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Abstract—X-ray scattering experiments using Free Electron
Lasers (XFELs) are a powerful tool to determine the molecular
structure and function of unknown samples (such as COVID-19
viral proteins). XFEL experiments are a challenge to computing
in two ways: i) due to the high cost of running XFELs, a
fast turnaround time from data acquisition to data analysis is
essential to make informed decisions on experimental protocols;
ii) data collection rates are growing exponentially, requiring new
scalable algorithms. Here we report our experiences analyzing
data from two experiments at the Linac Coherent Light Source
(LCLS) during September 2020. Raw data were analyzed on

NERSC’s Cori XC40 system, using the Superfacility paradigm:

our workflow automatically moves raw data between LCLS and

NERSC, where it is analyzed using the software package CCTBX.

We achieved real time data analysis with a turnaround time from
data acquisition to full molecular reconstruction in as little as
10 min - sufficient time for the experiment’s operators to make
informed decisions. By hosting the data analysis on Cori, and by
automating LCLS-NERSC interoperability, we achieved a data
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analysis rate which matches the data acquisition rate. Completing
data analysis with 10 mins is a first for XFEL experiments and
an important milestone if we are to keep up with data collection
trends.

I. INTRODUCTION

X-ray scattering experiments using Free Electron Lasers
(XFELs) are a powerful tool to determine the molecular
structure and function of unknown samples, such as COVID-
19 viral proteins. The X-ray light produced by XFELs is
particularly useful as a tool for probing microscopic samples
as it is coherent and intense — allowing teams of scientists to
probe structural details that leave only a weak trace signal [1]].
However all of this comes at a significant cost: XFEL facilities
require specialized equipment and large teams to operate.
To operate efficiently, it is essential that the experimental
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Sketch of the super-facility workflow: Top: Data are automatically transferred from the LCLS spinning-disk storage system via XRootD to NERSC’s

Scratch file system (the orange and blue spikes show the data transfer rate — approx. 1.3-2.6 GB/s — over the ESNet network, with each spike being a completed
run). Bottom: On NERSC the CCTBX workers (running in Shifter containers on the Cori compute nodes) automatically analyze new data on Scratch, using the
DataWarp burst buffer as a cache. Users at LCLS and NERSC connect to a mySQL database hosted at NERSC to orchestrate the workers, review the data

analysis and iterate analysis parameters.

investigators have immediate feedback from data analysis in
order to make informed decisions about their experiments in
real time. By 2025 the next generation of XFEL experiments
will more than double the detector resolution, and increase the
rate at which measurements are taken by a factor of over 400x
compared to existing facilities. This will require computational
intensity levels to escalate from petascale to exascale, for data
analysis to keep pace with data collection.

To rise to these challenges, the Linac Coherent Light
Source (LCLS) at SLAC has partnered with the National
Energy Scientific Computing center (NERSC) at LBNL using
a “Superfacility” model [2]: data collected at SLAC are
immediately transferred to NERSC (via ESnet) where they
are analysed on the Cori XC40 supercomputer. The results are
then reported back to the experiment’s operators in real time. In
this paper, we demonstrate the usefulness of this approach by
reporting our experiences from two experiments in September
2020: LV95, which consisted of small molecules related to
materials science; and P175, which consisted of COVID-19
viral proteins and potential bound ligands. These experiments
needed to test many samples during limited beam-time. In
order to know when to move on to the next sample and to
make changes to experimental protocol, a complete (or near
complete) analysis of the collected data needs to happen at the
same rates at which the data are collected.

II. ANALYSING LCLS DATA AT NERSC

Data were collected at a peak rate of 120 images/second
(approx. 1/42 of the data collection rate expected in 2023),
totalling 15 TB/day. A total of 130 TB of raw data comprising
28 million images were collected during the experiments
described in this paper. This is too much data to manage
manually, therefore we use the super-facility paradigm: our
workflow automatically moves raw data between LCLS and
NERSC, where it is analyzed using the CCTBX software
packageﬂ , . By running on 64 Haswell nodes, we achieved
real time data analysis with a 10 min peak turnaround time from
data acquisition to full molecular reconstruction — sufficient
time for the experiment’s operators to make informed decisions
between data-collecting runs. At this computational intensity,
the data analysis rate matches the data acquisition rate. This
demonstrates the usefulness of the Superfacility approach: by
automating job submission and data management, we where
able to analyze critical measurements in under 20 mins, a first
for XFEL experiments and an important milestone if we are
to keep up with instrument data collection trends.

In this paper we give a detailed step-by-step description
showing how our workflow is deployed on NERSC’s systems;
how it coordinates data movement (between SLAC and

I'The scripts to build CCTBX at NERSC, and the Docker image used for the
data processing jobs are available here: https://gitlab.com/NERSC/lcls-software/
-/tree/beamtime-2020-09/cctbx-production:


https://gitlab.com/NERSC/lcls-software/-/tree/beamtime-2020-09/cctbx-production
https://gitlab.com/NERSC/lcls-software/-/tree/beamtime-2020-09/cctbx-production

Experiment LV95 P175
Spotfinding 17" 6% 1M 49%
Indexing 2M 25% 582K 7%
Refinement 564K 99% 46K 85%
Integrating 559K 99% 33K 97%

Total CPU utilization 22663 core-hr 31167 core-hr

TABLE I
SIZES OF THE DATA SETS COLLECTED DURING TWO EXPERIMENTS AT THE
LCLS (LV95, AND P175) AS WELL AS THE SIZE OF DIFFERENT DATA
ANALYSIS STAGES (DESCRIBED IN SECTION{II-C)). THE PERCENTAGES
SHOW THE AVERAGE “SUCCESS RATE” FOR EACH STAGE — ie. THE
PERCENTAGE OF IMAGES TO WHICH THE ALGORITHM COULD FIND VALID
SOLUTIONS (AND THUS CAN BE USED AS INPUTS TO THE NEXT STAGE). WE
USE “M” TO DENOTE “MILLIONS” AND “K” TO DENOTE “THOUSANDS” OF
DIFFRACTION IMAGES. EACH IMAGE HAS A RESOLUTION OF APPROX. 4
MEGAPIXELS, REQURING APPROX. 8 MEGABYTES OF STORAGE.

NERSC, discussed in section [[[-A)) and data analysis (via
batch jobs at NERSC, discussed in section [[I-C); and how
CCTBX enables interactive data analysis with several human
operators in the loop (discussed in section [[I-B). CCTBX
(specifically the cctbx.xfel subpackage) is a fully-automatic
pipeline management system that: i) tracks new incoming data,
and relates it to experimental parameters (“tags”) provided by
the scientists; ii) automatically submits new analysis jobs (using
containerized workers) as new data come in; and iii) reports
analysis results via a database hosted on NERSC’s “Spin’
micro-services platform in real time (discussed in section [lI-D)).
This allows a team of scientists to work on the same data via
one integrated GUI, while CCTBX coordinates a “swarm” of
workers behind the scenes. Fig. 1| illustrates this workflow.

A. Transferring Data to NERSC

The LCLS data movers are responsible for the transfer
of the data between the different storage resources used by
LCLS. Within the LCLS systems the data are moved from
the data acquisition storage to the high performance fast-
feedback storage and the large long term analysis storage.
The movers also perform the data transfer to the remote
HPC sites currently supporting NERSC and the SLAC Shared
Scientific Data Facility (SDF). The data mover is a component
of the LCLS data management systems and communicates with
other components by publishing and subscribing to streams of
events using Kafka. The main events for the data-mover are
subscribing to new-files-created events and publishing that files
have been transferred to a particular storage resource. For the
remote transfers the XRootD data server is used. Each remote
site exports its shared file system through XRootD which
runs on multiple data transfer nodes that each site provides.
All servers at a site are clustered into a single system using
XRootD’s clustering functionality. The data mover uses the
XRootD transfer tool xrdcp in third party copy mode. The
data are directly transferred between an XRootD server at the
source and destination, without involving the node the mover
is running on. In this instance the destination pulls the data
from the source. Fig. [2] shows the NERSC and LCLS XRootD
setup. The main entry point into each cluster is the redirector
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Fig. 2. Schematic of how the data mover transfers data using the NERSC —
LCLS XRootD clusters. Top: Kafka + data mover pipeline at LCLS together
with the XRootD cluster used to send data (via ESNet) to the corresponding
cluster at NERSC. Bottom: XRootD cluster deployed on two data transfer
nodes at NERSC. Once a new file is created, and logged as a file creation event
in Kafka (the LCLS data “logbook™ service), the data mover initiates a data
transfer using the XRootD cluster running at LCLS. The data is transferred
via ESnet to its counterpart at NERSC, where the data is deposited in the
SCRATCH Lustre file system. Once a file has been transferred, it’s status in
Kafka is recorded as “available at NERSC” — allowing cctbx.xfel to begin data
analysis.

(aka cluster manager). It redirects the client to the data server
that should be used for reading and writing the data.

The data mover is a Python application whose main task
is to perform many transfers in parallel. It has two options to
discover which files to transfer: either monitor the experiment
folder for new files or subscribe to a Kafka stream (the LCLS
data “logbook” service) which signals that new files have been
created. As new files are created the mover adds them to its
internal persistent queue. The files are sorted by run and the
oldest runs are transferred first. A run typically consists of 12-
18 files. A third of these files contain the detector data and are
between a few to 100 GB in size. For each of these files there
are two index files that allow random access to the detector data.
The size of the index files is less than 1% of the detector data
files. The observed peak ESNet tranfer speeds showed bursts
of 2.6 GB/s whenever runs where completed. This includes
the Lustre I/O speed, both at LCLS and at NERSC. The bursts
are due to the data only being transferred once the runs are
“concluded” in Kafka.

The Kafka + data mover + XRootD pipeline is fully
automated and scalable. Once an experimental run is concluded
(a “run” is usually 5-30 mins worth of data collection) the
raw data files, as well as index files and calibration data, are
automatically recorded in Kafka as “ready to be transferred”
and this pipeline will begin the transfer to NERSC. The transfer
is usually completed within 3 minutes and the status is updated
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CPU usage for the P175 experiment. Left: CPU usage on Cori Haswell for the whole duration of the experiment. Only the day shifts collected data,

therefore no data analysis was needed at night. Right: CPU usage for one day shift (on the second day of the experiment). We see the “bursty” CPU utilization
that results from urgent computing: whenever new data are available they need to be analyzed as quickly as possible. Once data have been analyzed, the CPUs

on Cori go idle, while waiting for new data.

in Kafka as “available at NERSC”. The XRootD cluster is
fully scalable, allowing us to transfer all the files generated in
one run at once.

B. Pipeline Management

Typical XFEL experiments involve collecting multiple
datasets for the same or similar samples, potentially moving
them through some reaction condition and capturing the
structural changes as the reaction proceeds, or screening
proteins with a variety of ligands that are biologically or
pharmacologically relevant, such as in the case for the COVID-
19 viral proteins from experiment P175. Samples therefore
accrue a great deal of metadata, and each run needs to be
associated with this metadata so datasets can be produced from
the right subsets of diffraction images. Therefore, the first task
the user completes in the cctbx.xfel GUI is tagging runs with
short, descriptive terms, such as “batchl”, “reactionstate2”, or
“ligand3”. Multiple tags can be added to a data set.

Next, the user needs to provide processing parameters for
each dataset. These parameters include details needed to extract
reflection data, the experimental geometry such as the location
of the detector in 3D space, and known crystal properties. These
parameters will need to be updated (with better estimates) as
the experiment progresses, and so they are organized by trials,
in which the user can change the parameters and re-process
the data. This organization into trials is particularly helpful
when keeping track of which parameters were used during
re-processing.

Finally, the user specifies which tags will form a dataset,
mixing and matching them as needed. With these properties in
place, the GUI will run through a cycle of determining which
tasks are needed to be performed on which data, and submitting
these tasks to the cluster to be processed. The GUI monitors
the state of each task and continues to submit new jobs as data
arrive or as processing tasks finish, allowing downstream tasks
to be submitted on upstream results.

The cctbx.xfel GUI therefore provides the experiment’s
operators with a complete pipeline management tool, which lets

multiple users simultaneously specify analysis parameters and
view analysis results. When new data or analysis parameters are
detected cctbx.xfel automatically builds Slurm jobscripts and
input files, and submits these to a set of reserved compute nodes.
Please see the supplementsﬂ for a run-through of the cctbx.xfel
GUL. By acting as the interface with the supercomputer, the
cctbx.xfel pipeline management system allows scientists to treat
HPC as a reactive element. Fig. [3] shows a time series of the
CPU utilization during the P175 experiment. This usage pattern
is typical of the cctbx.xfel workflow: whenever new data are
available, they need to be analyzed as quickly as possible
resulting in a sudden need for up to 64 Cori Haswell nodes.

C. Processing Data on Cori Compute Nodes

Data was processed on up to 64 Haswell nodes (each
consisting of two 16-core Intel Haswell CPUs) on NERSC’s
Cori XC40 system. The computational workload is highly
variable (cf. Fig. [3) depending on the nature of the data being
collected. XFEL data analysis follows several sequential stages:
1) Identifying Bragg spots in a diffraction image (spotfinding);
ii) Associating each Bragg spot with a Miller index (indexing);
iii) Refining unknown model parameters (refinement); and iv)
combining and integrating data for the same Miller indices
collected over several images (integrating). Table |I| shows
that each stage is lossy: not every image contains data of
sufficient quality (ie. not enough high-intensity Bragg spots) to
conclusively analyze. This means that each subsequent stage
processes fewer data — and therefore needs fewer computational
resources. Hence stages (iii) and (iv) require much smaller jobs
on Cori than stages (i) and (ii).

The computational motif is identical (except for number of
images) for each stage. cctbx.xfel uses MPI to distribute work
over up to 64 Cori Haswell nodes. The work is distributed using
a producer-consumer model, where each image is processed
largely independently. Fig. ] sketches this computational motif.

2Video available on slide 5, or here: |https://docs.google.com/file/d/
1AX1obhQUEECVVY_DhUqadoolKHx3kmWy/preview


https://docs.google.com/file/d/1AXlobhQuEECvVY_DhUqadoolKHx3kmWy/preview
https://docs.google.com/file/d/1AXlobhQuEECvVY_DhUqadoolKHx3kmWy/preview
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Fig. 4. Structure of an analysis worker running on the Cori Haswell nodes.

We rely on MPI parallelism to distribute work between nodes (openMP is also
available, but was not needed to achieve the desired throughput). We employ

a producer-consumer model to distribute work and achieve load balancing.

Data is provided by psana, which runs on the first MPI rank. psana reads
an index file and distributes work to the cctbx.xfel workers. The resulting

program is a flat tree of MPI ranks with data analysis ranks located at leaves.

Workers access data directly by reading the raw data files using offsets provided
by the “PSANA” (root) tree node. Finally, the cctbx.xfel workers save their
results to disk (local to each MPI rank, using the DataWarp burst buffer) and
report the analysis progress to a mySQL database hosted on NERSC’s Spin
micro-services platform. Arrows indicate the overall flow of data.
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Fig. 5. The average time to process an image remains constant with the

number of MPI ranks used. Colors show the different stages of the data
analysis pipeline. We also see that the variability grows with number of MPI
ranks, in part due to increased resource contention. However, the vast majority
of images can be processed with near-constant time, achieving weak scaling
on the Cori Haswell nodes.

We use psana [3] to read the raw data files. In Fig. @] we
show an example configuration where rank O distributes work
to available ranks. The producer rank uses MPI to distribute
offsets into the raw data files (green “buckets” in Fig. [).
The worker ranks then process each image independently, by
accessing the data files (each run’s data is stored across several
files) using an offset and applying the detector calibration in
memory. From here on stages (i) — (iv) are applied without
communicating with any other ranks. Finally results are stored
to the DataWarp burst buffer (blue buckets) and a mySQL
database (pink database icon in Fig. [).

Fig. [5] shows the average time to process an image. We see
that cctbx.xfel achieves near-ideal weak scaling, regardless of
whether a partial data analysis (red, and green symbols), or a
complete data analysis is being performed. The performance
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Fig. 6. Probability distribution of the time taken to perform different data
analysis tasks. While most processing steps complete within a few seconds,
data analysis can occasionally take significantly longer. Due to this variability,
our workflow uses producer-consumer parallelism — which is automatically
load-balanced.

variability in the wallclock per image does increase with the
number of MPI ranks. This is primarily due to shared resource
contention such as I/0 and network latency. Fig. [f] shows the
probability density function of the wallclock time for each
step. This variability can have two sources: 1) algorithmic:
e.g. the peaks in the green curve show different indexing
algorithms being applied to the data; and 2) resource contention.
The distributions are strongly-peaked, and therefore the vast
majority of images are analyzed within 7s. However as it is
not possible to predict exactly how long it will take to analyze
a batch of images, we use a producer-consumer workflow as
it is automatically load-balancing.

A helpful tool to identify performance variability due to
resource contention is the computational weather plot as shown
in Fig. [/l The MPI ranks are enumerated on the y-axis and
wallclock time is plotted on the z-axis. Each worker is plotted
as a collection of horizontal lines (a new line for each image).
As different images are analyzed, the horizontal line is given
different colors: initialization and I/O (red); spot finding (green);
indexing (blue); model refinement (dark green); and integration
(black). MPI communication happens only when images are
assigned to a particular worker and therefore those regions are
not plotted (ie. they are the white regions between images).
Results are stored at the end of each processing step (raw data
files are only read during the initialization step).

To demonstrate this powerful diagnostic tool, the left and
central panels shown in Fig. [7] show two different forms of
contention. The left panel shows an MPI communication-bound
job: most time was spent between images, waiting for new
work (which is distributed using MPI). The central panel shows
an example of I/O contention: at the end of each processing
step data is written to the Lustre SCRATCH file system, which
resulted in several nodes hanging while trying to open files
simultaneously. The right panel shows the same setup where
each rank caches results to the DataWarp burst buffer instead
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Fig. 8. Histogram of the time between recording an event and first data

processing completing at least one step of data processing for the P175
experiment. We find that a few images (those at the end of a run) are processed
within 3.5 minutes — given that a data transfer usually takes approx 3 minutes,

these images where processed only a few seconds after arriving at NERSC.

Most images where processed within approx. 10-20 minutes. The tails in the
processing time after 20mins are due to data reprocessing (cf. section [[II-A).

of SCRATCH.

D. Workflow Orchestration

We use a relational database implemented via MySQL to
maintain the associations between data and results in various
stages of processing. In addition, since processing results are
logged to the database quickly, we can access those results
from the experiment control room and display them to on-site
users for rapid feedback on the data they are collecting.

We selected Spin, a NERSC microservices platform for
container-based services, to host our MySQL server reliably
and scalablyﬂ Spin hosts services that can be accessed from
the Cori compute and login nodes. Having access to both
kinds of node is essential because the cctbx.xfel GUI runs

3The scripts to deploy a mySQL database using Spin are available here: https:
/lgitlab.com/NERSC/Icls-software/-/tree/beamtime-2020-09/spin/mysql-p175

on the login nodes and needs to be able query the database
in order to display the progress of data processing jobs, as
well as determine which new jobs to submit. The workers do
not query the database, instead they commit the status of the
images they are processing (e.g. number of spots found per
image, the rate at which they are indexed, etc). Hence, even
though thousands of ranks will be committing status updates
to the MySQL database, these transactions are light weight,
with the MySQL service handling them well. We found that
database connections and transactions consumed between 1%
and 3% of total runtime. This includes latencies caused by
accessing Spin via the (slower) TCP network. Furthermore,
Spin is scalable, which enables us to flexibly increase the
number of connections the database service can efficiently
manage as we scale to ever larger data processing workloads.

Fig. [§] shows the effectiveness of this approach by plotting
a histogram of the difference between the data collection time
and the processing time. We see that some images (a few
thousand) where processed within 3.5 minutes — this includes
the transfer time of approx. 3 minutes. The majority of images
are processed between 10-20 minutes after data is collected.
While this does not include reprocessing, or interpreting the
results, it does demonstrate that cross-site automation is crucial
for fast turn-around.

III. HPC CHALLENGES

While this is a relatively modest computing footprint
compared to traditional HPC workloads, real-time data analysis
requires the coordination of many moving parts ranging from
traditional computing to networking and IO. Data sets are
expected to grow at least 3000-fold with increasing detector
resolution, beam intensity, and measurement rate. Therefore, the
performance profiling data we collected represents an important
benchmark, allowing us to extrapolate the overall performance
of this Superfacility workflow and predict future bottlenecks
which would prevent scaling.


https://gitlab.com/NERSC/lcls-software/-/tree/beamtime-2020-09/spin/mysql-p175
https://gitlab.com/NERSC/lcls-software/-/tree/beamtime-2020-09/spin/mysql-p175
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Fig. 9. An illustration of the XFEL urgent computing needs. The z-axis

represents time, and y-axis represents the number of data sets collected. To
keep up with processing, as data from runs arrive (green boxes), processing
jobs are submitted as soon as possible (yellow boxes). For simplicity we
assume that it takes roughly the same amount of time to process a data set as
it takes to collect it (green and yellow boxes are the same size). Furthermore,
to illustrate the problem of limited reservation sizes, we assume that our
reservation has a maximum size of 3 nodes (3 yellow boxes). When new
parameters are discovered, all data must be re-processed in a batch, and on
a limited reservation, this can lead to delays in live feedback (red boxes).
Furthermore, the burden of reprocessing grows with the data set size. Therefore
a reservation would potentially need to be as large as the final data set.

A. Urgent and Real-time Computing

XFEL data reduction challenges computing clusters in two
ways 1) unequal data processing needs per frame and 2)
stochastic (cf. Fig. [6) and bursty (cf. Fig. 3) computational
needs. Together these result in a demand on the job scheduler
where computational resources are urgently needed (the urgency
is due to the need for fast real-time data processing), with
little advance warning (only after all the data has been
processed, do we know how many images resulted from “good”
measurements).

At NERSC we have enabled time-sensitive computing by
allowing nodes on Cori to be reserved ahead of time. These
nodes will then be kept clear of jobs not explicitly submitted
to this reservation.

1) Unequal Data Processing Time: In each run, thousands
of image frames are recorded, but how far each frame makes it
through the processing pipeline varies widely. A frame could
be a complete miss, without a crystal. A crystal may not be
of sufficient quality to be processed, and even if it is, it may
not be isomorphous with the rest of the data. At each step, the
image can be rejected for a variety of reasons. This means the
amount of time needed to process an image can vary wildly.
This is illustrated in Table [I each processing stage (row) has
a finite “success” rate, and therefore only a fraction of images
go onto the next stage.

We solve this problem by splitting the pipeline into tasks and
using fewer cores for downstream tasks. For example, during
P175, for indexing and integration, we used 28 nodes per job,
but for scaling and merging which does not read the pixel data,
we only used 1-2 nodes per job.

Further, for indexing and integration we use a pro-
ducer/consumer approach, where a root MPI rank sends images
to the other ranks. Each rank reports back when they finish an
image and receive a new one to process. In this way, all the
ranks are kept busy until the images have all been processed.
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Fig. 10. Data transfer rate between the LCLS and NERSC (Lustre SCRATCH)
file systems. This rate includes disk read and write speeds, which ultimately
limited the rate at which data can be transferred to NERSC. Horizontal black
lines show average transfer rates. The orange line shows a representative
“good” data transfer speed. However, depending on contention in the Lustre
file system at NERSC, this transfer rate can be 5 — 6x lower — shown by the
blue line.

2) Stochastic and Bursty Compute: Ideal processing parame-
ters are rarely known when an experiment begins, and midway
through data collection, new parameters can be discovered
which obviate all previous processing results. In classical
computing scheduling this leads to two inefficiencies (Fig. ).

First, if the set of reserved compute nodes is big enough
to accommodate processing needs plus an additional safety
margin, then when data is not being collected or when typical
processing patterns are being observed, the cluster can be
underutilized. Second, when batch-reprocessing needs to occur
due to the addition of new parameters, real-time processing
can fall behind.

These problems necessitate different scheduling systems than
reservations or first in-first out. Our experiences with real-time
data processing for LV95 and P175 have shown that reservations
are able to guarantee enough computational resources for time-
sensitive data processing. However reservations alone can be
a wasteful solution: any time the reservation goes unused (eg.
between measurements) will result in idle compute nodes.

These systems are being developed, but could include a
mix of reservations plus real-time priority access to compute
resources, which can be released to lower-priority jobs when
not being immediately used. Furthermore, preemption is a
promising solution to allow underutilized reservations to be
filled by preemptible jobs until the compute nodes are needed
for urgent computing tasks. Preemptible jobs are programs that
listen for a system interrupt (eg. SIGINT), and — upon receipt —
gracefully save and quit. At NERSC we have developed
a reservation system by which preemptible jobs can enter
a reservation. These will then be stopped if new jobs are
submitted directly to the reservation (after a warning period
during which SIGINT is used to request that the job saves and
quits).
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Fig. 11. Rate of database transactions during live data processing. The main
plot shows the number (in thousands) of database transactions per minute during
a 12 hour shift. The inset shows a 40-min snapshot of number (in thousands)
per second. We see that the database receives up to 8000 commits/second,
whenever data processing takes place (the “bursts” in the inset show individual
data analysis jobs). Despite this heavy load, the Spin microservices platform
was capable of handling this load level.

B. I/O and Network Performance

The 100 Gb/s network connection (hosted by ESnet) between
LCLS and NERSC made it possible to transfer most raw data
files within 3 minutes after concluding the run. Bandwidth
on the ESNet link was reserved ahead of time using the
SENSE API [6]. The XRootD clusters at LCLS and at NERSC
performed well, and could be scaled easily to accommodate
more files if a backlog occurred.

In fact, the I/O speeds of the Lustre file systems at LCLS
and at NERSC were the rate limiting factor. Fig. [I0] shows
the end-to-end data transfer rate from LCLS to NERSC. The
different lines are measurements taken on two different days.
This makes it clear that there are “good” and “bad” days
for file system utilization. The 5-6 fold difference is due to
a bug in NERSC’s SCRATCH file system, where some of
Lustre’s OSTs have a slow write speed. On a “bad day” the
slow Lustre write speed can become the dominant bottleneck
in the data processing pipeline, where the data for run N is
not transferred before run N 4 1 commences. This highlights
that reliable high-performance I/O is crucial for experimental
science workflows.

C. Workflow Orchestration

Workflow orchestration at scale is always a challenge,
as potentially hundreds of thousands of tasks need to be
coordinated from a central place. In our workflow manager,
the database takes on the role orchestrating the distributed data
processing. Therefore database communication is a potential
single point of failure and a bottleneck when experiments are
scaled up to the kHz regime with thousands of MPI ranks
reporting results simultaneously. Fig. [TT] shows that a Spin-
hosted MySQL database was able to accommodate the load of
approx. 8000 transactions/sec.

While the MySQL database server was selected with scaling
in mind, some further optimizations became necessary when

performing large-scale analysis runs.

1) Limiting concurrent connections: In some configurations,
the usable number of MPI ranks was limited by the
concurrent connections that our database could support.
We refactored our database communication to cache all
database queries for a small set of images before flushing
the cache via a single temporary database connection.
This reduced the peak concurrent database connections
to 1 per 10 MPI ranks.

2) Transactions: For processing in the kHz regime during a
different experiment we encountered another bottleneck
when many small queries had to be executed sequentially,
with later queries depending on earlier ones. Without
access to the Spin system, we were overloading the
MySQL server we were using, to the point where logging
50000 images could take over an hour. Using the MySQL
statement LAST_INSERT _ID() we were able to combine
many queries into a single transaction. With this approach,
we could log these images using a single MySQL query
comprising 130K lines that takes 0.07 seconds.

A related challenge to workflow orchestration is the variable
processing time per image. Fig. [6] shows the variability due to
algorithmic differences between images (eg. the peaks in the
green line are due to the indexing algorithm “trying” different
approaches to find a solution). Therefore we employ a producer-
consumer model to distribute parallel tasks across MPI ranks
while maintaining a balanced workload (cf. section [I-C). As
the data analysis for each image can have a subtly different call
tree, this can have a subtle impact on optimizing performance
and diagnosing errors: we can not expect each logical task
to take roughly the same amount of time. We observe that
between 2% and 3% of images take significantly longer than
2s to process. Using the hatchet tool [7] we where able to
compare the profiles for jobs with different call trees. Hatchets
allows us to analyze each job’s call tree hierarchically, and
compare common sub-graphs. We found that the slow jobs
where a result of I/O contention while reading data, saving
results and logging progress. This highlights an important
difference to many simulation codes: data analysis workflows
often have branching source codes, and invoke many libraries —
it is therefore not always possible to optimize the overall run
time by merely focusing on a hand full of subroutines that are
called over and over.

IV. SUPERFACILITY API

Over the years, NERSC staff has observed how many
research workflow operations fall into natural patterns of
recurring actions that are carried out when analyzing data.
The traditional approach for HPC centers is to provide human-
readable interfaces and also to design the experience to meet the
interactive expectations of a human user. However this design
collapses with workflows that need to run at larger scale or
at faster rates such as automated, machine-driven workflows
initiated at external facilities such as LCLS-II. We expect this
mode of operation to become more prevalent in the future
as more and more DOE facilities intend to link into ASCR



computing infrastructure to address their data and computing
needs. Providing machine-readable APIs for HPC resources is
the logical prerequisite to make this connection happen. It is
also particularly fitting these days as the workflows community
comes to together to discuss common needs which, in turn,
can inform the development of such APIs [S§] .

Providing a modern API into NERSC is a central compo-
nent of the Superfacility project [2] at Lawrence Berkeley
National Laboratory (LBNL), which aims to lay the basis
for a more unified, seamless environment that combines
hardware solutions, application software, and data management
tools to deliver breakthrough science. Automation is a key
component of the Superfacility concept, which envisions
science teams at experiment facilities orchestrating automated
data analysis pipelines which move data from the instrument to
the computing site, perform analysis, and disseminate results —
all without any human in the loop.

The SF API provides RESTful API interfaces to resources
and takes inspiration from work at various HPC centers [9],
[10] as well as from NERSC’s first API, the NERSC Web
development Toolkit (NEWT) [[L1]. While NEWT was designed
to serve primarily as backend service for web science gateways,
the new SF API is more targeted at workflows and provides
a modern, token-based authentication mechanisms as well as
asynchronous task execution. The SF API service itself is built
as a set of Dockei['| containers and runs in Spinf} NERSC’s
Containers-as-a-Service platform. By and large, it orchestrates
connections to backend systems and databases, asynchronously
manages any long-running tasks, handles authentication and
authorization, and hosts its own documentation. Currently, the
API provides the endpoints described in table [I[I} As the API
is in active development, the most up to date documentation
can be obtained online at the automatically generated Swagger
pageﬂ

Enumerating all of the use cases for the API would be too
much to cover in this manuscript as NERSC envisions all of the
common interactions with its systems to become automatable.
Instead, we close with describing two use cases, where one

4https://www.docker.com

Shttps://www.nersc.gov/systems/spin/

6Superfacility API documentation generated using the Swagger toolset,
available at https://api.nersc.gov/api/v1.2/

TABLE I
API ENDPOINTS.

information the API installation at the HPC

/meta center

/account retrieve allocation info for a user or project
sy browse, upload, and download files or a free

/utilities form command

/storage move data between sites with Globus, or between

g NERSC storage tiers
/status retrieve system health status, including planned
outages
/compute submit and manage jobs, check job status
/tasks information about pending and completed tasks

describes the abstract case of checking system health before
a file transfer and the other describes a current application of
the SF API in the AutoSFX pipeline of LCLS-II (a similar
pipeline as cctbx.xfel for serial femtosecond crystallography
data analysis).

A. Example: Checking system health before data transfer.

Because the demand for compute capacity is driven by
detector output which can vary cyclically, experiments often
need HPC-scale computing at short notice. Some experiments
may have even arranged for multiple compute sites to be
available to handle workloads in a given time period. To
build a truly automated and resilient workflow, scientists
need to be able to query the health and status of a facil-
ity and make decisions based on the response; for exam-
ple, if a file system is unavailable, the workflow pipeline
should choose not to send data to it. To assess the status
of a NERSC resource, the API provides the /status/
endpoint. Keeping with the example of an imminent file
transfer, the workflow could query /status/dtns and
/status/community_ filesystem in order to find out
the health of NERSC’s data transfer nodes and the community
file system, respectively. A json-formatted return of one of
those queries would look like this:

{"name": "dtns",

"full _name": "Data Transfer Nodes",
"description": "System is active",
"system_type": "filesystem",
"notes": [],

"status": "active",

"updated_at": "2021-05-21T07:55:00"}

A status indicated as “active” would now inform the workflow
that the resources is operational and that it could start the
data transfer. It could use its own tools for these trans-
fers, but the API also provides the /storage endpoint
to move data between Globus-enabled’| sites and between
the NERSC storage tiers. For planning further ahead, a
query to /status/outages/planned would provide any
scheduled outage in the future and would enable the workflow
manager to choose an alternative destination or date for the
transfer.

B. Example: Using the SF API in the LCLS AutoSFX pipeline.

The LCLS data management system invokes the SF API
to integrate its automation engine (ARP) with NERSC com-
puting resources. Data management events (start/end runs,
file transfers etc) automatically trigger analysis jobs, which
are then initiated, monitored and managed at NERSC us-
ing /compute/jobs/cori calls. Runtime progress bar
updates from the jobs, in addition to job statuses from
/compute/jobs/cori, are then pushed to the browser and
dynamically update the web UL The entire AutoSFX workflow,
consisting of multiple index/merge steps, is expressed as an

Thttps:/globus.org
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AirFlow Directed Acyclic Graph (DAG). Each node in the
DAG is executed by the ARP by composing /utilities
and /compute/jobs/cori calls (see table [l). Summary
results (for example, electron density maps) are copied back to
the experiment folders using /utilities/download calls
and displayed in the web UIL. As many of these calls target
asynchronous endpoints (e.g. /compute/jobs) where each
POST call generates a task, the workflow frequently queries
the /tasks to inquire the status of those tasks in order to
advance in the DAG.

V. CONCLUSION

In this paper we have demonstrated the power and possibility
of using on-demand HPC to analyse data in real time for a
running XFEL experiment at LCLS. This will provide a new
mode of sustainable operations for high data-rate experiments
(over 400 the rate of today’s experiments) expected to come
online in 2025. To achieve on-demand and real-time feedback
for experiment control, we have addressed scaling problems
in the application, work scheduling, data management and
workflow management. We have identified areas for future
development based on a series of carefully-profiled experiments
performed in late 2020, which achieved the goal of having
the analysis keep up with the experiment operation. Most
importantly, the experiments described in this paper were not
one-off demonstrations, but the start of a regular mode of joint
operations between an experimental user facility and an HPC
user facility that is both sustainable and scalable. HPC centers
are increasingly being used for this kind of experiment-driven
workflow, and the tools and techniques developed in this work
were designed to be generalizable to other science areas.
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