed with the compiler used: hybrid
MPI–OpenMP, running one rank per CMG and filling all its
12 cores with OpenMP threads, was fastest with all com-
pilers except for Arm, where flat OpenMP was the fastest
configuration. The difference between the performance of
hybrid MPI and flat MPI was around 5% wth GCC and
Cray, and around 15% with ACfL. However, the results
were very different when using the Fujitsu compiler: flat
OpenMP was the slowest configuration, achieving less than
20% the performance of the hybrid configuration, and flat
MPI was second, at 62% of the performance of the hybrid
run. Placement results for CloverLeaf with all the compilers
available on the A64FX are shown in Figure 9a.

SPARTA failed to build with the Fujitsu compiler; the
other compilers all performed similarly to each other. For

this benchmark, flat MPI was the fastest configuration, but
here switching some of the parallelism to Kokkos threads
reduced performance by up to 2×. Even though we used
Kokkos 3.4, the latest at the time of writing and which
supports the A64FX target, the code it generates may not yet
be as optimal as OpenMP produced directly by a compiler.
Figure 9b shows the run time of SPARTA under the three
different placement strategies.

We found that the four compilers that can target the
A64FX have different default semantics for binding threads,
and sometimes these are different from the optimal configu-
ration. The following settings reliably produced correct rank
and thread placement on all the compilers tested:

• For flat MPI, set OMP_NUM_THREADS to 1 and bind
each rank to a core, e. g. using the -bind-to core
argument to mpirun;

• For flat OpenMP, disable binding of MPI ranks,
in order to prevent all threads from being
bound to the same object, using -bind-to
none, then explicitly split threads between all
the NUMA nodes using OMP_PLACES=cores
OMP_PROC_BIND=spread;

• For hybrid OpenMP–MPI, fill all NUMA nodes
equally with rank using -map-by numa, bind all
its threads to the NUMA node with -bind-to
numa, then spread the OpenMP threads onto
the available cores with OMP_PLACES=cores
OMP_PROC_BIND=close.
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Figure 9: Comparison of MPI–OpenMP run configurations on A64FX. As many OpenMP threads were used as needed in
each case to fill all 48 cores. Lower numbers show better results.

V. FUTURE WORK

In this study we have investigated the performance of the
A64FX using single-node benchmarks. We have identified
strong and weak points of this processor, but when running at
scale these may manifest differently. In particular, compute-
bound applications can become network-bound, thus in-
creasing the benefits of using A64FX in a large-scale system.

One of the points for improvement that we have identified
is around the compiler support for the A64FX. Because of its
relatively lightweight microarchitecture, this processor relies
on a good optimising compiler with an accurate cost model
to schedule instructions well. There is currently a significant
gap between the performance of binaries compiled with the
Fujitsu Compiler and open-source alternatives, so there is
room for further studies on this architecture to suggest and
implement compiler improvements.

Finally, when looking at the next generations of high-
performance processors, it is essential to understand how
microarchitectural design decision affect the performance
of applications. This process is known as the co-design of
hardware and applications and it is a way to ensure that
future hardware will provide adequate performance for its
intended use cases. Such experiments are generally hard,
because modelling hypothetical architectures accurately is
an involved task that requires specialised tools. Still, it is
essential in the co-design process, which is one of the main
motivating factors for the upcoming SimEng simulation
framework [24]. SimEng aims to enable fast, accurate,

flexible simulations through a simple interface for extending
existing processor designs with hypothetical additions1.

VI. REPRODUCIBILITY

Instructions on running the benchmarks in this study are
available online2. The scripts provided obtain the code and
any input data, build the applications with the specified
compiler, and provide run configurations for the platforms
used in this paper.

VII. CONCLUSION

In this paper, we explored the performance of the Fujitsu
A64FX processor on a range of scientific benchmarks. The
benchmarks were chosen to cover several important classes
of HPC applications, and the results were compared to
other common high-performance processors at the time of
writing. We gave special attention to Arm-based alternatives,
of which we covered the previous-generation Marvell Thun-
derX2 and the newer AWS Graviton 2 and Ampere Altra. We
also compared to the best-in-class x86 processors available
at the time of writing.

We found the A64FX to be a competitive processor for
HPC. It performed particularly well for memory-bandwidth-
bound applications, where its HBM2 with a peak of 1 TB/s
was utilised to its full potential. The results on compute-
bound benchmarks were mixed: performance was good
when using the Fujitu Compiler, which was specifically

1https://uob-hpc.github.io/SimEng-Docs/index.html
2https://github.com/UoB-HPC/benchmarks

https://uob-hpc.github.io/SimEng-Docs/index.html
https://github.com/UoB-HPC/benchmarks


developed to target the A64FX, but with other compilers that
do not apply optimisations such as software pipelining, the
relatively lower out-of-order capacity of the A64FX led to
reduced performance compared to more heavyweight cores.
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